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Abstract. Context-free hypergraph grammars and attribute grammars generate 
the same class of term languages. Extending the context-free hypergraph gram- 
mar with a context-free grammar and a semantic domain, a syntax-directed 
translation device is obtained that is equivalent to the attribute grammar. 

1. Introduction 

Graph grammars are of interest because they provide a formalism to express 
the manipulation, generation, and description of graphs. For  this reason they 
are used in very diverse areas of computer science (see, e.g., [EhrNagRosRoz]) .  
A simple and attractive notion of context-free graph grammar was introduced 
in [Fed] and re-introduced (in a more readable formulation) and studied in 
e.g., [BauCou; HabKre l  and 2; Cou3 and 4; MonRos;  LenWan; Hab] :  the 
context-free hypergraph grammar (cfhg), that manipulates directed hypergraphs 
rather than graphs. 

An attractive feature of (hyper)graphs is that they can represent many other 
structures, such as strings. Thus, graph grammars can be used as a string-generat- 
ing device. In this way one obtains a context-free way of generating non-context- 
free string languages (see [HabKre l ;  Hab; EngHeyl  l, where the string-generat- 
ing power of cfhg's is studied). 

A more important  use of (hyper)graphs is to represent expressions (trees, 
terms), with sharing allowed. Thus, a graph grammar can be used as a term- 
generating device (or tree grammar), generating a set of terms. Moreover, allow- 
ing an additional phase of expression evaluation, a graph grammar generates 
a set of elements of some semantic domain. For  instance, as shown in [Cou3],  
cfhg's can generate the expression graphs that represent the computations of 
a recursive program scheme or a recursive query. 

In this paper, we investigate the power of cfhg's to generate expressions. 
A term can be represented by a directed hypergraph in a natural way (see 
[-Cou3; HabKre2;  Hab;  HabKrePlu;  HofPlu]), because the order of its subterms 
can easily be expressed using the direction of the edges of the hypergraph: 
every edge has a sequence of incident nodes. We consider "jungles", i.e., hyper- 
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graphs that represent terms (see LHabKrePlu]), and examine cfhg's that generate 
jungles. In particular, we compare cfhg's to attribute grammars (AG's, [Knu; 
DerJouLor]). An AG can be viewed as a device that translates strings into 
terms (i.e., expressions, to be evaluated in the semantic domain of the AG). 
The range of this translation is a set of terms, generated by the AG. Our main 
result is that cfhg's have the same term-generating power as attribute grammars. 
The class of term (or tree) languages generated by attribute grammars has been 
studied, e.g., in [-Bar; CouFra;  DusParSedSpe; Engl/2/3;  EngFil; Fill]. As an 
example, it is known to contain the IO context-free tree languages [-DusPar- 
SedSpe; EngFil] and the output languages of deterministic top-down tree trans- 
ducers l-CouFra; Fill], whereas it is itself contained in the class of output lan- 
guages of macro tree transducers [-CouFra; Engl ;  EngVogl]  and in the com- 
plexity class LOG(CF) [-Eng3]. 

We even push the relationship between cfhg's and AG's a little further. By 
coupling an ordinary context-free grammar (cfg) to a cfhg, a syntax-directed 
translation device is obtained that translates the strings in the language generat- 
ed by the cfg into terms, and hence into values from any semantic domain. 
We extend our main result by showing that such a cfhg-based translation device 
has the same power as the attribute grammar. In some sense, this result 
"explains" AG's to be syntax-directed string-to-graph translators (cf. the "DAG-  
evaluator" of [Mad]). Furthermore, it shows that cfhg's can be used to describe 
the semantics of programming languages (cf. the "push-down processor" of 
[AhoUll]). 

The relationship between graph grammars and AG's was first explicitly 
observed by Ganzinger [Gan],  Hoffmann [HofSch, Hof], and Courcelle [-Cou 1, 
Cou3]. It follows from [-Coul, Sect. 16.8] and [BauCou, Theorem 4.14] that 
the set of dependency graphs of an AG can be generated by a cfhg. A similar 
relationship between AG's and NLC-like graph grammars was established in 
[-EngLeiRoz]. However, it seems to us that cfhg's are more suitable to model 
AG's than NLC-like grammars, because attributes can naturally be coupled 
to nonterminals by viewing a nonterminal as a (hyper)edge with the attributes 
as its incident nodes. In fact, in this paper, we use cfhg's not only to simulate 
the dependencies between attributes but even to simulate (formal) attribute eval- 
uation, in a natural way. In [-Hof] a more powerful (context-sensitive) type 
of graph grammar is used to simulate both parsing and evaluation (together 
with context-conditions, which we do not allow in our AG's). 

The paper is organized as follows. Section 2 contains preliminaries. The 
reader is assumed to be familiar with AG's, but hypergraphs and cfhg's are 
described more comprehensively. Furthermore, some technical results concern- 
ing AG's and cfhg's are stated. In Sect. 3, jungles are defined and it is shown 
to be decidable whether a cfhg is term-generating, i.e., generates jungles only 
(Theorem 3.1). In fact, four alternative definitions of the class of term languages 
generated by cfhg's are given, and shown to be equivalent (Theorems 3.1 and 
5.3). The proof of the main result of this paper (Theorem 5.2, which states that 
the term-generating power of cfhg's and AG's is the same) is divided into two 
parts. In Sect. 4, an attribute grammar is simulated by a cfhg, and Sect. 5 contains 
the simulation of a cfhg by an AG. The paper ends by introducing cfhg-based 
syntax-directed translations, and proving that these are exactly the translations 
realized by AG's (Theorem 6.3). 

An extended abstract of this paper appears in [-EngHey2]. 
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2.1. General notation and terminology 

N = { 0 ,  1, 2, ...}. For  all n, m e N ,  In, m] denotes the set { i e N [ n < i < m } .  In par- 
ticular, if n > m then In, m] = 0. 

For  a set A, A* denotes the set of all finite sequences of elements of A, 
including the empty sequence (). In case A is an alphabet, a sequence 
(at, a2, ..., a ,)6A* will also be written as a string a I a 2 ... a, (as 2 if n=0) .  

By # A  we denote the cardinality of a set A or the length of a sequence 
A. 

A context-free grammar (abbreviated cfg) is a 4-tuple G = (N, T, P, S) where 
N is the nonterminal  alphabet, T is the terminal alphabet (disjoint with N), 
P is the finite set of productions of the form p = X  o ~ Wo X l  w I X 2 w 2 . . .  X n W n, 
n > 0, with X~e N and wj ~ T* for all j~  [0, n], and S ~ N is the initial nonterminal. 

For  a production p = X  o ~ woX1 w 1 X 2 w2 ... X , w ,  in P, its left-hand side 
Xo is denoted as lhs(p) and its right-hand side woX1 w 1 X 2 w2 ... X ,  w, is denot- 
ed as rhs (p). 

A derivation subtree g of G is a directed ordered tree, in which each node 
is labeled by a product ion of P, defined inductively as follows. Simultaneously 
we define the yield of g, denoted yields(g) or just yield(g), and the root of g, 
denoted root(g). 

(1) g is a node x labeled by a production p with rhs(p)e T*. In this case yield(g) 
= rhs(p), and root(g) = x. 
(2) g consists of a node x with label p = X o  ~ w o X 1  wl X2 w2 ... X , w ,  (n> 1), 
n derivation subtrees gl,  g2, ---, g, such that root(g j) is labeled by a product ion 
pjEP with lhs (p j )=Xj  for all j~[1 ,  hi, and n edges from x to the roots of the 
derivation subtrees gl,  g2, ---, g,, in that order. In this case yield(g) is the string 
w0 yield(g0 wz yield(gz) w2 ... yield(g,) w, in T*, and roo t (g)=  x. 

A derivation tree of G is a derivation subtree of G of which the root is 
labeled by a production p E P with lhs (p)= S. 

The (string) language generated by G, denoted L(G), is the set {yield(g)]g 
is a derivation tree of G}. 

G is reduced if every X e N  occurs in the label of some node in at least 
one derivation tree of G. 

A ranked alphabet F is a finite set of (function) symbols together with a 
mapping rank r: F ---, N (which specifies the number  of arguments of each func- 
tion symbol of F). We denote the ranked alphabet F ' =  {?~F] rankr (? )>  1} with 
rankr,(7) = r a n k r ( 7 ) - 1 ,  as dec(F). The ranked alphabet F '  consisting of all sym- 
bols of F, with rankr,(y ) = rankr(~/) + 1 for all y~F, is denoted as inc(F). 

The set of all terms written with a ranked alphabet F, commas,  and parenthe- 
ses, in prefix notation, is denoted T(F). For  example, if F =  {f, g, + ,  , ,  2, 5} 
with rankr (g )=3 ,  r a n k r ( + ) = r a n k r ( *  )=2 ,  r a n k r ( f ) = l ,  and rankr(2) 
= r a n k r ( 5 ) = 0 ,  then 2, f(5),  +( f (5) ,  2), and g(2, +( f (5) ,  2), *(2, 5)) are terms 
in T(F). A term language is a subset of T(F). 

Let Y= (Yl, Y2 . . . .  , Yk) be a finite sequence of k > 0 distinct "var iables"  such 
that {y~, Y2,-.., Yk} c~F=0.  By T(F, Y), we denote the set of terms T(F') where 
F'  = F w {y 1, Y2 . . . . .  Yk}, rankr,  (~) = rankr  (~) for all 7 ~ F, and rank r, (y) = 0 for all 
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Ye{Yl, Y2, ..., Yk}. The terms in T(F, Y) are also said to be terms with variables. 
Note that, for technical reasons, we consider a sequence, rather than the usual 
set, of variables. 

2.2. Attribute grammars 

We assume the reader to be familiar with attribute grammars  (see, e.g., [-Knu; 
Boc; AhoSetUll;  Lor; DerJouLor]) .  

A semantic domain is a pair D=(V,F)  where V is a set of values, F is a 
ranked alphabet, and each 7 c F  denotes a mapping 7o: V"--+ V with n = rankr(7). 
Thus, D is a F-algebra where F is a one-sorted signature (see, e.g., [CouFra ;  
ChiMar]). For  a term te T(F), we denote by t D the value of t in V, as usual. 

An attribute grammar G (abbreviated AG) consists of (1)-(4) as follows. 

(1) A context-free g rammar  Go = (No, To, Po, So), which is called the underlying 
grammar of G. 
(2) A semantic domain D =(V, F). 
(3) An attribute description (A, Syn, Inh, Att) where A is a finite set of attributes, 
and Syn, Inh, and Att are mappings from No to 2 A. For  each nonterminal  
XeNo, Syn(X) is the set of its synthesized attributes, and Inh(X) is the set 
of its inherited attributes, Syn(X)c~ Inh (X)=0 .  Att(X) is the set of all its attri- 
butes, A t t ( X ) = S y n ( X ) w  Inh(X). The set Inh(So) is empty,  and ~ S y n ( S o ) =  1. 
The only (synthesized) attribute of So is called the designated attribute of G 
and is denoted ed. 
(4) For  each production p = X o ~ w o X1 wl X2 w2 ... X ,  w, a set of semantic rules 
rp. For  each (c~, j )  e ins (p), rp contains one semantic rule of the form ( e , j ) = t  
with t~T(F, outs(p)), where ins(p)={(fi, i)l(fi~Inh(Xi) and ie[1,  n]) or 
(fieSyn(X~) and i=0)} is the set of inside attributes of p and outs(p) 
= {(fl, i)[(/~eSyn(Xi) and ie[-1, hi) or (flEInh(Xi) and i=0)} is the set of outside 
attributes of p. The set outs(p) is given some fixed but arbitrary order, so that 
it can be considered as a sequence, whenever this is convenient (in particular 
in T(F, outs(p))). 

A semantic rule of the form ( ~ , j ) =  (fi, i) is called a copy rule. 
Note that we only consider attribute grammars  which are in Bochmann 

normal  form, see [Boc]. Note  also that we do not allow semantic (context-) 
conditions. 

If we want to emphasize the semantic domain D of an A G  G, we say that 
G is an A G  over D. 

If (c~, j )  = t is a semantic rule in rp, for some production p of the underlying 
g rammar  G o = (No, To, Po, So) of an A G  G, and (fl, i) occurs in t, then we say 
that (c~,j> depends on (B, i). The dependency graph of p, denoted DGp, is the 
directed graph with nodes ins(p)voouts(p), and with an edge from (fi, i)  to 
(~, j )  iff (c~, j )  depends on (/3, i). The dependency graph of a derivation subtree 
g of Go, DG~, is obtained by gluing together the dependency graphs of the 
productions that  are labels in g (in agreement with d). More precisely, if a 
node x of g is labeled p and its j - th  son y is labeled p', then the nodes (c~,,/) 
of DGp and (e,  0)  of DG v, are glued together in DG# We shall refer to this 
node in DGe as (c~, y) .  In this way, we view every attribute eeAtt(lhs(p'))  as 
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an attribute (e, y)  of y. Hence, in the semantic rules of rp, (e, 0) refers to 
attribute (e, x )  of node x, and ( e , j ) ,  with j >  1, refers to attribute (c~, x~) of 
the j-th son xj of x. 

An AG G is reduced if for every derivation tree g of its underlying grammar 
Go there is a directed path in DGe from every node ( ~ , x )  to the node 
(ed, root(g)) (see [Fill). The AG G is circular if there exists a derivation tree 
g of Go such that D Ge contains a directed cycle, otherwise G is non-circular. 
In this paper, we shall consider non-circular AG's only. 

The evaluation of the attributes (~, x )  of the nodes of a derivation tree 
g of the underlying grammar Go of a non-circular AG G over D =(V,, F), is 
as usual. A semantic rule (c~, j )=t  where t=7(tl,  t2, ..., t,), expresses that the 
value of the attribute (e, x )  referred to by ( e , j )  is computed by applying 
the function 7o to the values of t l ,  t2, . . . ,  t n. This is called the evaluation of 
the semantic rule (c~, j )=t  (for (e, x)). Thus, each attribute (c~, x )  of a node 
x in g gets a unique value in V, denoted val~((e, x),  g) or just val((e, x),  g). 
Notice that in case G is a reduced non-circular AG, every attribute (c~, x )  
of g is used in the computation of the value of (c~e, root(d)). 

The translation realized by a non-circular AG G with underlying grammar 
Go, is "c(G)= {(yield(g), valG((~ d, root(d)), g))[g is a derivation tree of Go}. By 

(AG, D) we denote the class of all translations realized by AG's over semantic 
domain D. The output language realized by G, denoted OUT(G), is the range 
of z(G), i.e., OUT(G)= {valG((ed, root(g)), g)lg is a derivation tree of Go}. 

Turning G into a reduced AG can be accomplished without changing the 
translation realized by G (Theorem 4.1 of [Fill). Remark that in that case the 
output language realized by G does not change either. 

Proposition 2.1 For every non-circular AG G over the semantic domain D there 
is a reduced non-circular AG G' over D such that z(G')=z(G). [] 

An AG G over a semantic domain D = (V, F) is term-generating if D is the 
free F-algebra, i.e., V= T(F) and 7D(tl, t2, ..., t , )=7(t l ,  t2 . . . .  , t,) for all 7eF  (see, 
e.g., [-CouFra; EngFil; Fiil]). Thus, for such an AG, OUT(G)__ T(F) is a term 
language. The class of all output languages realized by term-generating AG's 
is denoted as OUT(AG, TERMS). 

Notice that, in our approach, every AG G is term-generating, in the sense 
that G determines a term-generating AG Gterm: just change the semantic domain 
D=(V,F) into Dterm=(T(F),F). It should be clear that the following "Mezei- 
Wright-like" result holds (see [-MezWri]): for every derivation tree g of the 
underlying grammar Go of G and Gterm , vala((c~d, root(g)), g) 
=(vale . . . .  ((ca, root(d)), g))o. Thus, to compute the value of (ed, root(g)) in 
V, one may first evaluate the attributes formally, i.e., as terms in T(F), and 
then evaluate the term-value of (~d, root(g)) in D. 

Example 2.2 Consider the AG Gbin defined in (1.5) in [Knu], which assigns a 
"meaning", i.e., a rational number, to every binary number. In our notation 
this AG is defined as follows. 

(1) Go=(No, To, Po, So) where No={N,L,B},  To={0,1, '},  So=N, and Po 
={Pl, Pa,...,P6} with p1=N--+L.L, p 2 = N ~ L ,  p 3 = L ~ L B ,  p4=L--+B, P5 
= B ~  1, and P 6 = B ~ 0 .  
(2) D=(V,, F) where V is the set of rational numbers and F = {  +,  21",--, 0, 1} 
with rank r ( + ) = 2, rank r (21") = rankr (--) = 1, and rank r (0) = rankr (1) = 0. For 
every 7 e F, the function 7D is as expected. 
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(3) A =(s, #, v}, where v represents the "value" of the nonterminals N, L, and 
B, E represents the "length" of a list of bits L, and s represents the "scale" 
of a bit B, or the last bit in a list L. Inh(U)=0,  Syn(N)={v}, Inh(L)={s}, 
Syn(L)={~, v}, Inh(B)= {s}, and Syn(B)= {v}. The designated attribute of Gbi, 
is ed=v. 
(4) For the production Pl = N ~ L . L ,  ins(p1)={@, 0), (s, 1), (s, 2)}, outs(p 0 
={(#,  1), @, t ) ,  (E, 2), @, 2)}, and its semantic rules are 
(v, 0 ) =  +(@, 1), (v, 2)), (s, 1 )=0 ,  and (s, 2 ) =  - ( ( / ' ,  2)). The other produc- 
tions have the following semantic rules. 

p 2 = N ~ L :  ( v , O ) = @ , l ) ,  

p 3 = L ~ L B :  ( d , O ) =  +((d ,  1), 1), 

(v, o ) =  + ((v, 1), (v, 2)), 
p4=L---~B: (E, 0 ) =  1, 

<v, 0)  = <v, 1), 

Ps = B --* 1 : <v, 0) = 2 ]'(<s, 0)), and 

p 6 = B ~ 0 :  <v, 0 ) = 0 .  [] 

(s, 1 )=0 ,  

(s, 1> = + ((s, 0),  1), 

(s, 2) = (s, 0), 

(s, 1) = (s, 0),  

2.3. Context-free hypergraph grammars 

A directed hypergraph consists of a set of nodes and a set of (hyper)edges, 
just as an ordinary graph except that an edge may be incident with any number 
of nodes rather than two. The edges are directed in the sense that with every 
edge a sequence of nodes is associated (possibly with repetitions). Moreover, 
in our hypergraphs, each edge is labeled with a symbol from a ranked alphabet, 
in such a way that the rank of its label equals the length of its sequence of 
incident nodes. Finally, we assume that every hypergraph has a sequence of 
designated nodes, called external nodes. Formally (cf. [BauCou; MonRos]), a 
hypergraph is defined as follows. 

Definition. Let ~ be a ranked alphabet. A hypergraph over ~ is a tuple H 
=(V, E, nod, lab, ext), where V is the finite set of nodes, E is the finite set of 
hyperedges (or edges), nod: E--+ V* is the incidence function, lab: E ~ E is the 
labeling function, and extE V* is the sequence of external nodes. It is required 
that for every e e E, rank~ (lab (e)) = 4t: nod (e). [] 

If nod(e)=(v 1, v2 . . . .  , v~), r eN ,  then r is said to be the rank of e, denoted 
rank(e), and e is called an r-hyperedge (thus, rank(e)=rankx(lab(e))). The node 
v i is also denoted by nod(e, i), and we say that e and vl are incident. Similarly, 
if ext=(vl ,  va . . . .  , Vm), meN,  then vi is denoted by ext(i). Moreover, m =  ~ext  
is the rank of H, denoted rank(H), and H will be called an m-hypergraph. A 
non-external node of H is also called an internal node. 

If the alphabet is irrelevant or clear from the context, a hypergraph over 
a ranked alphabet 2 will shortly be called a hypergraph. 

For a given hypergraph H, its components are denoted by Vu, Eu, nodu, 
lab u, and extu, respectively. 
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For a ranked alphabet Z, the set of all hypergraphs over X is denoted by 
HGR(Z), and the set of all m-hypergraphs, meN,  over Z is denoted by HGR,,(Z). 
A hypergraph language is a subset of HGR(X), for some ranked alphabet Z. 

For hypergraphs H, KsHGR(X),  K is a subgraph of H if VK~_Vn, EK~_En, 
and nodK and labK are the restrictions of nod~r and labn to EK. Note that, 
as in [Habl,  but in contrast to the subhypergraph defined in [HabKrel ] ,  we 
do not require that extK = ext, .  

We assume the reader to be experienced in the problem of concrete vs. 
abstract graphs (where an abstract graph is a class of isomorphic concrete 
graphs). As usual in the theory of graph grammars we consider hypergraph 
languages to consist of abstract hypergraphs, but in all our constructions we 
deal with concrete hypergraphs (taking an isomorphic copy when necessary). 
The notion of isomorphism is the obvious one, preserving the incidence structure, 
the edge labels, and the sequence of external nodes. 

Example. Consider the ranked alphabet X= {a, b, c} with ranks(a)=0, ranks(b) 
= 3, and ranks(c ) = 2. Figure 1 contains a picture of a 3-hypergraph/-/= (V, E, 
nod, lab, ext) over Z. A node of H is indicated by a fat dot, as usual, and 
an edge of H is indicated by a box containing lab(e), with a line between e 
and nod(e, i) labeled by i. These lines (or the corresponding integers) are called 
the "tentacles" of the hyperedge e (see [HabKrel]) .  A 2-hyperedge e is also 
drawn as a directed line from nod(e, 1) to nod(e, 2), with label lab(e), as usual 
in ordinary graphs. The external node ext(i) is indicated by a label i. In Fig. 1, 
H has nodes vl, v2,/)3, 1)4, Us, and edges el, e2, e3, e4 (both enumerated from 
left to right), and it satisfies nod(el)=(vl, vl, v2) , nod(e2)=(v2, vl) , nod(e3) 
=(v2, v3, v4), nod(e4)=(),  l ab(e0=b,  lab(e2)=c, lab(e3)=b, lab(e4)=a, and 
ext = (v2, v5, v2). Notice that Fig. 1 is also a picture of all hypergraphs isomorphic 
with H (i.e., it is a picture of an abstract hypergraph). [] 

We now turn to context-free hypergraph grammars (cfhg's), see, e.g., [Fed; 
BauCou; Cou3 and 4; HabKre 1 and 2; Hab; Lau; EngHey 1; EngRoz; MonRos;  
LenWan]. A cfhg is similar to an ordinary context-free grammar, but (labeled) 
edges of hypergraphs are rewritten rather than symbols of strings. Thus, a pro- 
duction of a cfhg is of the form (X, H) where X is a (nonterminal) edge label 
and H is a hypergraph of the same rank as X. The application of this production 
to a hyperedge e (with label X) of a sentential form K of the grammar consists 
of substituting /-/ for e in K, identifying nodK(e, i) with extH(i) for all i~ 
[1, rank(X)]. To define this formally, it is convenient to use the following two 
operations on hypergraphs: identification and substitution. 

(1) Identification of nodes. Let H~HGR(X) and R ~_ V~ x Vn. Intuitively, we 
want to identify nodes v and v', for every pair (v, v')~R. Let =R denote the 
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smallest equivalence relation on V~ containing R. For  vmVH, let [V]R denote 
the equivalence class of v with respect to -R ,  and let Vu/--R={[v]RIveVr~}. 
Then we define the hypergraph I-I/R=(Vt~/=R, Eta, nod, labu, ext) such that if 
ext~=(vl ,  v2, ..., v,,), then ext=([vl]R,  [V2]R . . . .  , [V,,]R), and, for every edge 
e eEl, if nod~(e)=(v, ,  v2, ..., vr), then nod(e)= ([Vl]R, [V2]R, .--, [Vr]R). 

(2) Substitution. Let K, H~HGR(Z) ,  and let eeEK such that rank(e)= rank(/,/). 
Then the hypergraph K [e/H], the result of subst i tut ing/ . / for  e in K, is defined 
as follows. We assume that VK~ V~=0 (otherwise an isomorphic copy of H 
should be taken). Let K' be the result of removing e from K and adding H 
(disjointly), i.e., K'=(V, E, nod, lab, ext) where V= VKu VH, E=(EK-{e})uEI~, 
n o d = n o d ~ : u n o d ~ ,  restricted to E, lab=labKulabr~,  restricted to E, and ext 
= extK. Then K [e/H] = K'/R, where R = {(nodK (e, i), ext u (i)) I i~ [1, rank (/./)] }. 

Finally, to define the start of a derivation of a cfhg, we also need a notation 
for a hypergraph consisting of a single edge, with the appropriate number of 
nodes. For  a~X, with rankz(o-)=m, the hypergraph ([1, m], {e},nod, lab, ext) 
with nod(e )=ex t=(1 ,  2, ..., m), and l ab (e )=a  will be denoted as ~;. It will be 
clear from the context whether the label a or the hypergraph cr is meant by 
(7. 

We are now prepared for the definition of context-free hypergraph grammars 
(cf. [BauCou]). 

Definition. A context-free hypergraph grammar (abbreviated cfhg) is a tuple G 
= (Z, A, P, S), where Z is a ranked alphabet, A ___ 2 is the terminal alphabet (and 
Z -  A is the nonterminal alphabet), P is the finite set of productions, and S ~ Z -  A 
is the initial nonterminal. Every production in P is of the form (X, H) with 
X ~ Z - A ,  H ~ H G R ( 2 ) ,  and rankz(X)=rank(H). [2] 

For  a production 7r = (X,/-/), X is the left-hand side and H is the right-hand 
side of ~, denoted lhs (rc) and rhs (~z), respectively. 

For  a hyperedge e of a hypergraph H~HGR(Z) ,  e is called a terminal edge 
if lab~(e)~A, and a nonterminal edge otherwise. H is said to be terminal if all 
its edges are terminal. We denote the set of all terminal (nonterminal) edges 
of H by tedg(/-/) (nedg(H), respectively). Thus, E~ is partitioned into tedg(H) 
and nedg(H). Whenever technically convenient, we assume that tedg(H) and 
nedg(H) are given some fixed but arbitrary order, of which the j-th element 
is denoted tedg(H,j) and nedg(H,j),  respectively. The terminal part of H is 
the hypergraph (V~, tedg(H), nod, lab, extn), where nod and lab are nod u and 
lab/~ restricted to tedg(H). Note that the terminal part of H is a subgraph 
of H. 

Let G =(Z, A, P, S) be cfhg. Formally, application of a production ~ = (X, H) 
of G is defined as follows. Let K~HGR(Z) ,  and let e~nedg(K). Then rc is appli- 
cable to e if labK(e)=X, and the result of the application is the hypergraph 
K[e/H]. We write K~(e,~)K', or just K ~ K ' ,  if K'  is the result of applying 

to e of K, i.e., if K'  is (isomorphic to) K[e/HI. As usual, o *  denotes the 
transitive reflexive closure of =>. 

Definition. Let G = (X, A, P, S) be a cfhg. The (hypergraph) language generated 
by G, denoted L(G), is the set {He HGR(A){S o *  H}. A hypergraph/-/~ HGR(Z)  
is a sententiaI form of G if S ~ *  H. []  

Notice that rank (H)= ranks(S) for every sentential form of G. 
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A cfhg G =(s  A, P, S) is reduced if every X e Z - A  occurs in at least one 
derivation S=~* F with FeL(G). It should be clear that any cfhg G (with L(G)# 0) 
can be turned into an equivalent reduced cfhg G' by dropping its useless nonter- 
minals (and productions). 

Example. Consider the cfhg G=(2, A, P, S) where N= {S, C, i, o} with rankz(S) 
=0, rankx(C)=4, rankx(i)= 3, and rankz(o)=2, A = {i, o}, and P =  {re1, rcz, re3} 
as given in Fig. 2, with each production (X, H) written as X: : = H. This cfhg 
generates all "double circles" of the form given in Fig. 3. Notice that 
L(G) ~_ HGRo (N), because ranks(S) = 0. [] 

Derivation trees of cfhg's and the terminal hypergraphs they yield are defined 
as follows (see, e.g., [Lau]). The definition depends on the (fixed, but arbitrary) 
order on nedg(rhs(~z)), for every production ~. 

Definition. Let G = (X, A, P, S) be a cfhg. A derivation subtree of G is a directed 
ordered tree g, in which each node is labeled by a production of P, defined 
inductively as follows. Simultaneously we define the yield of d, denoted yieldG(d) 
or just yield(g), and the root of g, denoted root(g). 
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(1) d is a node x labeled by a production z with ~nedg(rhs(~) )=0 .  In this 
case yield(d) is the terminal hypergraph rhs(rc), and root (d)= x. 
(2) d consists of a node x with label rc=(X, H), m =  ~nedg(H)  derivation sub- 
trees dl, d2 . . . . .  d , , ( m > l )  such that  root(dj) is labeled by a production rcj~P 
with lhs(~j)=lab~(nedg(H,j))  for all j~[1 ,  m], and m edges from x to the roots 
of the derivation subtrees d 1, d 2 . . . .  , din, in that order. In this case yield(d) is 
the terminal hypergraph 

H Fnedg (H, 1)/yield (d 1)1 [nedg (H, 2)/yield (d2)] ... [nedg (H, m)/yield (dm)l, 

and root(d) = x. 
A derivation tree of G is a derivation subtree of G of which the root is 

labeled by a production 7rEP with lhs(Tr)=S. [] 

It  can be shown in a straightforward way that, as in the case of ordinary 
context-free grammars,  a hypergraph can be generated by a cfhg G if and only 
if it is the yield of a derivation tree of G (cf. Theorems 4.5 and 4.8 of [Kre],  
and Example 2.20 of FCou2]). More strongly, for every XEZ--A, 
{HeHGR(A)[X~*H}={yield(d)ld is a derivation subtree of G, and root(z') 
is labeled with some production ~zeP such that lhs(Tz)=X} (cf. Theorem II.3.6 
of [-Hab]). 

Application of a production (X, H) of a cfhg to a sentential form K may 
result in the identification of some of the nodes of K. This is due to the fact 
that the sequence of external nodes of H may contain repetitions (cf. Fig. 2). 
This feature of cfhg's (which is not present in FHabKre l  and 2; Hab])  is useful, 
e.g., when simulating copy rules in an AG, as we shall see in Sect. 4. A cfhg 
in which such an identification is not allowed is called identification-free. Thus, 
for an identification-free cfhg, the terminal part  of a sentential form K is always 
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a subgraph of a terminal hypergraph F generated from K. In other words, 
the part of F that has already been generated in K, will not change by the 
remainder of the derivation. This property simplifies visualizing the derivations 
of a cfhg. 

Definition. An m-hypergraph H is identification-free if ext~(i)=#ext~(j) for all 
i, j~  [1, m] with i~=j. A cfhg G is identification-free if rhs(~) is identification-free 
for every production ~ of G. []  

Notice that an identification-free cfhg generates identification-free hyper- 
graphs only. In [-EngHeyl, Lemma 3.2] it is shown that every cfhg can be 
turned into an identification-free cfhg that generates the same identification-free 
hypergraphs. This result is similar to the removal of 2-productions from an 
ordinary context-free grammar. 

Proposition 2.3 For every cfhg G there is an identification-free cfhg G' such that 
L(G')= {H~L(G)]H is identification-free}. [] 

A consequence of this proposition is that, for every cfhg G of which the 
initial nonterminal has rank 0 or 1, there exists an identification-free cfhg G' 
such that L(G')= L(G). 

As observed above, in a sentential form K of a cfhg that is not identification- 
free, application of a production (X, H) to a nonterminal hyperedge e may 
result in the identification of nodes in nodK(e) as a consequence of repetitions 
in extu. The "reverse" may also occur. External nodes of H can be identified 
as a consequence of repetitions in nodK(e), called "loops".  

Definition. Let G =(2 ,  A, P, S) be a cfhg. A hypergraph H over ~ is loop-free 
if for every e~nedg(H), nod(e, i)+nod(e,j)  for all i, j in [1, rank(e)] with i+j.  
G is loop-free if rhs(~) is loop-free for every production 7c~P. []  

A sentential form of a loop-free cfhg is not necessarily loop-free. To see 
this, consider two nonterminal hyperedges e and e' in a loop-free sentential 
form K with nodK(e, i)=nodK(e', i') and nodK(e,j)=nodK(e',j'), for some i, i', 
j, f .  Then, if nodK(e, i) and nodr(e,j)  are identified as a consequence of applying 
a loop-free production (X, H) to e (i.e., extu(i)=extr~(j)), e' has a loop in the 
sentential form K [e/H]. But it is easy to see that, for a loop-free and identifica- 
tion-free cfhg, all sentential forms are loop-free (and identification-free). This 
implies that, after application of a production 7c, rhs(rc) is a subgraph of the 
sentential form (and hence the terminal part of rhs(rc) will be a subgraph of 
the generated terminal hypergraph). Thus, every derivation subtree of a deriva- 
tion tree / yields a subgraph of yield(/). This simplifies proofs that use induction 
on the structure of derivation subtrees. 

For  that reason, we shall use the Well-Formedness Theorem of [-Hab, Theor- 
em 1.4.6], where well-formed means loop-free. Because in [Hab]  the sequence 
of external nodes of the right-hand side of a cfhg production does not contain 
repetitions (by definition), this theorem states the existence of a loop-free and 
identification-free cfhg generating the same hypergraph language as a given 
identification-free cfhg. 

Proposition 2.4 For every identification-free cfhg G there is a loop-free and identifi- 
cation-free cfhg G' such that L( G') = L( G). [] 

In the proof  of Theorem 3.1, we shall use a monadic second order logic 
(abbreviated MSOL), defined in [-Cou4], to express properties of hypergraphs. 
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A language of MSOL, ~ , , ,  for some ranked alphabet A and some mEN, consists 
of formulas that express properties of m-hypergraphs over A. Such a formula 
defines a hypergraph language in HGRm(A), consisting of all hypergraphs that 
satisfy the formula. 

Formulas are built by using node constants ext(i), 1 < i<m, node variables 
v, w, v', Vl, v2, ..., edge variables e, e', el, e2 . . . .  , node set variables V, V', 
..., and edge set variables E, E', .... For  a given hypergraph H, ext(i) denotes 
exta(i), the node and edge variables range over all elements of V u and E R, 
respectively, and the node set and edge set variables range over all subsets 
of V u and EH, respectively. 

~A,,, contains the atomic formulas (1) x=x ' ,  for either node variables (or 
constants) x and x', or edge variables x and x', (2) xEX,  for either node variable 
(or constant) x and node set variable X, or edge variable x and edge set variable 
X, and (3) edge(e,/)1,/)2, " " ,  Ur), for aEA, edge variable e and node variables 
(or constants) vl, v2, ..., vr, where r abbreviates ranka (a). 

Intuitively, these formulas express that two nodes (edges) are equal, that 
a node (edge) is an element of a set of nodes (edges), and that, for hyperedge 
e, nod (e) = (vl,/)2 . . . . .  Ur) and lab (e) = a. 

The formulas of the language ~ , ,~  of MSOL are constructed from the above 
atomic formulas through the propositional connectives A, v ,  -7, -% and the 
quantifiers V and 3, as usual. A formula is closed if it has no free variables. 
If cp is a closed formula in L~A.m, then an m-hypergraph H over A either satisfies 
the property defined by q~ or it does not. We write H ~  ~0 if H satisfies q). 

Furthermore, we shall use the abbreviat ions/~ and V to denote the conjunc- 
tion and disjunction of a (finite) set of formulas. 

Example. Consider the ranked alphabet A = { a , b , c }  with ranka(a)=0,  
ranka (b)= 3, and rank~ (c)= 2. The 3-hypergraph H over A, given in Fig. 1, does 
not satisfy the closed formula ~0 in 5f~, 3, where (p expresses that no external 
node is isolated (i.e., for every external node v =ext(i), 1 < i <  3, there is a hyper- 
edge e, with an arbitrary label d, that is incident with v). The formula q5 is 
defined as follows: 

3 ( 
(p <=>gvA : v=ext( i )-+ V 3e3v1 3 / )  2 . . .  3 V r :  edgd(e, v,, /)2 '  " ' ' '  Vr) 

i = 1 d ~ A  

j = l  

where r abbreviates rankA(d). [] 

In many constructions concerning cfhg's, the following proposition (Corol- 
lary 4.8 of [Cou4]) is useful. 

Proposition 2.5 Let A be a ranked alphabet, and m e N .  Let G be a cfhg with 
L(G) ~ HGRm(A). Let (p be a closed formula in ~ ,m .  

(1)  One can decide whether for all H in L(G) H ~  qo. 
(2)  One can construct a cfhg generating {HEL(G) I H ~  (p}. 
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3. Term generation by context-free hypergraph grammars 

A term is often represented by a node in a finite, node-labeled, directed, ordered, 
acyclic graph (DOAG). As opposed to a representation by trees, this allows 
sharing of subterms. In this paper we analogously, but more conveniently, repre- 
sent a term by a node in a hypergraph, as in [Cou3; HabKrePlu].  Although 
we are interested in the generation of terms without variables (cf. Sect. 2.2), 
we will also need to represent terms with variables (in particular because the 
right-hand side of a semantic rule of an AG is a term with variables). Recall 
from Sect. 2.1 that, for technical reasons, we always consider a sequence rather 
than a set of variables. 

Let F be a ranked alphabet and Y a sequence of (distinct) variables. In 
a DOAG D where a node v represents a term t = , / ( t l ,  t2, . . . ,  t,) in T(F, Y), 
v is labeled 7. Further, D contains n (i.e., rankr(7) ) ordered edges directed from 
v to the nodes representing the terms tl, t2 . . . . .  t, in T(F, Y), respectively. In 
a hypergraph H where a node v represents t, 7 is represented by a hyperedge 
e labeled 7 (unless 7~Y). The tentacles of e, ordered in the sequence nod(e), 
are used to connect the nodes representing tl, t2, ..., t, with v, respectively. 
This means that e is a (rankr(7)+l)-hyperedge of H. Variables from Y are 
represented by external nodes rather than hyperedges (the i-th variable by the 
i-th external node). 

Example .  Consider the ranked alphabet F = {f, g, + , . ,  2, 5} with rankr(g ) = 3, 
r ank r ( + )  = rankr(* ) = 2, rankr  ( f )  = 1, and rankr  (2) = rankr  (5) = 0. 

In the D O A G  D given in Fig. 4, the order of the outgoing edges is from 
left to right at each node, and the node labels are displayed to the left of the 
nodes. A corresponding hypergraph H is given in Fig. 5. In both graphs, the 
nodes represent terms in T(F, Y), where Y-(y~, Y2, Y3)- For  example, the nodes 
vl, v2, v3, v4, and vs represent f(*(g(y3,  5, 2), Yl)), +(*(2, Y3), g(Y3, 5, 2)), *(2, Y3), 
.(2, Y2), and Y2, respectively. Note that Yl, Y2, and Y3 are represented by ext~(1), 
extH(2 ), and ext,(3);  extra(4) and ext,(5) are used to indicate distinguished nodes 
of H (a possibility not present in D). [] 

We only wish to consider hypergraphs of which every node represents a 
term (as the one in Fig. 5). To define such "jungles" [HabKrePlu]  we need 
some more terminology. 

First we need a notion of direction of a hyperedge e, in addition to the 
one given by the order of nod(e). This new notion of direction of an r-hyperedge 
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e with nod(e) = (Vl, vz, ..., vr) is as follows (cf. [Cou3]). The nodes vl, v2 . . . . .  vr- 1 
are the "source"  nodes of e, and we say that e is an outgoing edge of these 
nodes. The node vr is the " ta rge t"  node of e, and e is called an incoming edge 
of yr. In this sense, according to [ H a b K r e l  and 2; Hab;  HabKrePlu] ,  e is 
a hyperedge of type ( r - 1 ,  1). For  2-hyperedges (i.e., ordinary edges) the two 
notions of direction coincide. Note  that in the representation of terms by hyper- 
graphs the direction is taken opposite to the one in D O A G ' s  (cf. Figs. 4 and 
5). 

With this new notion of direction, a path in a hypergraph H from a node 
v to a node w is a sequence (Vo, Vl, - . . ,  Vn)@ V/~ +1 with n>O, Vo=V, and v,=w, 
such that for every ir n ] t h e r e  exist esE~z and j~[1 ,  r a n k ( e ) - l ]  with 
nodz~(e, j ) =  vi_ 1 and nodn(e, rank(e))= vl. We call such a sequence (Vo, vl . . . . .  v,) 
a hyperpath (of length n) from v to w. A cycle is a hyperpath of positive length 
from a node v to itself. A hypergraph is acyclic if it does not contain any 
cycles. Obviously, a hypergraph of which every node represents a term should 
be acyclic. 

To be able to determine uniquely which term in T(F, Y), where Y 
=(Yl, Y2 . . . .  , Yk) is a sequence of distinct variables, is represented by a node 
v in a hypergraph H with r a n k ( H ) > k ,  we demand firstly that the external 
nodes representing the k variables are distinct (because extu(i) represents y~). 

Definition. Let H be a hypergraph, and kc  [0, rank(H)].  H is k-identification-fi~ee 
i fextH(i)#ext~(j)  for all i,j~[1, k] with i#j. [] 

Secondly, we demand that each node v, except the first k external nodes 
corresponding to variables, has precisely one incoming hyperedge. 

Definition. Let H be a hypergraph. H is one-incoming for k, where 
k ~ [0, rank (H)], if 
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(t) each vs VH-{ext~(i)l 1 <i<k} has precisely one incoming hyperedge, and 
(2) no v e {extn (i) I 1 < i < k} has incoming hyperedges. 

H is one-incoming if it is one-incoming for 0, i.e., each node of H has precisely 
one incoming hyperedge. [] 

Since a 0-hyperedge in a hypergraph is not incident with any node, it does 
not contribute to any term represented by a node of that hypergraph. Thus, 
for technical convenience, we omit 0-hyperedges. We are now ready to define 
the notion of jungle. It is the same as the one defined in [HabKrePlu; HofPlu], 
apart from a few technicalities (such as the presence of external nodes, cf. 
[Cou3]). 

Definition. Let H be a hypergraph, and ke[0, rank(/-/)]. H is a jungle with k 
variables if H is acyclic, k-identification-free, one-incoming for k, and has no 
0-hyperedges. [] 

After having defined the hypergraphs of which the nodes represent terms, 
we now define which terms are represented by the nodes of such a hypergraph. 
For that purpose we use an unfolding operation that duplicates shared subterms, 
as with the unfolding of DOAG's. 

Recall from Sect. 2.1 that, for a ranked alphabet Z, dec(Z) is obtained by 
decreasing the rank of each symbol by 1. 

Definition. Let H be a jungle with k variables over a ranked alphabet Z, and 
let vEVn. Let Y=(Yl, Yz . . . . .  Yk) be a sequence of k distinct variables. The term 
associated with v in H over Y, denoted term(v, H, Y), is the term in T(dec(Z), Y) 
defined as 

term(v, H, Y)= 

Yl ifv is ext,(i) for some ie[-1, k] 

lab~(e) if e is the incoming edge of v, and e has rank 1 

lab~(e)(term(nodH(e, 1), H, Y), 

term(nodH(e, 2), H, Y) 

term(nodu(e, r -  1), H, Y)) 

if e is the incoming edge of v, 
and e has r a n k r > 2 .  [] 

Notice that in the above definition the recursion always ends, because H is 
acyclic (and finite). 

Since, in H, the external nodes ex t , ( k+  t), extH(k+2) . . . . .  ext,(rank(H)) are 
distinguished nodes, H represents r a n k ( H ) - k  (not necessarily distinct) terms 
in particular. For example, if Y-(YI,  Y2, Y3), then the jungle H of rank 5 with 
3 variables, given in Fig. 5, represents 2 terms, viz. 

term(extn(4), H, Y)=*(2, Y3) and term(extra(5), H, Y)=f(*(g(Y3, 5, 2), Yl)). 

Thus, in case rank(H)= k + 1, H represents one term in particular. Such jungles 
will be used to represent right-hand sides of semantic rules of an AG. 
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Definition. Let H be a jungle with rank(H) 1 variables, rank(H)=>1. Let Y 
be a sequence of rank(H)--1 distinct variables. The term associated with H 
over Y,, denoted term(H, Y), is term(extH(rank(H)), H, Y). [] 

In this paper we are mainly interested in jungles without variables, i.e., with 
0 variables, in order to compare their associated terms (without variables) with 
those generated by AG's. That is why we focus attention on cfhg's generating 
jungles without variables with which only one term is associated, in the rest 
of this paper. From now on, by a jungle a jungle of rank 1 without variables 
is meant, unless it is explicitly mentioned that a jungle of rank m with k variables, 
for some k (0 < k < m), is considered. This is equivalent to the following definition. 

Definition. A jungle H is an acyclic one-incoming 1-hypergraph without 0-hyper- 
edges. The term associated with H, denoted term(H), is term (extu (1), H, ()). [] 

Definition. A cfhg G is term-generating if every hypergraph in L(G) is a jun- 
gle. [] 

Thus the hypergraph language of a term-generating cfhg G consists of a 
set of jungles. The set of terms associated with these jungles is called the term 
language of G. 

Definition. Let G be a term-generating cfhg. The term language generated by 
G is TERM(G)={term(H)]H~L(G)}. [] 

Notice that for a term-generating cfhg G = (N, A, R S), TERM (G)___ T(dec(A)), 
the set of terms over dec(A). 

The class of all term languages generated by cfhg's will be denoted as 
TERM (CFHG), i.e., TERM (CFHG)= {TERM (G) IG is a term-generating cfhg}. 

Example. Consider the term-generating cfhg G = (s A, P, S) with 
s = {S, A,f, g, h, a}, ranks(S ) = rankx(a) = 1, rankx(A) = ranks(g) = rankx(h) = 2, 
and rankx(f )=3,  A ={f ,  g, h, a}, and P={7~1, 7c2, g3} as given in Fig. 6. For 
the jungle H~L(G) of Fig. 7, the associated term in T(dec(A)) is 

term(H)=f (g(f  (g(f  (a, a)), h ( f  (a, a)))), 

h( f  (g(f  (a, a)), h ( f  (a, a))))). 

Notice that application of production 7t 2 "causes" sharing. In the terms repre- 
sented by the nodes of H, the terms f (a, a) and f (g  ( f  (a, a)), h ( f  (a, a))) are shared. 
The term language generated by G can be described inductively by 

(1) f(a, a)aTERM(G), 
(2) if teTERM(G) then/(g(t) ,  h(t))aTERM(G). [] 

The right-hand sides of the productions of a term-generating cfhg G do not 
have to be jungles themselves. In fact, they even do not have to be jungles 
with variables (consider production ~1 of the cfhg defined in the above example). 
But (assuming that G is identification-free, loop-free, and reduced), the yield 
of every derivation subtree { is a subgraph of a jungle in L(G); using this, 
it is not difficult to see that yield(g) is a jungle with k variables for some ka[0, 
rank(yield(d))], provided we permute the sequence of external nodes of yield(g) 
in such a way that the first k external nodes have no incoming hyperedge in 
yield(g) and the remaining ones have an incoming hyperedge in yield(g). This 



177 

1 

3 

I 2 

"j-J" = A ::-- 
2 

1 2 

2 2 

Context-free hypergraph grammars 

= S ::= 

YI = A : := 
3 

1 2 

Fig .  6 

also explains our interest in jungles (with variables) of arbitrary rank. In the 
example above, A generates terminal jungles of rank 2 (without variables). 

We now consider a more complicated example to provide the reader already 
with some notion of the correspondence between cfhg's and AG's. 

Example. Consider the cfhg G = (Z, A, P, S) with 

Z={N,L,B, +,2t , - - ,0 ,  1}, 

ranks (N) = ranks (0) = ranks (1) = 1, 

rank x (B) = rankz (2 T) = ranks ( - )  = 2, 

rank s (L) = ranks ( + ) = 3, 

A = { + ,  21", --, 0, 1}, P={nl,  ha, n3, n4, ~5, n6}, as given in Fig. 8, and S=N. 
This term-generating cfhg generates the same term language as the A G  Gbi n 

of Example 2.2, viewed as a term-generating A G  (i.e., to be precise, L(G) 
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H = 

Fig. 7 

=OUT((Gbin)term)). Thus, each jungle generated by G represents the "meaning" 
of a binary number. 

The nonterminals of G are the nonterminals of the underlying context-free 
grammar Go of the AG Gbl n. Their ranks in Z are equal to the number of 
attributes they have. The terminals of G are the function symbols that occur 
in the semantic rules of the productions of Po, and their ranks in ~ equal the 
number of arguments they have plus one. Thus A -= inc(F), where F is the ranked 
alphabet of the semantic domain of Gbl n, 

The productions of P correspond to those of Po, including their semantic 
rules, with ~i corresponding to pi. The order of the tentacles of the nonterminals 
and of the external nodes corresponds to an (arbitrary but fixed) order of the 
sets of attributes of these nonterminals. In this example Att(N)={v}, 
Att (L)= {s, ~, v} and Art(B) = {s, v}, in those orders. The order of the nedg-set 
of the right-hand side of a production of P is determined by the sequence 
of nonterminals in the right-hand side of the corresponding production of P0. 

Compare the derivation tree g shown in Fig. 9 with the one of (1.2) in [Knu], 
which is the derivation tree g' of the binary number 1101.01 (obtained by chang- 
ing ~ into p~ in g). This derivation tree g yields the jungle H of Fig. 10, which 
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represents the value of the designated attribute in g'. In fact, the term in T(dec(A)) 
associated with H is 

term(H)= + ( + ( + ( + ( 2 T ( + ( + ( + ( O ,  1), 1), 1)), 

2T(+(+(0 ,  1), 1))), 
0), 

2T(0)), 

+(0, 2T( - (+(1 ,  1))))). 

This term is also the value of v of N in g', when Gbi n is viewed as a term- 
generating AG. Evaluation of this term in the semantic domain D=(V,F) of 
Gbl n gives (term (H)) o = 13.25, the meaning of 1101.01. 

Notice that the subterms +(+(0 ,  1), 1), 0, and --(+(1, 1)) are being shared. 
This is "caused" by the applications of production ~z3, and corresponds to 
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the multiple use of the outside attribute (s, 0)  in the semantic rules of the 
production P3 of G o. 

Notice finally (cf. the discussion preceding this example) that B generates 
terminal jungles of rank 2 with 1 variable, and L generates terminal jungles 
of rank 3 with 1 variable (where no permutation of the external nodes is 
needed). []  

The reader should be aware of the fact that the definition of T E R M ( C F H G )  
given in this section is quite flexible. The present definition was chosen to be 
suitable for the comparison of cfhg's with AG's as far as terms are concerned 
(in particular for the simulation of AG's by cfhg's, in the next section). In the 
remainder of this section we discuss some alternative ways of defining 
T E R M  (CFHG). 

The above example (in particular Fig. 10) shows that not always all the 
hyperedges and nodes of a jungle are used in the computation of the term 
associated with that jungle. This is a consequence of the fact that the attribute 
E of the first L in the production N ~ L. L and the attribute s of B in the 
(rightmost occurrence of the) production B ~ 0  are not used by the A G  Gbl n 

in the computation of the value of the designated attribute of the root  of the 
derivation tree 7' of Go, that corresponds to the derivation tree 7 of the cfhg G, 
given in Fig. 9. This is illustrated in Fig. 11 that shows the dependency graph 
DG~,, see also (3.1) in [Knu].  In Fig. 11 a dashed edge from an attribute /~ 
to an attribute ~ indicates that the dependence of e on /? is determined by 
a copy rule. A short incoming arrow indicates a semantic rule with a constant 
right-hand side (i.e., in T(F)). 

We call the hyperedges and nodes of a jungle H that are not used in the 
computation of term(H), garbage. A jungle without garbage is said to be clean. 
A more formal way to define this, is the following. 

Definition. Let H be a jungle with k variables. H is clean if for every v~VH 
there exists a hyperpath from v to ext~r(i), for some i e [k + 1, rank(H)]. [] 

A clean jungle of rank 1 without variables is shortly called a clean jungle. 
Compared to the representation of a term by a DOAG, a clean jungle can 
be viewed as a tree with sharing, where the external node of the jungle corre- 
sponds to the root  of the tree. 

Definition. A cfhg G is clean term-generating if every hypergraph in L(G) is a 
clean jungle. []  

Clearly, garbage can be removed from a jungle without changing the associat- 
ed term. Thus, one may consider it to be more natural to represent terms by 
clean jungles only, and to restrict attention to clean term-generating cfhg's. 
In the "garbage theorem" (Theorem 5.3) it will be shown that this is possible 
without changing the term-generating power of cfhg's. At this moment we just 
mention this alternative way of defining T E R M ( C F H G )  as {TERM(G)[G is 
a clean term-generating cfhg} ; we postpone the "garbage theorem" to Sect. 5. 

As another example of the flexibility of the definition of the class 
TERM(CFHG) ,  we do not have to restrict ourselves to term-generating cfhg's. 
We could just as well allow all cfhg's that generate 1-hypergraphs, and consider 
the terms associated with the (clean)jungles they generate. This is stated in 
the following theorem. At the same time we reassure the reader who is worried 
about the decidability of "(clean) term-generating". 



182 

| 

J. Engelfriet and L. Heyker 

v 

"x..k 

\ 
\ 

x-a, 

Fig. 11 

Theorem 3.1 Let G be a cfhg generating 1-hypergraphs. 

(1) It is decidable whether G is (clean) term-generating. 
(2) {term(H) lH6L(G), H is a (clean) jungle} ~ T E R M ( C F H G ) .  

Proof Let G = ( X ,  A, P, S) be a cflag with r a n k z ( S ) =  1. 
By definition, a 1-hypergraph  is a jungle  if it is acyclic, one- incoming,  and  

has no 0-hyperedges.  A n d  it is a clean jungle  if, moreover ,  there is a h y p e r p a t h  
f rom each of its nodes  to ext(1). One  can easily see tha t  these three (four) p rope r -  
ties for a 1-hypergraph  to be a (c lean) jungle  can be expressed in an M S O L  
formula  ~p of ~ .  l, as follows (for M S O L ,  see Sect. 2.3). 

T o  define this ~p, we first need M S O L  formulas  O(v, w), ~(v, w), and  ((e, v) 
to express tha t  there is a hyperedge  f rom a node  v to a node  w, tha t  there 
is a hype rpa th  f rom v to w, and  that  a hyperedge  e is incoming  for a node  
v, respectively. There  is a hype rpa th  f rom v to w iff for all sets of  nodes  V 
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with veV, if V is "closed" then w~V. A set of nodes V is closed, expressed 
as O(V) in 57~,~, iff all outgoing edges of nodes of V are incoming for nodes 
of V only. 

(hyperedge) O(v, w)~:, V 3e3vl 31)  2 . . .  3 1 ) r _ l :  

a6A 

r - 1  

where r abbreviates ranka (a). 

(closed) O(V)<=>VvVw: (veVAO(V, w))~w~V. 

(hyperpath) r w) <::, V V: (re VA O(V)) ~ we E 

(incoming) ~(e, v) ~:~ V (3 vl 3 v2... 3 vr_ 1: edga(e, vl, Va, ..., vr- 1, v)) 
a~A 

where r abbreviates rank~ (a). 
Further we need the following auxiliary formulas. 

(acyclic) ~o i ~ ~ (3 V 3 W : 0 (V, W) A ~/g (W,/))). 

(one-incoming) qo 2 ~ V v: ((3 e: ~(e, v)) 

A ((V el V e2 : ~(el, v) A ~(e2, v)) ~ (e 1 = ez))). 
(no 0-hyperedges) q)3 ~=~ A (--13 e: edga (e)) 

aEAo 

where A o = {a e A I rankn (a) = 0). 

(clean) q~4 ~:~ V v: ff (v, ext (1)). 

Then the formula (p expressing that a 1-hypergraph is a (clean) jungle is 
defined as qo ~*- (Pl/x qo 2/x q)3(/x cp4 ). 

(1) By Proposition 2.5(1), it is decidable whether H~q~ for all H~L(G). This 
means that it is decidable whether G is (clean) term-generating. 
(2) By Proposition 2.5(2), one can construct a cfhg G' generating the hypergraph 
language L(G')={H~L(G)IH~o }. G' is (clean) term-generating, because all 
H~L(G') satisfy ~0. Thus the term language generated by G' is defined. In fact 
TERM (G') = {term (H) IH e L(G')} = {term (H) IH e L(G) and H ~ (p}, i.e., 
{term(H)lHsL(G), H is a (clean) jungle}eTERM(CFHG).  [] 

4. Simulation of attribute grammars by context-free hypergraph grammars 

In this paper we compare the term-generating power of cfhg's with that of 
AG's. In particular, we prove that TERM(CFHG)- -OUT(AG,  TERMS). In 
this section we show that OUT(AG, TERMS)_~ TERM(CFHG),  i.e., that term- 
generating cfhg's can simulate all term-generating AG's. 

The output language of an AG G is obtained by considering all the derivation 
trees of its underlying grammar Go, and determining the values of the designated 
attributes of their roots. The computation of such a value for a derivation 
tree g of Go depends on the semantic rules of the productions that are applied 
in g. 
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Fig. 12 

Thus a cfhg has to simulate both the underlying cfg and the evaluation 
of the semantic rules of the AG. The simulation of the cfg is straightforward, 
because in fact a cfhg may be viewed as a cfg in which graphs are added to 
the productions. In particular, we shall represent the attributes of the nontermin- 
als in a cfg production p by nodes in the right-hand side of the corresponding 
cfhg production n, as in the dependency graph D G  v. The nonterminals in rhs(p) 
will be represented in rhs(7c) by nonterminal hyperedges with tentacles to the 
nodes representing their attributes. The attributes of lhs(p) form the external 
nodes of rhs(rc). The way in which a cfhg can simulate the evaluation of a 
semantic rule is explained in the following example. 

Example.  Consider again the term-generating AG Gbln of Example 2.2. If we 
"substitute" the corresponding cfhg productions, given in Fig. 8, in the depen- 
dency graph of Fig. 11, we get the jungle H of Fig. 12. A dashed line between 
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two nodes indicates that these nodes are identified in H. To keep the figure 
surveyable, for every hyperedge e, we only numbered the tentacle rank(e) indicat- 
ing the direction of e. The same jungle is also shown in Fig. 10. From Fig. 12 
it should be clear that term(H) is the value of the designated attribute v of 
root(Q, where L is the derivation tree given in Fig. 9. 

For technical reasons we shall define separate cfhg productions for the simu- 
lation of the productions of the underlying grammar Go, including their semantic 
rules, and for the simulation of the evaluation of these semantic rules (in contrast 
to the cfhg productions of Fig. 8). 

For example, for production P3 = L ~  L B  of P0, the corresponding cfhg pro- 
duction, that simulates PB including its semantic rules, is shown in Fig. 13a. 
The attributes of P3 are represented by nodes. The semantic rules of P3 are 
represented by nonterminal hyperedges labeled with the right-hand sides of 
these semantic rules. Since, in principle, a semantic rule defines an inside attribute 
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of P3 in terms of all the outside attributes of P3, a hyperedge e representing 
((e, j ) = t )  has tentacles to all nodes representing the outside attributes, and 
to the node representing (~, j ) .  In particular, nod(e,/) represents the i-th attri- 
bute in the sequence outs(ps) , 1<i_<4= 4~outs(ps) , and nod(e, @outs(p3)+l) 
represents ( e , j ) .  Notice that the direction of e corresponds to the direction 
of the original dependencies determined by (c~, j )  = t. For clearness' sake, some 
tentacles are not drawn completely in Fig. 13a, but the nodes with which they 
are incident should be clear (assuming that outs(ps) is the sequence ((s, 0), 
(d, 1), (v, I ) ,  (v, 2))). 

The other cfhg productions corresponding to P3 are used to rewrite the 
nonterminal hyperedges that represent the semantic rules of P3, into correspond- 
ing jungles of rank @ outs (P3) + 1 with @ outs(p3) variables. Thus, they simulate 
the evaluation of the semantic rules of Ps. In Fig. 13b two of these productions 
are given. Notice that the application of all these productions to Fig. 13 a would 
produce production 7c s of Fig. 8. [] 

To translate the right-hand side te T(F, outs(p)) of a semantic rule of a pro- 
duction p of Go into a jungle /4  (with variables) such that term(/-/, outs(p))=t, 
we associate with t and outs(p) a jungle of rank @outs(p)+l  with 4~outs(p) 
variables, denoted jung(t, outs(p)). This hypergraph resembles the usual tree 
corresponding to t, except that the variables are shared. In [-HabKrePlu] it 
is called the "variable-collapsed tree" corresponding to t. 

Definition. Let F be a ranked alphabet, let Y=(Yl ,  Y2, . . . ,  Yk) be a sequence 
of k distinct variables, and let t~T(F, Y). The jungle associated with t and Y, 
denoted jung(t, Y), is the jungle of rank k + 1 with k variables over inc(F) defined 
inductively as follows. In the definition, we take ext(i) equal to y~, for all 1 < i N  k, 
in all hypergraphs. 

(1) I f t = y i ,  l<__i<=k, then 

jung(t, Y)=({Yl, Yz . . . .  , Yk}, O, O, O, (yl,  Y2, . . . ,  Ya, Yi)). 

(2) Let t=y ( t l ,  t2, ..., t~) with ?,eF, rankr(y)=n, n>0 ,  and t i e r (F ,  Y) for all 
ie[1, n]. Denote jung(tl, Y) as Hi. Take isomorphic copies of H i , / / 2 ,  ..-,/Hn, 
such that for all i, j e [I, n] with i + j, Vn, c~ V~ j = { y l , Y z . . . .  , Yk} and Eni ~ E~ j = ~. 

Then jung(t, Y) =(V, E, nod, lab, ext) with 

V= {v, ya, Y2 . . . .  , Yk} U 0 Vm, where v is a "new" node, 
/ - - 1  

E={e} u @ EH,, where e is a "new" hyperedge, 
i = 1  

~(extm(k+ 1), extn~(k+ 1) . . . .  , extu,(k+ 1), v) if e=e  
n ~  if e e E  m, 1 < i N n ,  

{~a i f e = e  
lab(e)= br~,(e) if e a E m ,  1 < i < n ,  and 

ext=(yl ,Y2 . . . . .  Yk, V). [] 

Example. Consider the ranked alphabet F =  {f, g, + , . ,  2, 5} with rankr(g)=3,  
r a n k r ( + ) = r a n k r ( . ) = 2 ,  r a n k r ( f ) = l ,  and rankr(2)=rankr(5)=0.  Let Y 
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=(Yl, 22, Y3), and consider the following terms in T(F, Y): tl =yl, tz=2, ts= 
+(f(5) ,  Y0, t4=*(Y~, Ya), and t5 =g(t2,  t3, t4)=g(2, +( / (5) ,  Y0, *(Yl, Y3)). The 

jungles with 3 variables over inc(F) associated with these terms and Y are given 
in Fig. 14, i.e., Hi=jung(C,  Y), for ie [1, 5]. []  

As a consequence of the above definition and the definition of term(H, Y), 
term(jung(t, Y), Y)=t for all terms teT(F, Y). This can be proved by induction 
on the structure of t. The formal proof is left to the reader. In fact, this is 
the only property ofjung(t,  Y) that we need. In the above example 

termOung(ts, Y), Y) 
= te rm(Hs ,  Y)= g(term(H 2, Y), term(Hs, Y), term(H4, Y)) 
=g(term0ung(t2,  Y), Y), term0ung(t3, Y), Y), term0ung(t4, Y), IT)) 
=g(2, +(f(5) ,  Y0, *(Yl, Ys))- ts - 
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To prove that OUT(AG,  T E R M S ) ~ T E R M ( C F H G ) ,  we shall now give a 
detailed description of the siulation of a term-generating AG by a cfhg, using 
the above definition to simulate the evaluation of the semantic rules by jungles 
(cf. Fig. 13b that shows the jungles jung(+({~,  1), 1), Y) and jung({s, 0), Y) 
associated with the right-hand sides of the semantic rules of the production 
Ps of Example 2.2 and Y=({s, 0), {~, 1), {v, 1), {v, 2))). 

Lemma 4.1 For every term-generating AG G there exists a term-generating 
cfhgG' such that TERM(G' )=OUT(G) .  Moreover, if G is reduced then G' is 
clean term-generating. 

Proof Let G be a non-circular attribute grammar over (T(F), F) for some ranked 
alphabet F, and let Go = (No, To, Po, So) be its underlying context-free grammar. 
This implies that the terminal alphabet of G' must be inc(F). 

Every term tET(F) in OUT(G) is the value of the designated attribute of 
the root of some derivation tree g of G o. We shall construct a cfhg G' such 
that if d' is a derivation tree of G' that corresponds to d, then term (yield (~')) = t, 
see Fig. 12. For  that purpose, each attribute c~ of a node x ofd  will be represented 
by a node v in yield(g') such that term(v, yield(d'), ()) equals the value of {a, x) .  
Due to copy rules, distinct attributes may be represented by the same node. 

Every X~No is a nonterminal of G' of rank #At t (X) ;  in particular, So is 
the initial nonterminal of G' (with rank 1). These nonterminals will be used 
to simulate the derivation trees of Go. The terminals of G o need not be simulated 
by G', because they have no attributes and consequently do not influence 
OUT(G). 

Every production p = Xo ~ Wo X1 w1 X2 w2 ... Xn Wn of Go is translated into 
exactly one production p' = (Xo, H) of G', which simulates both p and its semantic 
rules. The nodes of H are the attributes of p, i.e., ins(p)u outs(p). The attributes 
of X o are the external nodes of H. Besides, H has n +  #t:ins(p) nonterminal 
hyperedges, as follows. Each nonterminal Xi, 1 < i<  n, corresponds to a hyper- 
edge labeled Xi of which the tentacles are connected to the nodes representing 
its attributes. Each semantic rule ({c~,j)= t)Er,, for some inside attribute {a , j ) ,  
is represented by a hyperedge with tentacles to all nodes representing outside 
attributes of p, and to the node representing {a , j ) .  To simulate the evaluation 
of the semantic rule it represents, such a hyperedge will be rewritten to jung 
(t, outs(p)). To do this, we use a set N,.s of nonterminals of G' that consists 
of all pairs {t, p )  representing the right-hand side t of a semantic rule of a 
production p ~ Po. These nonterminals { t, p)  have rank ~ outs (p) + 1. Notice that 
p must be added to t to determine its set of variables outs(p). In fact, t can 
occur in semantic rules of different productions. For  example, the term 
+({v, 1), {v, 2)) is the right-hand side of a semantic rule of both productions 
Pl and P3 of Example 2.2 and outs(p1) @ outs(ps). 

The formal definition of the cfhg G' is as follows. Let 

N~s = {(t, p)[P~Po, t~ T(F, outs(p)), 

rp contains ({c~, j ) =  t) for some {a, j)~ins(p)}.  

We assume for the sake of convenience that At t (X)=  [1, @Att(X)] for all X e N  o. 
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Then G' is the cfhg (Z, A, P', So) where N = N o w N~, vo F with 

[ # Att(a) 
ranks(o-) = ]  # outs(p) + 1 

I rankr(a) + 1 

if aeNo 
if a = < t , p } e N s  
if a e F  

A = inc(F), and P' is constructed as follows. 
Let p = X 0 --+ w o X1 w1 X 2  w2 ..- Xn M?n EPo. Then P' contains the production 

p' =(Xo, H) with H=(V, E, nod, lab, ext) where 

V= ins (p) vo outs (p), 

E =  {el, e2, ..., e,} wins(p), 

ext =(<1, 0>, <2, 0> . . . . .  < #Att(Xo), 0>), 

and for all iE[1, n]: 

lab (el) = Xi ,  

nod(@=(<l ,  i), <2, i), ..., < #Att(X~), i>), 

and for all <cqj>eins(p) with (<e,j> = t)erp: 

lab(<e, j>)= <t, p>, 

nod(<~, j ) )  = (outs (p, 1), outs(p, 2), ..., outs(p, # outs(p)), <~, j>), 

where outs (p, j) denotes the j-th element of outs (p). 

Furthermore P' contains the productions (<t,p>,jung(t, outs(p))) for all 
<t, P>~Ns. 

This ends the definition of G'. Note that G' is loop-free, but not necessarily 
identification-free (cf. Fig. 13 b). 

Now we shall argue that G' generates jungles, i.e., acyclic (i), one-incoming 
(ii), hypergraphs of rank 1 (iii) without 0-hyperedges (iv), that TERM (G')= OUT 
(G) (v), and that G' generates clean jungles if G is reduced (vi). 

Since rankx(So)= 1, G' generates 1-hypergraphs. These hypergraphs do not 
have any 0-hyperedges because A contains no symbols of rank 0 (recall that 
A = inc(F)). Thus, properties (iii) and (iv) are satisfied. 

To every derivation tree of G o corresponds a unique derivation tree of G'. 
In fact, for each production p e p  o we have constructed one production p' of 
P', and every <t, p>eN~ s is the left-hand side of one production of P'. 

Because of the non-circularity of G, the value of every attribute <e, x)  of 
a node x in a derivation subtree g of Go, is uniquely defined in terms of the 
inherited attributes of the root of g. This means that if root(g) is labeled by 
a production p with lhs(p)=Xo, then this value can be viewed as a term in 
T(F, Y), where Y is a sequence obtained by giving the set 
{<i, root(g)>lielnh(Xo) } some order. A formal definition of this term will not 
be given, because it should be intuitively clear. It will be denoted by 
val~(<cq x>, g), in agreement with the case that g is a derivation tree. 

Since in a jungle with k variables the first k external nodes represent the 
variables, we assume (without loss of generality) that Att(X)=[-1, #Att (X)]  
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is such that Inh(X)=[1,  #Inh(X)]  and S y n ( X ) = [ # I n h ( X ) +  1, #Att(X)] ,  for 
every X �9 N o. 

The following claim is used to show properties (i), (ii), (v), and (vi). 

Claim. Let d be a derivation subtree of Go of which the root x is labeled p 
= Xo ~ Wo X1 wl X2 w2 ... Xn wn. Let ~' be the corresponding derivation subtree 
of G', with yield(d')=F. Then F is a jungle of rank #Att(Xo) with #Inh(Xo) 
variables such that, for every s�9 term(exte(s), F, Y)=val6(<s, x}, ~), 
where Y=(<l ,x},  <2, x} . . . .  , <#Inh(Xo),X}). Moreover, F is clean if G is 
reduced. 

This claim can be proved in a straightforward way with induction on the 
structure of the derivation subtrees of Go. The formal proofs are omitted, but 
the following four informal remarks on the properties (i), (ii), (v), and (vi), respec- 
tively, should help to convince the reader of the correctness of the claim. 

Remark I. For every semantic rule (<~z,j)=t)~rq of a production qePo that 
is used in g, there is a hyperpath in jung(t, outs(q)) from every <fl, i} that occurs 
in t to <~,j} (or, more precisely, from ext(k) to ex t (#outs (q)+l ) ,  if <fl, i> is 
the k-th element of outs(q)). In particular, if t=<fi, i} then this hyperpath has 
length 0, i.e., <e, j )  and <fl, i} are identified in jung(t, outs(q)). Moreover, there 
is no such path if <fi, i) does not occur in t. Thus, for <c~,j)�9 and 
<fl,/}�9 there is a hyperpath in the part of F corresponding to q, from 
the node representing <fi, i} to the node representing <a, j} if and only if <c~, j} 
depends on <fl, i>. Hence, since all jung(t, outs(q)) are acyctic by definition, 
F is acyclic iff DGe is acyclic, where DG~ is the graph obtained from DGe 
by contracting all edges that correspond to copy rules (i.e., all dashed lines 
in Fig. 11). Since G is non-circular, DGt is acyclic. From this it easily follows 
that DGx is acyclic too (because, in DG~, there is only one path from the start 
node of an edge that will be contracted to its end node, viz. the one consisting 
of the contracted edge). 

Remark 2. Every node v in F not representing an attribute has one incoming 
hyperedge in F, because it corresponds to an internal node of jung(t, outs(q)) 
for some t and q, which is one-incoming for #outs(q) by definition. For  all 
nodes of F that represent attributes, their incoming edges are "caused" by the 
semantic rules that define these attributes. Since every attribute of [ (except 
those in Y) is defined by a unique semantic rule, the node representing the 
attribute has one incoming hyperedge. Note however that one node may repre- 
sent several attributes. In that case, these attributes are defined by copy rules 
and one semantic rule that is either not a copy rule (hence the node has one 
incoming hyperedge) or a copy rule of which the right-hand side is an element 
of Y Thus, F is one-incoming for # Inh(X0). 

Remark 3. Let v~,j be the node in F that represents the attribute (c~,j>�9 
outs(p). For a semantic rule (<a, j} = t)�9 v, it should be clear that term(v~ d, F, Y) 
equals term(jung(t, outs(p)), outs(p)) in which every <fl,/}�9 is replaced 
by term(vpd , F, Y). Since term0nng(t, Y), Y)=t, for every toT(F, Y), this implies 
that term(v~.j, F, Y) equals the term t, with the same replacement. This can 
be used in an inductive proof of the fact that term(v~,.i, F, Y)=val~(<~, xj}, ~) 
for all <~,j} (where xo denotes x and xj the j-th son of x). The induction 
is on any linear order of the <c~, x~} obtained from a topological order of DG~. 
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Remark 4. Lemma 4.1 of [Fill says that if the non-circular AG G is reduced 
then, for each production q~Po, every outside attribute of q occurs in at least 
one right-hand side of a semantic rule in rq. Hence, if G is reduced then from 
each node in D Gx there is a path in D Ge to at least one of the nodes (s, root (g)), 
where s~Syn(Xo). As observed in Remark 1, for every (~,j)~ins(q) and 
(fl, i ) touts(q)  of a production qePo, there is a hyperpath (possibly of length 
0) in F from the node representing (fl, i) to the node representing (e, j )  if 
there is an edge in DGq from (fl, i) to (~, j ) .  Thus, if G is reduced then, for 
all v~Vv, there is a hyperpath in F from v to one of the external nodes extF(s), 
where s~Syn(Xo), i.e., F is clean. 

This ends our remarks on the claim. Now let g be a derivation tree of 
Go. Let g' be the corresponding derivation tree of G'. From the claim we can 
conclude that yieldG,(g') is a jungle such that term(yields,(/')) 
=valG((C~ d, root(d)), g), and that yieldG,(d') is clean if G is reduced. This shows 
that G' is term-generating, that TERM(G')=  OUT(G), and that G' is clean term- 
generating in case G is reduced. [] 

By firstly applying Proposition 2.1 to the AG G, we can always construct 
a clean term-generating cfhg of which the term language equals the output 
language of G. Note however that, as shown in [Fill, reduction of an AG 
takes exponential time in general, whereas our construction of a cfhg clearly 
takes polynomial time. 

We end this section with a discussion concerning the translations realized 
by AG's. 

In the proof of Lemma 4.1, the set of productions of the cfhg G' consists 
of two parts: a production p' associated with every production p of the underly- 
ing grammar Go of a term-generating AG G over a semantic domain (T(F), F), 
and a production for every (t, p)~Nrs. Using the context-freeness of cfhg's (see 
[Cou21), it should be clear that an equivalent cfhg G" is obtained by applying 
all (t,  p)-productions to the right-hand sides of all productions p'. Thus, G" 
contains one production p" for every PePo, and no other productions. (By the 
way, this G" is in general neither loop-free nor identification-free.) As an example, 
for G = Gbin, G" is the cfhg of Fig. 8 (where P'i' is denoted nl). In particular, 
as mentioned before, the production of Fig. 13a turns into production n3 of 
Fig. 8. For  every derivation tree g of Go we have, as in the proof of Lemma 4.1, 
that vale ((ca, root (g)), d) = term (yieldG,, (q~ (d))), where rp (d) is obtained from d 
by relabeling every p with p". 

Thus, for an AG G with an arbitrary semantic domain D, the translation 
realized by G is z(G)= {(yield(g), (term(yieldG~;rm(q~(g))))n)[g is a derivation tree 
of Go}. (Recall from Sect. 2.2 that every AG G determines a term-generating 
AG G~erm ). This suggests the following attribute evaluation method for G. Given 
a derivation tree / of Go, turn it into a derivation tree qo(d) of G't'er m. Compute 
the jungle H=yieldG~arm(~o(g)), in a bottom-up fashion. Compute the  value of 
H in D, i.e., (term(H)) D. An evaluation method of this type, called the DAG- 
evaluator, is described in [Mad] and implemented in the NEATS System (see 
also [DerJouLor]). The advantage of the method is that copy rules do not 
have to be executed, because the corresponding nodes are already identified 
in the right-hand sides of the productions of G't'e~ ~. The disadvantage of the 
method is that the jungle H may take a lot of space (which can be improved 
by evaluating "sub-jungles" as soon as possible). 
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We finally note that, of course, any term-generating cfhg G, together with 
a semantic domain D=(V,F),  can be viewed as a syntax-directed translation 
device, realizing the translation {(d, (term(yieldG(t)))D)lg is a derivation tree of 
G} (cf. the "pushdown processor" of [AhoUll, Sect. 9.2], that translates strings 
into graphs). Above, we have shown that the translation of every A G  can be 
viewed as a parsing phase followed by such a translation realized by a cfhg 
with the same semantic domain. In Sect. 6 we shall define a cfhg-based transla- 
tion device that translates strings (rather than trees) into values of the semantic 
domain, and show that this device has the same translation power as the AG. 

5. Simulation of context-free hypergraph grammars by attribute grammars 

In this section we examine the (more surprising) converse of Lemma 4.1. Given 
a term-generating cfhg, it is not very hard to construct an underlying context-free 
grammar of an AG such that there is a 1-1 correspondence between their deriva- 
tion trees. The simulation of the jungles, that are the yields of the derivation 
trees of the cfhg, by the attribute description and the semantic rules of an 
AG is less straightforward. We shall add attributes to the nonterminals of the 
cfg which can be distinguished in inherited and synthesized attributes. This 
distinction and the definition of the semantic rules is based on the fact that 
jungles are one-incoming. 

Example. Consider the clean term-generating cfhg G = (Z, A, P, S) with 
Z={S,B,F, +, 1}, 

rankz (F) = 4, rankz( + ) = 3, 

rankz (S) = rankz (1) = 1, 

rankz(B)=2,  

and P = {re 1 , re2, re3, ~c4} as given in Fig. 15. 
This cfhg generates clean jungles of the form given in Fig. 16 (see also Fig. 17, 

where nodes connected by a dashed line should be identified). Each jungle gener- 
ated by G represents the "construct ion" of a Fibonacci number ~o (n), for some 
n>4 ,  where (p(1)=l,  ~o(2)=1, and q~(n)=q~(n-1)+qo(n-2) for all n>3 .  For  
example, the jungle H of Fig. 16 represents the construction of ~o(7)= 13, with 

term(H)= + ( + ( + ( + ( + ( 1 ,  1), 1), +(1, 1)), + (+(1 ,  1), 1)), 
+ ( + ( + ( 1 ,  1), 1), +(1, 1))). 

Note that, for the purpose of illustration, we do not consider the most natural 
cfhg to generate these jungles. 

Now we shall define a term-generating AG G' with OUT(G')---TERM(G). 

(1) The underlying grammar G o of G' is (No, To, Po, So) with No=Z--A 
={S, B, F}, To=P, So=S, and Po={pl=S~rclFB, p2=F~Tz2F, p3=F--+Tz3, 
P4 = B--. ~z4}. Notice that there is a 1-1 correspondence between the derivation 
trees of Go and those of G. 
(2) The semantic domain of G' is (T(dec(A)), dec(A)). 
(3) The attributes of a nonterminal XeNo are 1, 2, ..., ranks(X), one for each 
tentacle of a hyperedge labeled X. The initial nonterminal has no inherited 
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attributes and the designated attribute ed of G' is 1. B has inherited attribute 
2, and the inherited attributes of F are 2, 3, and 4. Notice that the choice 
of the attributes is quite obvious, but not their division in inherited and synthe- 
sized; this will be explained later. 
(4) The semantic rules are as follows. 

For p l=S~rhFB,  rp, contains the rules (1, 0 ) = ( 1 ,  1), (2, 1 )=1 ,  
(3, 1 ) =  +((1,  2), 1), (4, 1 ) = ( 1 ,  2), 
and (2, 2 ) = ( 1 ,  1). 

For p 2 = F ~ 2  F, rp2 contains the rules (1, 0 ) = ( 1 ,  1), (2, 1 ) = ( 2 ,  0), 
(3, 1 ) =  +((3,  0), (4, 0)), and (4, 1 ) = ( 3 ,  0). 

For P3 = F--, ~3, rp3 contains the rule (1, 0 ) =  + ((3, 0), (4, 0)). 
For  P4 = B ~ 7:4, rp, contains the rule (1, 0) = 1. 
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Fig. 16 

The way in which the derivation tree of G, that yields the jungle H of Fig. 16, 
is drawn in Fig. 17, together with its yield H, emphasizes the correspondence 
between the AG G' and the cfhg G (dashed lines correspond to copy rules of 
G'). 

For every production Pi of G', the attribute (e, j )  (with j >  1) represents 
nod(nedg(rhs(~i),j), e), and the attribute (e, 0) represents ext(e) of rhs(rcl). 
Notice that one node in rhs(rci) can be represented by more than one attribute 
of Pi- For example, for Pl, (1, 0) as well as (1, 1) and (2, 2) represent ext(1) 
of rhs(Tzl). We defined the semantic rules of G' in such a way that the value 
of an attribute (~, x)  of a derivation tree d' of Go equals the term associated 
with the node that is represented by (c~, x)  in the yield of the corresponding 
derivation tree d of the cfhgG. In particular, val~,((c~d, root(g')) ,g '  ) 
=term(yieldG(g)). With this intuition it is easy to "read off" these semantic 
rules from the right-hand sides of the productions of G (resulting in Fig. 17). 
So, a dashed line between two attributes (corresponding to a copy rule of G') 
means that they represent the same node in the right-hand side of a production 
of G. 

Figure 17 suggests that it would be more natural to define an AG G' not 
in Bochmann normal form (consider nod~(e, 2) and nod~(e, 3) of re1, where 
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H =  rhs(rq) and e is the nonterminal hyperedge with labu(e) -- F). Nevertheless, 
by the definition of the semantic rules of G', G' indeed is in Bochmann normal 
form. This is a consequence of the way we "read off" semantic rules from 
the cfhg productions, which depends on the fact that jungles are one-incoming 
(we shall return to this later). [] 

As opposed to Sect. 4, a cfhg G and an AG G' that generate the same term 
language, can have different "sharings", because an attribute grammar can share 
(values of) attributes only, whereas a cfhg can share the terms represented by 
any node in the right-hand side of a production, even by nodes that are incident 
with terminal hyperedges only. Comparatively, in Sect. 4, attributes are repre- 
sented by external nodes and nodes incident with nonterminal hyperedges. In 
the above example, the term 1 in the right-hand sides of the semantic rules 
(2, 1} = 1 and (3, 1) = +((1 ,  2}, 1) of Pl is shared in rhs(rcl). Similarly, G and 
G' may not have the same "cleanness". In fact, even a term-generating A G  
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simulating a clean term-generating cfhg does not have to be "clean", where 
clean for an AG means reduced. For  instance, in the above example, the attri- 
butes 2 of F and 2 of B are not needed for the computation of the value 
of the attribute 1 of S. 

Despite these differences T E R M ( C F H G ) _  OUT(AG,  TERMS). 

Lemma 5.1 For every term-generating cfhg G there exists a term-generating 
AG G' such that O U T ( G ) = T E R M ( G ) .  

Proof Let G =(2,  A, P, S) be a reduced term-generating cfhg. We may assume 
that G is identification-free by Proposition 2.3 (rankx(S)= 1). Consequently, we 
may assume that G is identification-free and loop-free by Proposition 2.4. 

It is easy to choose the underlying grammar Go of the non-circular A G  G' 
in such a way that there is a 1-1 correspondence between the derivation trees 
of G o and those of G. We let the nonterminals of G o be those of G. The terminals 
of Go are the productions of G, and if :~ =(X,  H) is a production of G then 
X---,rcX1X2...X,,  is a production of Go, where m=4~nedg(H) and Xj 
=lab~/(nedg(H,j)) for all j~[1,  m]. We add zc to the right-hand sides of the 
productions of Go to get a 1-1 correspondence between the productions of 
G o and those of G. 

It is obvious that since T E R M ( G ) _  T(dec(A)), G' must have semantic domain 
(T(dec(A)), dec(A)). 

One could imagine that a terminal r-hyperedge e in a jungle H "passes" 
term(nodF/(e, i), H, ()), term(nodH(e, 2), H, ()) . . . . .  and term(nodu(e, r -  1), 
H, ()) to nod/~(e, r), which "uses" these values (together with labn(e)) to construct 
term(nodn(e, r), H, ()). The "passing" of values in an AG is determined by the 
semantic rules. For  that reason we let attributes correspond to nodes in a jungle 
and semantic rules to "pieces of jungle" consisting of terminal hyperedges. 

We give each nonterminal X e X - - A  the attributes 1, 2, ..., rankx(X), one 
for each tentacle of a hyperedge labeled X. Now we have to determine which 
are its inherited and which are its synthesized attributes. 

Consider a derivation subtree d' of a derivation tree d of G, that is associated 
with the derivation X=*F~HGR(A) .  Since G is identification-free, loop-free, 
and reduced, F is (isomorphic with) an identification-free subgraph of the hyper- 
graph yield(d) in L(G). Since G is term-generating, yield(/) is a jungle. Hence, 
it can easily be seen that F is a jungle with k variables, for some ke[0,  ranks(X)], 
provided we permute the sequence of external nodes of F in such a way that 
the first k external nodes have no incoming hyperedge in F and the remaining 
ones have an incoming hyperedge in F (as already observed in Sect. 3). It is 
natural to view these first k external nodes as inherited attributes of X, because 
the terms associated with their corresponding nodes in yield(d) are initially 
determined by the context of d', as in AG's. The remaining external nodes 
have one incoming hyperedge in F, i.e., the associated terms of their correspond- 
ing nodes in yield(d) are initially determined by d'. Thus it is natural to view 
them as synthesized attributes of X. 

Hence, we define the set of inherited attributes of a nonterminal X as 
Inh(X)={i~[1 ,  rank~(X)]lextv(i) has no incoming hyperedge in F}, where 
F ~ HGR(A) is such that X o *  F in G (and thus Syn (X) 
={i~[-1, rankz(X)]tir This set is (independently of the choice of F) 
uniquely defined for every nonterminal X. In fact, consider derivation trees 
/ and / '  of G, where d' is obtained from / by replacing a derivation subtree 
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that corresponds to X o *  F by a derivation subtree that corresponds to X o *  F'. 
By the context-freeness of cfhg's, there exists a hypergraph KeHGR(X)  with 
exactly one nonterminal hyperedge e (labeled X), such that y i e l d ( g ) = K [ e / F ]  
and yield (g')= K [e/F']. Note that K is loop-free, and F, F' are identification-free. 
Since G is term-generating, every node in yield(d) and yield(g) has one incoming 
hyperedge. Thus, an external node exte(i) has no incoming hyperedge in F iff 
extF, (i) has no incoming hyperedge in F' (iff nodK(e, i) has an incoming hyperedge 
in K). As an example, the reader may now see from Fig. 17 that Inh(F) = {2, 3, 4} 
and Inh(B)={2}. As another example, for the nonterminal A in Fig. 6, 
Inh(A) =0, i.e., A has two synthesized attributes. 

For technical reasons, we would indeed like to assume that the yield of 
every derivation subtree of G is a jungle with variables. Notice that the tentacles 
of a nonterminal hyperedge e labeled X in the right-hand side/- /of  a production 
(X, H) of G can easily be permuted such that nodi~(e, 1), nodn(e, 2) . . . . .  
nodn(e, =~Inh(X)) are represented by the inherited attributes and 
nodn(e, ~ I n h ( X ) + l ) ,  ..., nodu(e, rank(e)) are represented by the synthesized 
attributes of X. The external nodes of the right-hand sides of the productions 
that can be applied to e (i.e., productions n with lhs(rc)=X) can, of course, 
be permuted in the same way. So, from now on we assume that Inh(X)= 
[1, ~Inh(X) l  and Syn(X)=[#e Inh(X)+ l ,  ranks(X)], for every X e X - A .  For 
example, if the tentacles of the nonterminal hyperedge labeled F in rhs(rcl) of 
Fig. 15 would be permuted in such a way, then Inh(F) would be {1, 2, 3} instead 
of {2, 3, 4}. 

To define the semantic rules of the productions in Go, we use a kind of 
unfolding operation. This operation is based on the fact that jungles are one- 
incoming. 

Consider a derivation tree g of G. Let x be a node in I with label 7r = (X, H). 
Let lab H (nedg (H, j))= Xj for all j e [1, m], where m = ~ nedg (H). Each node v ~ V n 
has one incoming hyperedge in yield(d). This incoming hyperedge e is "related 
to" H according to one of the following three mutually exclusive, exhaustive 
cases.  

(i) e corresponds to a (terminal) hyperedge of H. 
(ii) v = nodu(nedg(H, j), i) and e corresponds to an incoming hyperedge of ext(i) 
in yield(l~), where l j  is the derivation subtree of g such that root(l~) is the 
j-th son of x, for some je[-1, m]. Note that th is j  and i are unique. 
(iii) For e, neither case (i) nor case (ii) holds. In this case v=extH(i) for some 
unique i. 

Notice that cases (ii) and (iii) correspond to the facts that i~Syn(Xj) and 
i~Inh(X), respectively. Thus, incoming(v)= 1, for all w Vu, where incoming(v) 
is defined as ~ { e ~ t e d g ( H ) l n o d n ( e ,  r a n k ( e ) ) = v } +  ~ {(j, i) l l < j  <= m, l<-_i 
< rank(Xj), i t  Syn(Xj), nodu(nedg(H, j), i) = v} + 4~ {islnh(X) lextn(i) = v}. This 
will be used in the definition of the unfolding operation that determines the 
set of semantic rules of the production p = X  --+ rc X~ X 2 ... Xm. 

The formal definition of the AG G' is now as follows. 

(1) The underlying cfg Go is (No, To, Po, So) where N o = X-- A, T o = P, S o = S, and 

Po= { X  ~ n X1 X2  ... X, , I  3 H :  n = ( X ,  H ) e R  m =  ~ nedg(H), 
X~-  labn (nedg (H, j)) for all j e [1, rn] }. 

(2) The semantic domain is (T(dec(A)), dec(A)). 
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(3) For  every X e N  o, Inh(X)= {i~[1, ranks(X)] l exte(i) has no incoming hyper- 
edge in F}, where F~HGR(A)  is such that X=~*F in G (i.e., 
Inh(X)= [1, #eInh(X)], because we assume that every derivation subtree of G 
yields a jungle with variables), and Syn(X)= [-~ Inh(X)+ 1, rankx(X)]. The des- 
ignated attribute ~d is 1. 
(4) For  every p =  X ~ ~ X 1 X  2 ... X m E P  o with rc=(X, H), r v contains the semant- 
ic rules <s, 0) = rule (extu (s), H) for all seSyn(X), and <i,j> 
=rule(nodu(nedg(H,j),  i), H) for all ieInh(Xj) and js[-1, m], where rule(v, H) 
is recursively defined for v~VH as follows (it is the unfolding operation meant 
above). 

If v = extR(i ) for some ieInh(X), then rule(v, H)=  (i, 0). 
If v=nod/~(e, s) for some e =  nedg(H,  j) ( l < j < m )  and s~Syn(lab~(e)), then 
rule(v, I4) = (s, j ) .  
If v = nodn (e, 1) for some 1-hyperedge e E tedg (H), then rule (v, H) = lab~ (e). 
If v=nodn(e,  r) for some r-hyperedge e~tedg(H) with r >  2, then 

rule (v, H) = labn (e) (rule (nod H (e, 1), H), 

rule(nodH(e, 2), H), 

rule(nodu(e, r -  1), H)). 

Notice that this definition of "rule" corresponds to the way we "read off" 
the semantic rules in the example at the beginning of this section. 

The terminal part of H is a subgraph of a generated jungle, because G 
is identification-free, loop-free, and reduced. Thus, the terminal part of H is 
acyclic. Since besides, incoming(v)= 1 for all w V ~  and H is finite, rule(v, H) 
is determined uniquely for each v e V m  Furthermore, since rule(v,H) 
E T(dec(A), outs(p)), G' is in Bochmann normal form (as required). 

To show the correctness of the above construction, we shall discuss that 
G' is a non-circular AG and that OUT(G')=TERM(G).  

Consider the dependency graph of a derivation tree d' of Go. Every node 
<~, x )  of DG c represents a node v~,x of yields(d), where d is the derivation 
tree of G that corresponds to g'. Besides, according to the definition of "rule", 
an edge from (fl, y)  to (c~, x )  in DGe, represents the existence of a hyperpath 
(possibly of length 0) from v~,y to v~.x in yields(g) (in fact, in the terminal part 
of the right-hand side of the cfhg production that corresponds to the production 
of G o of which a semantic rule "caused" the edge in DGI, ). Thus, a cycle in 
DG~, either represents a cycle in yieldG({) or it represents just one node in 
yield~(~) (i.e., all nodes of the cycle represent the same node in yieldG(r The 
first case cannot occur, because jungles are acyclic. In the latter case, the whole 
cycle in DG~, must "consist of" copy rules. But, since G is identification-free, 
there can be no semantic rule of the form (s, 0) = (i, 0) in rp, for any production 
p of Go, where s~Syn(lhs(p)) and i~Inh(lhs(p)). However, such a copy rule must 
always be present in such a cycle. Hence, G' is a non-circular AG. 

To show that OUT(G')=TERM(G),  we use the following claim, where, as 
in the proof of Lemma 4.1, the value of an attribute ~ of a node x in a derivation 
subtree d of Go is denoted as valG,(<~, x),  ~). 
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Claim. Let g be a derivation subtree of G of which the root is labeled n = (X, H). 
Let g' be the corresponding derivation subtree of Go with root x'. For every 
seSyn(X), 

vala, ((s, x'), d')= term (ext (s), yieldo ({), Y), 

where Y=((1, x'), (2, x'), ..., (@Inh(X), x')). 

As in Sect. 4, we omit the formal proof of this claim. It can be proved 
with induction on the structure of d (or, equivalently, d'). Let us just make 
some informal remarks on the proof. 

Since Y is a sequence of @Inh(X) variables and yieldG(3)=F is a jungle 
with @Inh(X) variables, term(v, F, Y)~ T(dec(A), Y) for each v~ Ve. 

Root(g) has label p = X ~ n X 1 X  2. . .Xm,  where m=4#nedg(H) and X~ 
=labu(nedg(H,j)), for all j e l l ,  m]. The value of an attribute (~,j)eins(p) is 
determined with the help of the operation "rule". Thus, for j = 0, valG, ((e, x'), d') 
equals rule(extn(c~), H), in which every outside attribute (fl, i) is replaced by 
vala,((fl, x'), g')=(fl, x'), if i=0, and by val~,((fl, x'i), d'), where x'i denotes the 
i-th son of x', if i>0. Similarly, for j>0 ,  vala,((e, x'j), g'), where x) denotes 
thej-th son of x', equals rule(nodH(nedg(H,j), e), H), with the same replacement. 
Using the induction hypothesis (for the subtrees of g' with roots x'i), it can 
be shown that, for every v~Vn, rule(v, H), in which the outside attributes are 
replaced by the values they have in g' as indicated above, equals term(w, F, Y), 
where w is the node corresponding to v in F, because "rule" is the "term- 
operation" for right-hand sides of productions of G. Thus, valc,((c~, x'), d') 
equals term(extF(c0, F, Y). 

This ends our discussion of the proof of the claim. Now, let d be a derivation 
tree of G. Let g' be the corresponding derivation tree of Go. Then, according 
to the claim, 

vala,((ee, root ({')), g')= term(ext(1), yieldG(g), ()) = term(yieldo(g)). 

Thus, because of the 1-1 correspondence between the derivation trees of G 
and Go, OUT(G')=TERM(G).  Note that the construction in this proof takes 
exponential time in general, due to the unfolding in "rule". [] 

From this result (Lemma 5.1) and Lemma 4.1 we conclude that cfhg's and 
AG's have the same term-generating power. 

Theorem 5.2 TERM(CFHG) = OUT(AG, TERMS). 

As observed in the Introduction, this positions TERM(CFHG) in a family 
of known classes of term (or tree) languages. 

Furthermore, Lemma 5.1 and Lemma 4.1 are now used to prove the "gar- 
bage theorem" that provides an alternative way of defining TERM(CFHG) 
(as observed in Sect. 3). 

Theorem 5.3. For every term-generating cfhg G there exists a clean term-generat- 
ing cfhg G' such that TERM (G')= TERM (G). 

Proof Let G be a term-generating cfhg. Then by Lemma 5.1 there exists a term- 
generating AG G1 such that OUT(G1) = TERM(G). By Proposition 2.1 there 
exists a reduced AG Gz over the same semantic domain as G 1 such that 
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OUT(G2)=OUT(G1). Hence G2 is term-generating. Thus, by Lemma 4.1 there 
exists a clean term-generating cfhgG' such that TERM(G')=OUT(G2) 
=OUT(GO=TERM(G) .  [] 

6. The translation power of  context-free hypergraph grammars 

Recall from the end of Sect. 4 that a term-generating cfhg G, together with a 
semantic domain D, can be viewed as a syntax-directed translation device realiz- 
ing the translation {(d, (term(yieldG(/)))o)ld is a derivation tree of G}. To com- 
pare the translation power of cfhg's with that of AG's, we introduce "cfhg-based" 
syntax-directed translation schemes, that translate strings (rather than trees) 
to values of the semantic domain. They are similar to the syntax-directed transla- 
tion schemes of [AhoUll] and the string-to-graph translators (the "pair gram- 
mars") of [-Pra]. 

Definition. A cfhg-based syntax-directed translation scheme (abbreviated cts) is 
a 4-tuple T=(D, GL, GR, go), where D=(V,F) is a semantic domain, GL 
=(N, T, P~L, S) is a cfg, the left grammar, GR = ( r ,  inc(F), P~, S) is a term-gener- 
ating cfhg, the right grammar, with S--inc(F)=N, and go is a mapping from 
P~L to PeR such that if p=Xo~woXlwlX2w2 . . .X~ ,w , ,~PGr  and go(p) 
=(X, H)ePGR, then Xo=X,  m= #nedg(H), and Xi=labH(nedg(H,j)), for all 

j~[1,  mJ. [] 

Notice that this kind of syntax-directed translation device is "simple" in 
the sense of I-AhoUll], i.e., nonterminals of p cannot be deleted or duplicated 
in go(p). 

For a production P~PGL, its corresponding production in PGR is ~0(p). Similar- 
ly, for a derivation tree ~ of GL, its corresponding derivation tree of GR, denoted 
go(O, is obtained by relabeling the nodes of g with their corresponding produc- 
tions. Thus, go is extended to derivation trees. 

T realizes a translation from strings in L(GL) to values in D. For wr 
a derivation tree g with yieldGL(O=w is considered and the value (in D) of 
the term associated with the jungle that is the yield of the corresponding deriva- 
tion tree go(~) of GR, is assigned to w. 

Definition. Let T = (D, GL, GR, go) be a ets. The translation realized by T, denoted 
~(T), is the relation {(yieldGL(~'), (term(yieldGR(go(~))))D)[~ is a derivation tree 
of GL}. [] 

The set of all translations realized by cts's with semantic domain D is denoted 
z(CTS, D). 

Dropping the useless nonterminals (and productions) of both the right and 
the left grammar of a c t s  does not influence the realized translation, because 
they do not occur in derivation trees. Thus, we may assume both grammars 
to be reduced. 

Example. Consider the cts T=(D,  GL, GR, go), where D=(V, F) is the semantic 
domain of the AG Gbin of Example 2.2, GL= (No, To, Po, So) is the underlying 
grammar Go of Gbi n, GR = (No • inc (F), inc(F), P, So) is the term-generating cfhg 
of which the productions are given in Fig. 8, and go: Po ~ P is defined as go (Pl) = ~i, 
1 N i--< 6, as in the discussion at the end of Sect. 4, where GR is called G". 
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The translation realized by T is z (1") = {(yield~o (g), (term (yielda,, ((p (g))))D)[g 
is a derivation tree of Go}. Thus, to each binary number in L(GL) its rational 
value (in V) is assigned by T, just like the translation realized by the AG Gbi n 
(see also Sect. 4). Hence z(T)=z(Gbin). [] 

We shall prove that for every cts there is an AG that realizes the same 
translation, and vice versa. More precisely, we show that z(CTS, D)=~(AG, D) 
for every semantic domain D (Theorem 6.5). First we show that z(AG, D)_~ 
z(CTS, D) for every semantic domain D. 

Lemma 6.1 For every AG G over a semantic domain D, there exists a ctsT 
with semantic domain D such that z(T)=~(G). Moreover, if G is reduced, then 
the right grammar of T is clean term-generating. 

Proof. Let G be an AG over a semantic domain D with underlying grammar 
Go. Recall from Sect. 2.2 that, to compute the value of the designated attribute 
~e of the root of a derivation tree g of Go, one may first evaluate the attributes 
as terms in T(F) (by Gt~rm), and then evaluate the term-value of (~d, root(g)) 
in D. This resembles the way in which the value of a jungle /-/ generated by 
the right grammar of acts  with semantic domain D is computed; first determine 
the term associated with H, and then evaluate this term in D. 

By Lemma4.1 there exists a term-generating cfhgG'term such that 
TERM(G'term)=OUT(Gterm) (and such that G~rm is clean term-generating if G 
is reduced). In the discussion at the end of Sect. 4, we showed that the translation 

(G) realized by the AG G equals {(yield(g), (term (yieldG~rm((P (g))))D)[g is a deri- 
vation tree of Go}, where a'l'er m is a term-generating cfhg that is equivalent 
t o  G'term ( h e n c e  G't'er m is clean term-generating if G is reduced), and (p is a mapping 
from the productions of G o to those of G't'~r m. Since q) preserves nonterminals, 
T=(D,  Go, G't~erm, ~o) satisfies the definition ofcts. Thus, z(T)=z(G). [] 

To show the converse of Lemma 6.1, we need two auxiliary lemma's concern- 
ing the translations realized by cts's. These lemma's allow the generalization 
of results for cfhg's to similar results for cts's. 

The first lemma says that, maintaining the realized translation, we may 
change the right-hand sides of the productions of the right grammar of a c t s  
arbitrarily, as long as the sequences of the labels of the nonterminal hyperedges 
in these right-hand sides are preserved. Thus, even nodes and (terminal) hyper- 
edges may be added to or deleted from the right-hand sides of the productions. 
Additionally, however, the terms associated with the yields of the derivation 
trees should be preserved. 

Lemma 6.2 Let T=(D,  GL, GR, (p) be a cts with GR=(Z ,  A, PeR, S). Let GR' 
=(Z, A, P~R, S) be a term-generating cfhg. I f  there exists a mapping Z: P~R ~ P~R 
such that 

(1)  for every production ~=(X ,H)ePaR  , lhs(z(~z))=X, #nedg(rhs()(~)))= 
# nedg (H) = m and lab~h~(x~))(nedg (rhs (X (~)), j)) = labH (nedg (H,j)) for allj ~ [ 1, m], 
and 
(2)  for every derivation tree g of GR, term(yield6R,(;((g)))=term(yieldGR(g)) , 
where )s is extended to derivation trees in the obvious way, 

then there exists ac t s  T' with semantic domain D and right grammar GR' such 
that z (T') = z (T). 
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Proof Let G L = ( Z - A ,  T, PGL, S). Since X is a mapping from PGR to P~R that 
preserves the sequences of nonterminal labels, i.e., )~ has property (1), and since 
q0 is a mapping from PGL to PG~ that also preserves these sequences, 
T ' =  (D, GL, GR', )~o (p) is a cts. Furthermore, r(T') 
= {(yieldGL(g), (term (yieldGR. (Z(~0 (Z')))))v) ] ~' is a derivation tree of GL}. Thus, be- 
cause of (2), z(T ' )= {(yield~L(g), (term(yieldGR(Cp(d))))D)[g is a derivation tree of 
GL} =T(T). []  

The second lemma states that we can add information to the nonterminal 
labels of the right grammar of a c t s  without affecting the translation it realizes 
(with an appropriate change of the left grammar). 

Lemma 6.3 Let T=(D,  GL, GR, qo) be ac t s  with GR=(X, A, P~R, S). Let GR' 
=(Z,A,P~R,S'  ) be a term-generating cfhg. I f  there exists a mapping ~: 
X' - A ~ Z - A such that 

( I )  for every ~'=(Y, K)eP~R, there exists a production ~ePag with ~(Tr')=~, 
i.e., lhs(~z)= ~9(Y) and rhs(~) =(Vr, EK, nodK, lab, extK) where 

, :  , ~labr(e) for all eetedg(K) 
aDte~=],O(labK(e)) for all e~nedg(K), and 

(2) for every derivation tree d of GR, there exists a derivation tree d' of GR' 
such that O(g')=g, where ~ is extended to (productions and) derivation trees 
in the obvious way, 

then there exists ac t s  T' with semantic domain D and right grammar GR' such 
that z(T') = z(T). 

Proof Let GL=(Z--A,  T, P~L, S). We shall construct a c t s  T '=(D,  GE, GR', rl) 
such that z(T')=z(T).  For  that purpose, L(GE) must be L(GL). Thus, GE must 
have the same terminals as GL. Besides, GE must have the same nonterminals 
and initial nonterminal as GR'. Thus, GE = ( Z ' - A ,  T, P~r, S') for some P~L. 

The idea for the construction of P~L is obvious. If a production rc of GR 
is turned into a production 7c' of GR' by a relabeling of the nonterminals, then 
every production p of GL with (p(p)=~ is turned into a production p' of GE 
by the same relabeling. Hence, we can extend ~ also to a mapping from the 
productions (and derivation trees) of GE to those of GL. This can be illustrated 
by 

PePGL ~ ' ~CPGR. 

Formally, P~L and q are constructed as follows. 
Let ~ '= (X ' , H ' )  be a production of GR', with 4Unedg(H')=m, and X) 

=labw(nedg(H' , j ) )  for all j ~ [ t ,  m]. Let p=Xo---*woXt wl X2w2 ... X~W,,ePaL 
be a production in ~0-1(O(rc')). Thus, X0=lhs(O(rc '))=O(X ') and X: 
= labrhs(q,(~,))(nedg (rhs (~ (~')), j)) = ~ (X)). 
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Then P~L contains the production p ' = X ' - - *  WoJ ( ' l  w l  X ' z  w 2 . . .  X "  w m and 
( p ' )  = ~,. 

It is easy to see that t/ is a mapping from P~L to P~R such that, for every 
p'EP~L, lhs(p')=lhs(q(p')) and the sequences of nonterminals of rhs(p') and 
rhs (t/(p')) are the same. Hence, T' indeed is acts.  

The translation realized by T' is ~ (T')= {(yieldEL, (g), (term (yieldGR, (q (g))))o)lg 
is a derivation tree of GE}. Since yieldEL,(g)=yieldEL(O(g)), for every deriva- 
tion tree g of GE, and yieldER,(g)=yieldER(O(g)), for every derivation tree g 
of GR', z (T') = {(yieldGL (~ (g)), (term(yieldER (~ (t/ (d))))),) I d is a derivation tree of 
GE}. Now, since ~ and GE are constructed such that 0(~/(g))=cp(O(g)), for 
every derivation tree d of GE, the latter relation equals 
{(yieldEL(0 (g)), (term(yieldER ((p (~ (d)))))D)[d is a derivation tree of GE}. From 
(2) it follows that, for every derivation tree d of GL, there exists a derivation 
tree ~' of GR' such that d~q~-i(~,(g,)). Hence, by the construction of P~L, for 
every derivation tree g of GL there exists a derivation tree g" of GE such that 
r = ~ (d"). Thus, z (T') = {(yieldGL ({), (term (yieldaR (~o (g))))D) [ g is a derivation tree 
of GL}=z(T). [] 

Often, in applications of Lemma 6.3, the nonterminal alphabet of GR' is 
an extension of the nonterminal alphabet of GR, i.e., S '--A is of the form 
( s  A) x I, for some set I, and 0 is the projection on S -  A. 

Example. For every cts T=(D,  GL, GR, (p), where GR is identification-free, there 
exists a c t s  T' with semantic domain D such that (i) the right grammar of 
T' is identification-free and loop-free, and (ii) -c (T')= ~ (T). 

This is based on the construction in the proof of Proposition 2.4 [Hab, 
Theorem 1.4.6] applied to GR. In fact, that construction may be viewed as con- 
sisting of two consecutive transformations, viz. a relabeling of the nonterminal 
hyperedges such that the labels contain information about which tentacles point 
to the same node (in a sentential form), and the joining of the tentacles and 
identification of the external nodes in the right-hand sides of the productions 
in a unique way, according to the just mentioned relabeling. In fact, these two 
transformations are combined into one (with three steps) in the proof in [Hab]. 
Lemma's 6.3 and 6.2, respectively, can be used to show the above for cts's. 

To be more precise, let GR be the identification-free term-generating 
cfhg (Z, A, R S) and consider the cfhgGRl=(X ~, A, P1, Sa) obtained from GR 
by relabeling the nonterminals in the following way. The nonterminal alphabet 
XN of GR~ is {(X, R E L ) [ X e S - A ,  REL is an equivalence relation on 
[1, ranks(X)]}. The total alphabet $1 is S N u A, where 

= ~rankx(o-) if o-cA 
rank(a)x~ {ranks(X) if cr= (X, R E L ) e S u ,  for some REL. 

The initial nonterminal $1 is (S, {(1, 1)}). If (X, H) is a production of P and 
REL is an equivalence relation on [1, rankx(X)], then P1 contains the production 
((X, REL),  K), where K=(VR, Eft, nodn, lab, extn) with lab(e)=labH(e) for all 
eetedg(H), and, for all eenedg(H), lab(e) is (labn(e), REL(e)), where REL(e) 
is defined as follows. By _H we denote the hypergraph in which the external 
nodes of H are identified according to REL, i.e., 

_H = H/{(extn (i), ext~t (j))[ (i, j) ~ REL}. 
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Then, for all e~nedg(H), 

REL (e) = {(i, j) E [1, rank (e)] 2 I nod~ (e, i) = nodH (e, j)}. 

Note that GRt is still identification-free. It is straightforward to show that 
the mapping 0: SN--~N-A defined as 0((X,  R E L ) ) = X ,  for all (X, R E L ) e S  N, 
satisfies the conditions (1) and (2) of Lemma 6.3 (in (2), d' can be obtained 
from d by a deterministic top-down relabeling of the nonterminals). From these 
conditions it follows that L(GRI)=L(GR), and thus GR 1 is term-generating. 
Hence, by Lemma 6.3, there exists a cts T1 with semantic domain D and right 
grammar GR1 such that z(T1)= z(T). 

To join the tentacles and to identify the external nodes in the right-hand 
sides of the productions of G 1 in the way described in [Hab], we define for 
every nonterminal a =  (X, R E L ) ~ S  N the sequence EQ(a) obtained by ordering 
the set {jE [1, rankz, (a)] IV i~ [-1, j -  1] : (i, j)~ REL} increasingly. 

Now consider the cfhg GR'=(S', A, P', St), where S ' = S  1 ( = S N u A )  with 

, , , frankz,(O- ) if aEA 
ranKz't~r) = ~ ~ EQ(o-) if Z~ZN, 

and P' is constructed from P1 as follows. 
Let rq =( (X,  REL),  K)~P~. By _K we denote the hypergraph in which the 

external nodes of K are identified according to REL, i.e., K 
= K/{(extK (i), extK (j))l(i, j)~ REL}. 

Then P' contains the production ~z'=((X, REL) ,M) ,  where M 
=(V~, EK, nod, lab_K, ext) with for all e~EK andjE[1,  rankz,(labK(e))] : 

. . . .  (nodK(e,j) if e~tedg(_K) 
n~176 i) if e~nedg(_K), 

where i is the j-th element of EQ(lab_K(e)), and for all je [1 ,  rankz,((X, REL})]: 
ext (j)= extK (i), where i is the j-th element of EQ ((X, REL}). 

Note that GR' is identification-free and loop-free. It is not difficult to show 
that the mapping Z: P~ ~ P '  defined as Z(~l)=~z' (with ~z 1 and 7~' as described 
above) satisfies the conditions (1) and (2) of Lemma 6.2. From these conditions 
(and the fact that z(P1)=P') it follows that L(GR')=L(GRx), and hence GR' 
is term-generating. Thus, by Lemma 6.2, there exists a c t s  T' with semantic 
domain D and right grammar GR' such that z(T')= z(T1)= z(T). 

This shows our statement. Similarly, we may assume that the right grammar 
of a cts is identification-free (by a similar adaptation of the construction in 
the proof of Lemma 3.2 of [EngHeyl]).  [] 

Thus, by the above example, we may assume that the right (term-generating) 
grammar of acts  is identification-free and loop-free, without changing its seman- 
tic domain. 

It may even be assumed for a cts that its right grammar is clean term- 
generating. This can easily be proved with the help of Lemma 6.4 below, Proposi- 
tion 2.1, and Lemma 6.1, in that order, similar to the "garbage theorem" in 
Sect. 5. Consequently, we can give an alternative definition of the class of transla- 
tions realized by cts's with semantic domain D, namely z(CTS, D)={z(T)]T 



Context-free hypergraph grammars 205 

is a c t s  with semantic domain D, of which the right grammar is clean term- 
generating}. 

As in Sect. 3 we can give two other possible definitions of r(CTS, D) by 
allowing all cfhg's generating 17hypergraphs.as right grammar of a cts. We 
define the translation of such a cts T=(D,  GL, GR, ~o) as ~(T) 
={(yield~L(g),(term(yieldGR(Cp(g))))D)lg is a derivation tree of GL and 
yieldGR((p(g) ) is a (clean)jungle}. 

Obviously, we cannot translate the proof of Theorem 3.1 (2) directly to cts's. 
Nevertheless, we know from [Cou4] how to construct, for a given cfhg G generat- 
ing m-hypergraphs over a ranked alphabet A and an MSOL formula 0 in 5r 
a cfhg G' such that L(G')={H~L(G)IH~O}. In fact, if GR=(S, A, P~R, S) is a 
cfhg generating 1-hypergraphs and 0 expresses that a 1-hypergraph over A is 
a (clean)jungle, then a (clean) term-generating cfhg GR' can be constructed 
such that there exists a mapping 0 from the nonterminals of GR' to N - A  
that satisfies demand (1) of Lemma 6.3 and the following demand (2'): for every 
derivation tree g of GR, yield(g) is a (clean) jungle if and only if there exists 
a derivation tree g' of GR' with 0(g ' )=g.  Thus, with the construction in the 
proof of Lemma 6.3 an "ord inary"  cts T' (i.e., with a (clean) term-generating 
right grammar, namely GR') is obtained that realizes the same translation as 
T, because a derivation tree of GR that does not yield a (clean) jungle does 
not influence ~(T). Hence, ~(T)= z(T')cz(CTS, D). 

We now return to the main aim of this section, the comparison of the transla- 
tion power of cts's with that of AG's, and we show that z(CTS, D)~_z(AG, D), 
for every semantic domain D. 

Lemma 6.4 For every cts T with semantic domain D there exists an A G  G over 
D such that z(G) = z(T). 

Proof Let T=(D,  GL, GR, ~) be a c t s  with semantic domain D=(V,F).  The 
proof is a variation of the one of Lemma 5.1 with G corresponding to GR. 

In that proof, we assumed for technical reasons that every derivation subtree 
of the cfhg yields a jungle with variables. We mentioned that for every identifica- 
tion-free, loop-free, and reduced term-generating cfhg G, we may define a (unique) 
permutation of the external nodes and the tentacles of the nonterminal hyper- 
edges of the right-hand sides of the productions of G such that every permuted 
derivation subtree of G yields a jungle with variables. As argued before, we 
may assume that GR is identification-free, loop-free, and reduced. Hence, we 
may also assume that every derivation subtree of GR yields a jungle with vari- 
ables, because such a permutation can obviously be realized by a transformation 
of the type described in Lemma 6.2. 

Therefore, we can construct for GR (that has terminal alphabet inc(F) by 
the definition of cts) a term-generating AG G' over (T(F), F) such that OUT(G') 
=TERM(GR) ,  analogous to the construction of the AG G' in the proof of 
Lemma 5.1. 

Recall that in that construction the "~"  in the right-hand sides of the produc- 
tions of the underlying grammar Go was added to obtain a 1-1 correspondence 
between the productions of the cfhg and those of Go. In this case, we may 
take GL instead of Go as underlying grammar of G', with, for every production 
p=Xo--'woX1 wl X2w2 ... X,,wm of GL, rp=rp,, where p' is the production 
Xo~q~(p)X1X 2 . . .X, ,  of Go. Since we may assume (p to be surjective, still 
OUT(G')=TERM(GR). But as in the proof  of Lemma 5.1 it can be shown 
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not only that OUT(G')=TERM(GR), but even that vala.(~d, root(d)) ,d)  
=term(yieldGR(cp(g))) for every derivation tree g of GL. This shows that by 
changing the semantic domain (T(F), F) of G' into (V, F), G' is an AG over 
D such that ~(G')=~(T). [] 

Thus by Lemma's 6.1 and 6.4 we may extend our main result of Sect. 5, 
Theorem 5.2, as follows. 

Theorem 6.5 z(CTS, D)= z(AG, D), for every semantic domain D. 

Conclusion 

We have shown that context-free hypergraph grammars have the same term 
generating power as attribute grammars, and, when provided with an additional 
context-free grammar as input component, they have the same translation power 
as attribute grammars. Thus, cfhg's provide a formalism to describe the semantics 
of programming languages, similar to AG's. 

It is shown in [-HabKrePlu; HofPlu] that hypergraph rewriting rules (that 
are usually not context-free) can be used to simulate term rewriting systems 
on jungles rather than trees. In particular they describe "folding" rules that 
can be used to obtain jungles from trees, or to increase the sharing of subterms 
in jungles. One goal one might try to achieve is to try to model as many aspects 
as possible of the implementation of attribute grammars in the uniform formal- 
ism of hypergraph rewriting (cf. [,Hof] where another type of graph rewriting 
is used), i.e., to combine the context-free hypergraph grammar that simulates 
formal attribute evaluation, with other hypergraph rewriting rules. For  instance, 
the actual evaluation of the jungles could be realized by term rewriting, and 
hence by hypergraph rewriting, in case the sets of values of the attributes are 
specified equationally as abstract data types (see [,Hof]). Another possibility 
would be to use the folding rules of [-HabKrePlu; HofPlu] during formal evalua- 
tion, to improve space efficiency. 

Extending ideas in [Cou3],  it has recently been shown in [CorRos]  (see 
also [-CorRosParJ) that there is a close relationship between jungle rewriting 
and logic programming. Since it is well known that attribute grammars are 
closely related to logic programming (see, e.g., [-DerMal; CouDer]), it is no 
surprise that their result seems to be very similar to (but more general than) 
ours. To be more precise, logic programming is close to attribute grammars 
in which trees are used as actual attribute values (rather than representations 
of expressions); moreover, these trees can not only be composed (i.e., substituted 
in each other), but also tested (by looking at the top label) and decomposed 
(by taking subtrees). Thus, attribute grammars as considered in this paper are 
the special case that trees can be composed only. In [CorRos]  it is shown 
that the decomposition of trees can be realized in an elegant way by considering 
context-free jungle grammars, in which the rewriting of jungles is defined within 
the category of jungles rather than the larger category of hypergraphs. Such 
rewriting may have a "global"  effect on the rewritten jungle, as opposed to 
the "local"  effect of hypergraph rewriting. It seems that our result corresponds 
precisely to the case of logic programming where one may in fact stick to the 
"local"  hypergraph rewriting because of the absence of tree decomposition. 
However, the precise relationship between the two results needs more investiga- 
tion. 
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As mentioned in the introduction, the classes of tree languages and tree 
translations defined by attribute grammars have been investigated in the tree 
literature. The class of tree translations is contained properly in the class of 
translations defined by macro tree transducers. In [EngVog2] the formalism 
of context-free hypergraph grammars is extended in a natural way, and it is 
shown that these extended grammars have the same power as macro tree trans- 
ducers. One might also think about generalizing the cts in such a way that 
duplication and deletion of nonterminals would be allowed (as in the generalized 
syntax-directed translation schemes of [AhoUll]). This would be equivalent to 
the formalism in EEngVog2]. 

Rather  than generalizing the context-free hypergraph grammar, one may 
try to consider restrictions that generate well-known subclasses of the class 
of tree languages generated by attribute grammars. One such class is the class 
of tree languages generated by IO context-free tree grammars (see [-DusPar- 
SedSpe; EngFil]). We conjecture that this class has a nice characterization: 
it is generated by the context-free hypergraph grammars of which all sentential 
forms are jungles. Another  question is which class of tree languages is generated 
by context-free hypergraph grammars if one forbids sharing, i.e., the generated 
jungles should all be trees, in the sense that from each node there is a unique 
hyperpath to the external node (which is the root). This class of tree languages 
certainly contains the tree languages generated by the grammars of ERao]. 

We finally mention the area of attributed graph grammars (see, e.g., EG6t]). 
One possible type of attributed graph grammar would be the context-free hyper- 
graph grammar extended with (inherited and synthesized) attributes, just as 
in the case of an ordinary context-free grammar. Such an attributed cfhg could 
be used to define a translation from graphs to values (in some semantic domain). 
Another way of using it (as in EG6t]) would be to allow the terminal symbols 
to have inherited attributes, to disregard the synthesized attributes of the initial 
nonterminal, and to view the attributed cfhg as a device that generates attributed 
hypergraphs, i.e., hypergraphs of which the edges have attribute values. One 
example is the generation of pictures, where the graph represents the topological 
aspects of the picture, whereas the attribute values represent its metrical proper- 
ties. Another  example is the generation of the attributed derivation trees of 
an ordinary attribute grammar. It should be rather obvious that our results 
can be generalized to such attributed cfhg's: every attributed cfhg can be simulat- 
ed by an ordinary cfhg (in which the attribute values are represented as jungles, 
attached to the edges by additional tentacles). Thus, in a theoretical sense, one 
does not need attributed cfhg's; it suffices to consider cfhg's that generate graphs, 
parts of which can be interpreted as values in some domain. 

Acknowledgements. The authors wish to thank George Leih for several useful observations. 
The remarks of the referees have been very helpful in writing the conclusion. 
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