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Summary. In this paper we will study the fully developed flow of a modified (and sometimes referred to 
as the generalized) second grade fluid down an inclined plane. The reasons for using such a model for the 
flow of non-Newtonian fluids are (i) the capability of predicting the normal stress differences and (ii) 
allowing for the possibility of shear dependent viscosity. The boundary value problem is solved numeri- 
cally, and the special case of constant viscosity amends itself an exact solution (as previously reported in 
the literature) which serves as a test case to check the accuracy of our numerical scheme. The velocity and 
temperature profiles are obtained for various dimensionless numbers, for the case where the viscosity is 
also a function of temperature. 

1 Introduction 

Two distinct features of  many non-Newtonian fluids are either the fact that  many of  them 

exhibit normal stress differences or the fact that their viscosity depends on the shear rate. Of  

course, there are other features such as yield stress, time-dependency, history effects and other 

nonlinear issues; in these cases more complex constitutive relations should be used. Perhaps 

the simplest model which can predict the normal stress differences is the second grade fluid, 

or the Rivlin-Ericksen fluid of  grade two (cf. Rivlin and Ericksen [22], or Truesdell and Noll 

[32]). This model has been used and studied extensively (cf. Dunn and Fosdick [6]), and is a 

special case of  fluids of  differential type (cf. Dunn and Rajagopal [7]). Though this model is 

relatively simple (even though higher order terms are introduced) its viscosity is assumed to 

be constant, and thus it cannot be used for fluids where experimental data indicate shear 

dependent viscosity. At  the same time, one of  the most widely used non-Newtonian models in 
the field of  engineering is the so-called "Power-law" model (cf. Bird et al. [5] or Slattery [28]), 

which allows for the viscosity to depend on the velocity gradient. This model has been exten- 

sively used in coal-water slurries (cf. Shook and Roco [27]). However, this model cannot pre- 
dict the normal stress effects which could lead to phenomena like "die-swell" and "rod-climb- 

ing", (cf. Schowalter [25]) which are manifestations of  the stresses that develop 0rthogonal to 
planes o f  shear. 

One of  the main areas of  interest in energy related processes, such as power plants, atomi- 

zation, alternative fuels, etc., is the use of  slurries, specifically coal-water or coal-oil slurries, 
as the primary fuel. Some studies indicate that the viscosity of  coal-water mixtures depends 
not only on the volume fraction of  solids and the mean size and the size distribution of  the 

coal, but  also on the shear rate, since the slurry behaves as a shear-thinning fluid (cf. Roh  et al. 
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[23], Papachristodoulou and Trass [18], Tsai and Knell [34]). At the same time, there are 
studies which indicate that preheating the fuel results in better performance (cf. Tsai et al. 
[33], Saeki and Usui [24]), and as a result of such heating, the viscosity changes. A similar 
situation, i.e. efficient heating or cooling of a liquid occurs in the flow of a thin film along a 
solid surface which is kept at a constant temperature. Astarita et al. [4] studied the fully devel- 
oped flow of a non-Newtonian film along a plane surface. Gupta [11] studied the flow of a 
second grade fluid down an inclined plane. He also performed a linearized stability analysis. 
Stability analysis of non-Newtonian fluids, especially second grade fluids has received much 
attention (cf. Dunn and Fosdick [6], Straughan [29], [30]). In recent years, heat transfer to a 
falling fluid film has been a subject of extensive research (cf. Rao [20], Andersson and Shang 
[3], Shang and Andersson [26]). In most of these studies, the non-Newtonian fluid is repre- 
sented using the power-law model. There are very few studies where the effects of viscous 
dissipation are included, even though this has been shown to be very important in many cases 

such as polymer processing (cf. Winter [35]). 
Man et al. [15] and Man [16] proposed models where the shear viscosity (and also the nor- 

mal stress coefficients) of a second grade fluid would also depend on the shear rate. Therefore 
this new "modified" or "generalized" second grade fluid is not only capable of predicting nor- 
mal stress differences, but it can be used for shear-thinning and shear-thickening fluids also. 
Gupta and Massoudi [12] proposed a model based on Man's work [16] where in addition to 
the above effects they suggested that the shear viscosity can also depend on temperature. 
Therefore, their model becomes very useful for cases when the effect of viscous dissipation 
and the effect of temperature on viscosity cannot be ignored. Franchi and Straughan [10] 
have done a stability analysis for a modified second grade fluid where the viscosity is assumed 
to be a linear function of temperature. 

In this paper we will study the fully developed flow of a non-Newtonian fluid down a 
heated inclined plane. The constitutive relation is that of the modified second grade fluid 
where the viscosity is assumed to depend on temperature (cf. Gupta and Massoudi [12]). 

2 Constitutive relation 

Fluids of differential type form an important class of non-Newtonian fluids. The thermo- 
dynamics and stability of fluids of second and third grade have been studied extensively by 
Dunn and Fosdick [6] and Fosdick and Rajagopal [8], and a recent review article by Dunn 
and Rajagopal [7] sheds light on many of the interesting and challenging issues in the fluids of 
differential type. The generalized (or modified) form of the second grade fluid is where the 
shear viscosity (or all the rheological properties, i.e., the normal stress coefficient, as well) 
depend on the shear rate. 

The constitutive relation for the modified second grade fluid is given by (cf. Man [16]) 

T = - p l  + #Trm/2A1 -4- a lA2 A- a2A12 , (1) 

where T is the Cauchy stress tensor; p is the indeterminate part of the stress due to the con- 
straint of incompressibility, # is the coefficient of viscosity, and al  and c~2 are material moduli 
usually referred to as the normal stress coefficients. The kinematical tensors A1 and A2 are the 
first and the second Rivlin-Ericksen tensors (cf. Rivlin and Ericksen [22]), respectively, and 
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are given by 

A1 = L + L r ,  (2) 

dA~ 
A1 = ~ - +  AlL + LrA1, (3) 

t = (4)  

where v denotes the velocity field, V is the gradient operator, and d/dt is the material time 

derivative which is defined as 

d(.) _ 0( .)  
- -  + [v ( . ) ]~ ,  (5) 

dt Ot 

where O/Ot is the partial time derivative. In Eq. (1), #, m, al  and a2 are material functions 
which only depend on temperature; when m < 0, the fluid is "shear-thinning", while if m > 0, 
the fluid is "shear-thickening". When m = 0, Eq. (1) reduces to the standard second grade 

fluid of Rivlin-Ericksen. At the same time, if a l  = c~2 = 0, Eq. (1), reduces to the generalized 
power-law model. In Eq. (1), 7 r -  (1/2)gr (A12). The constitutive equation (1), proposed by 

Man et al. [14] has been used by Man [16] to study the non-steady channel flow of ice and by 
Gupta and Massoudi [12] to study the flow between two heated plates. 

3 G o v e r n i n g  e q u a t i o n s  

One of the most widely studied problems, due to its significant industrial applications and 
ease of computation, is the flow down an inclined plane. When the fluid is assumed to be 
represented by a power-law model, with a constant viscosity, and where fully developed con- 
ditions are assumed, it is possible to obtain an exact solution for the velocity field (cf. Bird 
et al. [5, p. 217]). For the general two-dimensional cases, including heat transfer effects, 
Andersson and co-workers have studied this problem extensively. The stability of a liquid 
film, where the constitutive equation is that of a second grade fluid, was studied by Gupta 
[11], where again for a fully developed condition an exact solution was obtained. Recently 
Akyildiz [1] has studied the flow of a third grade fluid flowing down a vertical wall which is 
oscillating longitudinally. In most of the studies, the effects of temperature dependent viscos- 
ity and viscous dissipation are ignored. In the present study, we will try to look into these 
issues, assuming that the constitutive relation for the stress is that of a modified second grade 
fluid, with a temperature dependent viscosity. 

For a fully developed flow, we seek velocity and temperature fields of the form 

. _ i ,  

0 = 0 ( y ) ,  

(6) 

where i is the unit vector in the z-direction (the direction of the flow), while y is normal to the 
inclined plane, with a being the angle of inclination. Substituting Eqs. (1) and (6) into the 
balance of linear momentum, 

d~ 
~ = d i v T + ~ b ,  (7) 
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and using the fact that the fluid can undergo only isochoric motions (incompressibility con- 
straint), i.e. div v = 0, we obtain 

0 - p  + c~2 # + ~99sin c~ = 0, (8) 0-7 tdy) ] 0y ~ ~)  

O~ -p  + (2al + c~2) \ d y J  J - Qgeos c~ = 0, (9) 

op - -  z 
Oz O . (i0) 

If we define a modified pressure p* through (cf. Rajagopal and Gupta [19]) 

- , ( 1 1 )  

Eqs. (8)- (10) become 

Ox - Oy p \ l ~ l / /  @J + ~gsin c~, (12) 

op* 
Oy egcos c~, (13) 

0v* 
Oz -- O. (14) 

If we set m = 0 in Eqs. (12)-(13), we obtain the equations of motion for a second grade fluid 
down an inclined plane given by Gupta [11]. For a pressure-driven flow, using Eq. (11) would 
indicate that Op*/Oy = Op*/Oz = 0, and thus Eq. (12) can be integrated directly. In the present 
problem, however, the pressure gradient in the normal direction is not equal to zero. Let us 
look at the boundary conditions for this problem. At the surface of the plane, i.e. at y = 0, we 
impose the no-slip condition. That is, 

at y = 0 :  u = 0 .  (15) 

At the free surface, we impose the traction-free condition. That is, 

at y = h :  t x = t y = 0 .  (16) 

Now, 

t = T r n ,  ( 1 7 )  

which implies 

[leu?l m/2d,, 
( t X ) y : h = ( T x y n y ) y : h Z # [ l ~ y l ]  ~ = 0  (18) 

and 

@ Y ) y = h  ~--- ( T Y Y n Y ) y = h  = - - P  q- (20~1 -}- O~2) ~ , , d y J  ~-- O.  (19) 



Flow of a modified second grade fluid 27 

Compar ing  (19) and (11) indicates that  

p* = 0 at the free surface. (20) 

Now, Eq. (13) implies that  for a given angle of  inclination, c~, we have 

op* 
= K1, (21) 

Oy 

where K1 is a constant. Integrating Eq. (21), we have 

p* = K~y + c l  (5). (22) 

Applying Eq. (20) to Eq. (22), we have 

( / ) y : h  : 0 : K~h + C1(~) ~ C~(x) : - K l h  : eons t .  (23) 

Now, differentiating Eq. (22) with respect to x we have 

op* 
= 0. (24) 

Oz 

Therefore, Eq. (12) becomes 

0~ ~LI~ J ~ ]  = -ogsin ~. (25) 

Integrating with respect to y, we have 

Iz\l~y t j ~y--  yogs ina+C2.  (26) 

Now, applying Eq. (18), we have 

(tx)y=h = 0 ~ - ~ g h  sin c~ + C2 = 0 ~ Ce = +~)gh sin c~, (27) 

and therefore Eq. (26) becomes: 

dul m du 
#-~y ~y-- ~g(y -h )  s ina .  (28) 

In order to solve this equation, we need to know how the viscosity changes as a function of 
temperature,  and therefore we also have to consider the balance of  energy which is 

& 
Q ~ = T.L - divq + Qr, (29) 

where e is the specific internal energy, q is the heat flux vector, and r is the radiant  heating. 
We assume that  q is given by Fourier 's  conduction law, 

q : - k V O ,  (30) 

where 0 is the temperature and k is thermal conductivity, which is assumed to be constant. 
Now the specific internal energy e is related to the specific Helmholtz  free energy through (cf. 
Dunn and Fosdick [6]): 

= r + o~ = c(o, A1, A~) = ~(v) ,  (31) 
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where r I is the specific entropy. It follows from Eq. (6) that 

de 
- - z  
d t  O, (32) 

and the energy equation reduces to (cf. Gupta and Massoudi [12]) 

0 Idu[~+2 d20 +k--du 2:0.  (33) 

The boundary conditions for this equation are: 

0=01  at y = 0 ,  (34) 

0=02  at y = h ,  (35) 

where 0~ > 01. The first term in Eq. (33) represents viscous dissipation which could be very 
important for the flow of many polymers and viscous oils. The basic equations for the present 
problem are the momentum equation, given by Eq. (28) subject to the boundary condition 
(15), and the energy equation, given by Eq. (33) subject to the boundary conditions (34) and 
(35). These equations are coupled, and the form of the momentum equation depends on the 
form of the viscosity function. We will discuss these and the dimensionless numbers pertinent 
to this problem in the next section. 

4 Nondimensionalization 

Let us introduce the following nondimensional parameters: 

0* 0 --  01 # ,  

02 - 01 ' #o 

Y u* u 

~ V 

(36) 

where Po and V are some reference viscosity and velocity, respectively. With these, the dimen- 
sionless form of the energy equation becomes 

d20 * du* m+2 
d~ ~ + #*F ~ -  = 0, (37) 

where 

V m+2 h 2 
r= o k(o2 - o l ) '  (38) 

and the boundary conditions become 

0(0) = 0 ,  0(1) = 1. (39) 

Now, F can be re-written as 

F - c;(o2 - 01) k 
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where we can define Eckert and Prandtl numbers (cf. Etemad and Mujumdar [9]): 

V 2 
s ~  = (41)  

Cp(02 -- 01)  ' 

Cv# (42) Pr=~- ~ , 

and F = Ec Pr is also known as the Brinkman number. 
For the viscosity, we assume that the fluid obeys the Reynolds viscosity law (used in many 

lubrication problems (cf. Reynolds [21], Szeri and Rajagopal [31]), where 

>* = e MO*; M -  n(02 - 01); (43) 

n is a constant. With this, the dimensionless form of the momentum equation (Eq. (28)) 

becomes 

du* _ ~ [(1 - {) eM0*] ~ (sin c~) ~ , (44) 
d~ 

and Eq. (37) now becomes 

d2 O* MO* rn+2 
- -  ~ ) ~  (45) < 2  + v ~  (1 - = o 

where 

s m+2 
/3 (46) 

#orm+l ' 

/3, Qg hm+2 
- sin a .  (47) 

#o Vm+l 

Now,  the boundary condition for the velocity in Eq. (44) becomes 

u*(O) = O, (48) 

recalling that the condition at the free surface has already been used. Now/3 can be re-written 

a s  

g h )  ~hm+lv  I m (49) 

where we can define 

V 2 

r ~  = 7 '  (50) 

ohm+iv1 m 
Re - (51) 

#o 

And therefore,/3 is the ratio of the viscous effects to the gravitational effects. For power-law 
fluids, the Reynolds number is typically given as 

R e  - K ' ( 5 2 )  
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where n is the power-law index, and K is the coefficient of  consistency (cf. Andersson and 

Shang [3]). Comparing Eq. (52) with Eq. (51), it is clear that the parameter m in this model is 
related to the power-law index n: 

m = n - 1 .  ( 5 3 )  

In the next section, we will present the solution to the problem for two different cases; the first 

case is when the viscosity is not  a function of  temperature, and the second case is when the 
viscosity-temperature relationship is given by the Reynolds model. 

5 Numerical solutions 

5.1 Constant viscosity ( M  = O) : #(0) = #o 

In the case of  constant viscosity Eq. (44) becomes independent of  the temperature, and it can 

be re-written as 

d ~  :~ ~[ 1 
a~ = ~ (1 - ~ ) 1  (sin ~ ) ~ .  (54) 

Equation (54) subject to condition (48) describes the velocity distribution in the (-direction 

under the effects of  3, and power m. The solution is possible only when m r - 1  and m r - 2 .  

Thus, using the boundary condition (48), Eq. (54) is integrated, and we obtain the following 
solution for the dimensionless velocity: 

u * = ~ \ ~ ]  1 - ( 1 - ~ ) ~  ( s inc~)~ ;  m > - l .  (55) 

Now, when m = 0 (i.e., when we have a second-grade fluid with constant shear viscosity), 
Eq. (55) becomes: 

= ~ (2~ - ~2) sin ~ (56) 

g9h 2 sin c~ 
-- 2~o (2~ - ~2). (57) 

This expression was given by Gupta  [11]. Figure 1 shows the dependence of  the dimensionless 
velocity profiles using power m as a parameter and keeping 3 '  constant. The results are given 

for m = -0.5 ,  0, and 0.5 when 3 = 4.0 and a = 90 ~ It is clear that as m increases the curves 
shift from right to left. That  is, for the case of  shear thinning, where m is negative, the velocity 

looks similar to that of  plug flow. For  the case of  shear thickening, where m is positive, how- 

ever, the flow seems to be more retarded near the wall. We can also see that the maximum 
velocity, which is achieved at the free surface, has a higher value for m = -0 .5  (shear-thinning 
fluid) than for ra = 0.5 (shear-thickening fluid). 

The effects of  the parameter 3 and the inclination angle c~ are shown in Figs. 2 and 3, 
respectively, for two values of  the exponent m. As Fig. 2a, b shows, for a given a, as 

increases, the velocity profiles change from an almost uniform (flat) profile to a fully-devel- 
oped-type profile. For  smaller 3's, the profiles are more flat. It is interesting to note that for 
the same /3 (for example /3 = 4.0) and the same a, the maximum velocity for the case 
m = -0 .25  (Fig. 2a) is greater than the maximum velocity for the case rn = 0.25 (Fig. 2b). 
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2.0 

That  is, for a shear-thinning fluid, the flow achieves a higher velocity at  the free surface. F o r  a 

given 3, similar effects are observed when a increases. Again,  for the case of  a shear-thinning 

fluid, m = - 0 2 8  and c~ = 98 ~ (for example),  the maximum velocity is almost  1.7 times the 

max imum velocity for a shear-thickening fluid with m = 0.25. 

Figures 4 and 5 show the results for the gradient  of  the dimensionless velocity at the wall, 

(du*/d~)~=o, as a function of/3 and c~, respectively, for m = -0 .25 ,  0, and 0.5. F o r  a given m, 

(du/df)~_ o increases as/3 or a increases. This is more  drastic when/3 is less than 1. F o r  a given 

/3, the effects of  the exponent  m on (du*/d~)~= o are shown in Fig. 6. When  ,3 is less than 1, 

(du*/d()~= o initially increases as m increases, and then it flattens out. When/3  is greater than 

one, (d'a*/d~)~= o initially decreases as m increases, and gradually it becomes a constant.  The 

dimensionless temperature  profiles for the constant  viscosity case are also given in Fig. 7. As 

we can see from Fig. 7a, for a shear-thinning fluid, m = -0 .25  and a given/3, the temperature  

does not  vary much as we change f .  That  is, if  we consider F as a measure of  viscous dissipa- 

tion, we can see that  its effect is more observable for a shear-thickening fluid (see Fig. 7b) 

than for a shear-thinning fluid. In either case, the temperature  profile is almost  linear. 
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5.2 Variable viscosity 

When the viscosity depends on the temperature,  Eqs. (44) and (45) must  be solved simul- 

taneously. Typical  results for the velocity profiles are shown in Figs. 8 to 10 for both  shear- 

thinning and shear-thickening fluids with three values of  M. As shown in Fig. 8, we can see 

that  as M increases, the velocity seems to remain the same near the wall and then, at a dis- 

tance of  approximate ly  ~ = 0.2 for m = - 0 . 2 5  and ~ = 0.25 for m = 0.25, the velocity pro-  

files begin to change rapidly,  reaching their maximum values at the free stream. We can see 

that  at the same distance from the wall (for example ~ = 0.8), and for the same values of  

/3 = 1 and P = 1 the velocity is higher for larger values of  M. This is true whether the fluid 

is shear-thinning or shear-thickening. When /3  and F are both equal to 1, the magni tude of  

the velocity near the free stream is seen to be almost  the same for both  shear-thinning and 

shear-thickening fluids as we can see from Fig. 8. However,  this is not  the case when either 

/3 or P is not  equal to one. F o r  example, Fig. 9 reveals that  with/3 = 0.5, for shear-thicken- 

ing fluids, the dimensionless velocity u* at  the free surface is found to be 0.32, 0.44, and 0.52 
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Fig. 9. Effects of temperature-dependent viscosity on the dimensionless velocity profile (c~ = 90 ~ 

for M being equal to 0, 1.0, and 1.5, respectivelyl while for shear-thinning fluids the value of  

the velocity at the free surface is 0.17, 0.26, and 0.35 for the same values of  M. Figure 10 

shows a similar t rend when F ---- 2. Compar ing  Figs. 8 and 10 we can see that  as F changes 

from 1 to 2, the free surface velocity for a shear-thinning fluid (m = -0 .25)  and for a given 

M = 1.5 is much higher for the larger value of  P,  whereas for a shear-thickening fluid 

(m = 0.25) and for the same M = 1.5 the free stream velocity almost  remains the same 

regardless of  the value o f / L  

F r o m  the energy equation (Eq. (45)), it is clear that  when ei ther/3 or F is equal to zero 

the temperature  var ia t ion is linear throughout  the flow domain.  However,  when ei ther/3 or 

/~ is not  equal to zero or when the viscosity is temperature  dependent,  the temperature  dis- 

t r ibut ion becomes highly nonlinear as shown in Fig. 11. In this case the calculations reveal 

the development  of  a thermal boundary  layer near the wall. Fo r  F = 1.0, the temperature  
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Fig. 11. Dimensionless temperature profiles (c~ = 90 ~ 

profiles seem to be almost  linear for m < 0 or m > 0, for a given/3 and M. This effect is 

also seen in the case of  constant  viscosity. We can see that  as F increases, i.e. as the effect of  

viscous dissipation increases, the temperature  rises within the fluid. That  is, for a given 

height, for example ~ = 0.4, when F = 1.0, 0 " ~  0.4, while when s = 10.0, 0 " ~  0.6 for a 

shear-thickening fluid (m = 0.25), Fig. 1 lb.  A similar t rend is also observed for the shear- 

thinning case (Fig. 1 la).  

6 Conclusions 

The fully developed film flow of  a non-Newtonian  fluid, modeled as a modif ied second grade 

fluid with a temperature  dependent  viscosity, down an inclined plane is studied. The results in 

terms of  dimensionless velocity and temperature  profiles are presented for various dimension- 
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less numbers.  The significant parameters  in this problem are the angle of  inclination c~, a 

dimensionless number  ~ which is related to the Reynolds and Froude  numbers,  a dimension- 

less number  F,  a measure of  viscous dissipation, which is related to the Eckert  and Prandt l  

numbers,  an exponent m which is related to the power-law index rz (for a power-law fluid 

model), and an exponent  M which represents the variat ion of  viscosity with temperature.  Due 

to the kinematics of  the flow, the normal  stress coefficients, c~1 and c~2, are absorbed in the 

pressure term, and for this part icular  problem they do not  affect the velocity and temperature 

fields directly. The case where viscosity is not  a function of  temperature,  i.e., M = 0, and 

where the viscosity is also not  shear dependent,  i.e., m = 0, provides an exact solution for the 

velocity profile given by Gup ta  [11] who also considered the stabili ty of  such a flow. This 

exact solution provides a test case for our numerical  scheme. We feel that  the model  proposed 

here is a general and an impor tant  model  for non-Newtonian fluids, since it includes the 

effects of  normal  stress differences, shear dependent  viscosity, and temperature  dependent  

viscosity. 
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