
Acta Informatica 29, 161=210 (1992)

i . nmrmtm
�9 Springer-Verlag 1992

Context-free hypergraph grammars have
the same term-generating power as attribute grammars

Joost Engelfriet and Linda Heyker

Department of Computer Science, Leiden University, P.O. Box 9512,
2300 RA Leiden, The Netherlands

Abstract. Context-free hypergraph grammars and attribute grammars generate
the same class of term languages. Extending the context-free hypergraph gram-
mar with a context-free grammar and a semantic domain, a syntax-directed
translation device is obtained that is equivalent to the attribute grammar.

1. Introduction

Graph grammars are of interest because they provide a formalism to express
the manipulation, generation, and description of graphs. For this reason they
are used in very diverse areas of computer science (see, e.g., [EhrNagRosRoz]) .
A simple and attractive notion of context-free graph grammar was introduced
in [Fed] and re-introduced (in a more readable formulation) and studied in
e.g., [BauCou; HabKre l and 2; Cou3 and 4; MonRos; LenWan; Hab] : the
context-free hypergraph grammar (cfhg), that manipulates directed hypergraphs
rather than graphs.

An attractive feature of (hyper)graphs is that they can represent many other
structures, such as strings. Thus, graph grammars can be used as a string-generat-
ing device. In this way one obtains a context-free way of generating non-context-
free string languages (see [HabKre l ; Hab; EngHeyl l, where the string-generat-
ing power of cfhg's is studied).

A more important use of (hyper)graphs is to represent expressions (trees,
terms), with sharing allowed. Thus, a graph grammar can be used as a term-
generating device (or tree grammar), generating a set of terms. Moreover, allow-
ing an additional phase of expression evaluation, a graph grammar generates
a set of elements of some semantic domain. For instance, as shown in [Cou3],
cfhg's can generate the expression graphs that represent the computations of
a recursive program scheme or a recursive query.

In this paper, we investigate the power of cfhg's to generate expressions.
A term can be represented by a directed hypergraph in a natural way (see
[-Cou3; HabKre2; Hab; HabKrePlu; HofPlu]), because the order of its subterms
can easily be expressed using the direction of the edges of the hypergraph:
every edge has a sequence of incident nodes. We consider "jungles", i.e., hyper-

162 J. Engelfriet and L. Heyker

graphs that represent terms (see LHabKrePlu]), and examine cfhg's that generate
jungles. In particular, we compare cfhg's to attribute grammars (AG's, [Knu;
DerJouLor]). An AG can be viewed as a device that translates strings into
terms (i.e., expressions, to be evaluated in the semantic domain of the AG).
The range of this translation is a set of terms, generated by the AG. Our main
result is that cfhg's have the same term-generating power as attribute grammars.
The class of term (or tree) languages generated by attribute grammars has been
studied, e.g., in [-Bar; CouFra; DusParSedSpe; Engl/2/3; EngFil; Fill]. As an
example, it is known to contain the IO context-free tree languages [-DusPar-
SedSpe; EngFil] and the output languages of deterministic top-down tree trans-
ducers l-CouFra; Fill], whereas it is itself contained in the class of output lan-
guages of macro tree transducers [-CouFra; Engl ; EngVogl] and in the com-
plexity class LOG(CF) [-Eng3].

We even push the relationship between cfhg's and AG's a little further. By
coupling an ordinary context-free grammar (cfg) to a cfhg, a syntax-directed
translation device is obtained that translates the strings in the language generat-
ed by the cfg into terms, and hence into values from any semantic domain.
We extend our main result by showing that such a cfhg-based translation device
has the same power as the attribute grammar. In some sense, this result
"explains" AG's to be syntax-directed string-to-graph translators (cf. the "DAG-
evaluator" of [Mad]). Furthermore, it shows that cfhg's can be used to describe
the semantics of programming languages (cf. the "push-down processor" of
[AhoUll]).

The relationship between graph grammars and AG's was first explicitly
observed by Ganzinger [Gan], Hoffmann [HofSch, Hof], and Courcelle [-Cou 1,
Cou3]. It follows from [-Coul, Sect. 16.8] and [BauCou, Theorem 4.14] that
the set of dependency graphs of an AG can be generated by a cfhg. A similar
relationship between AG's and NLC-like graph grammars was established in
[-EngLeiRoz]. However, it seems to us that cfhg's are more suitable to model
AG's than NLC-like grammars, because attributes can naturally be coupled
to nonterminals by viewing a nonterminal as a (hyper)edge with the attributes
as its incident nodes. In fact, in this paper, we use cfhg's not only to simulate
the dependencies between attributes but even to simulate (formal) attribute eval-
uation, in a natural way. In [-Hof] a more powerful (context-sensitive) type
of graph grammar is used to simulate both parsing and evaluation (together
with context-conditions, which we do not allow in our AG's).

The paper is organized as follows. Section 2 contains preliminaries. The
reader is assumed to be familiar with AG's, but hypergraphs and cfhg's are
described more comprehensively. Furthermore, some technical results concern-
ing AG's and cfhg's are stated. In Sect. 3, jungles are defined and it is shown
to be decidable whether a cfhg is term-generating, i.e., generates jungles only
(Theorem 3.1). In fact, four alternative definitions of the class of term languages
generated by cfhg's are given, and shown to be equivalent (Theorems 3.1 and
5.3). The proof of the main result of this paper (Theorem 5.2, which states that
the term-generating power of cfhg's and AG's is the same) is divided into two
parts. In Sect. 4, an attribute grammar is simulated by a cfhg, and Sect. 5 contains
the simulation of a cfhg by an AG. The paper ends by introducing cfhg-based
syntax-directed translations, and proving that these are exactly the translations
realized by AG's (Theorem 6.3).

An extended abstract of this paper appears in [-EngHey2].

Context-free hypergraph grammars

2. Preliminaries

163

2.1. General notation and terminology

N = { 0 , 1, 2, ...}. For all n, m e N , In, m] denotes the set { i e N [n < i < m } . In par-
ticular, if n > m then In, m] = 0.

For a set A, A* denotes the set of all finite sequences of elements of A,
including the empty sequence (). In case A is an alphabet, a sequence
(at, a2, ..., a ,)6A* will also be written as a string a I a 2 ... a, (as 2 if n=0) .

By # A we denote the cardinality of a set A or the length of a sequence
A.

A context-free grammar (abbreviated cfg) is a 4-tuple G = (N, T, P, S) where
N is the nonterminal alphabet, T is the terminal alphabet (disjoint with N),
P is the finite set of productions of the form p = X o ~ Wo X l w I X 2 w 2 . . . X n W n,
n > 0, with X~e N and wj ~ T* for all j~ [0, n], and S ~ N is the initial nonterminal.

For a production p = X o ~ woX1 w 1 X 2 w2 ... X , w , in P, its left-hand side
Xo is denoted as lhs(p) and its right-hand side woX1 w 1 X 2 w2 ... X , w, is denot-
ed as rhs (p).

A derivation subtree g of G is a directed ordered tree, in which each node
is labeled by a product ion of P, defined inductively as follows. Simultaneously
we define the yield of g, denoted yields(g) or just yield(g), and the root of g,
denoted root(g).

(1) g is a node x labeled by a production p with rhs(p)e T*. In this case yield(g)
= rhs(p), and root(g) = x.
(2) g consists of a node x with label p = X o ~ w o X 1 wl X2 w2 ... X , w , (n> 1),
n derivation subtrees gl, g2, ---, g, such that root(g j) is labeled by a product ion
pjEP with lhs (p j)=Xj for all j~[1 , hi, and n edges from x to the roots of the
derivation subtrees gl, g2, ---, g,, in that order. In this case yield(g) is the string
w0 yield(g0 wz yield(gz) w2 ... yield(g,) w, in T*, and roo t (g)= x.

A derivation tree of G is a derivation subtree of G of which the root is
labeled by a production p E P with lhs (p)= S.

The (string) language generated by G, denoted L(G), is the set {yield(g)]g
is a derivation tree of G}.

G is reduced if every X e N occurs in the label of some node in at least
one derivation tree of G.

A ranked alphabet F is a finite set of (function) symbols together with a
mapping rank r: F ---, N (which specifies the number of arguments of each func-
tion symbol of F). We denote the ranked alphabet F ' = {?~F] rankr (?)> 1} with
rankr,(7) = r a n k r (7) - 1 , as dec(F). The ranked alphabet F ' consisting of all sym-
bols of F, with rankr,(y) = rankr(~/) + 1 for all y~F, is denoted as inc(F).

The set of all terms written with a ranked alphabet F, commas, and parenthe-
ses, in prefix notation, is denoted T(F). For example, if F = {f, g, + , , , 2, 5}
with rankr (g)=3 , r a n k r (+) = r a n k r (*)=2 , r a n k r (f) = l , and rankr(2)
= r a n k r (5) = 0 , then 2, f(5), +(f (5) , 2), and g(2, +(f (5) , 2), *(2, 5)) are terms
in T(F). A term language is a subset of T(F).

Let Y= (Yl, Y2 , Yk) be a finite sequence of k > 0 distinct "var iables" such
that {y~, Y2,-.., Yk} c~F=0. By T(F, Y), we denote the set of terms T(F') where
F' = F w {y 1, Y2 Yk}, rankr, (~) = rankr (~) for all 7 ~ F, and rank r, (y) = 0 for all

164 J. Engelfriet and L. Heyker

Ye{Yl, Y2, ..., Yk}. The terms in T(F, Y) are also said to be terms with variables.
Note that, for technical reasons, we consider a sequence, rather than the usual
set, of variables.

2.2. Attribute grammars

We assume the reader to be familiar with attribute grammars (see, e.g., [-Knu;
Boc; AhoSetUll; Lor; DerJouLor]) .

A semantic domain is a pair D=(V,F) where V is a set of values, F is a
ranked alphabet, and each 7 c F denotes a mapping 7o: V"--+ V with n = rankr(7).
Thus, D is a F-algebra where F is a one-sorted signature (see, e.g., [CouFra ;
ChiMar]). For a term te T(F), we denote by t D the value of t in V, as usual.

An attribute grammar G (abbreviated AG) consists of (1)-(4) as follows.

(1) A context-free g rammar Go = (No, To, Po, So), which is called the underlying
grammar of G.
(2) A semantic domain D =(V, F).
(3) An attribute description (A, Syn, Inh, Att) where A is a finite set of attributes,
and Syn, Inh, and Att are mappings from No to 2 A. For each nonterminal
XeNo, Syn(X) is the set of its synthesized attributes, and Inh(X) is the set
of its inherited attributes, Syn(X)c~ Inh (X)=0 . Att(X) is the set of all its attri-
butes, A t t (X) = S y n (X) w Inh(X). The set Inh(So) is empty, and ~ S y n (S o) = 1.
The only (synthesized) attribute of So is called the designated attribute of G
and is denoted ed.
(4) For each production p = X o ~ w o X1 wl X2 w2 ... X , w, a set of semantic rules
rp. For each (c~, j) e ins (p), rp contains one semantic rule of the form (e , j) = t
with t~T(F, outs(p)), where ins(p)={(fi, i)l(fi~Inh(Xi) and ie[1, n]) or
(fieSyn(X~) and i=0)} is the set of inside attributes of p and outs(p)
= {(fl, i)[(/~eSyn(Xi) and ie[-1, hi) or (flEInh(Xi) and i=0)} is the set of outside
attributes of p. The set outs(p) is given some fixed but arbitrary order, so that
it can be considered as a sequence, whenever this is convenient (in particular
in T(F, outs(p))).

A semantic rule of the form (~ , j) = (fi, i) is called a copy rule.
Note that we only consider attribute grammars which are in Bochmann

normal form, see [Boc]. Note also that we do not allow semantic (context-)
conditions.

If we want to emphasize the semantic domain D of an A G G, we say that
G is an A G over D.

If (c~, j) = t is a semantic rule in rp, for some production p of the underlying
g rammar G o = (No, To, Po, So) of an A G G, and (fl, i) occurs in t, then we say
that (c~,j> depends on (B, i). The dependency graph of p, denoted DGp, is the
directed graph with nodes ins(p)voouts(p), and with an edge from (fi, i) to
(~, j) iff (c~, j) depends on (/3, i). The dependency graph of a derivation subtree
g of Go, DG~, is obtained by gluing together the dependency graphs of the
productions that are labels in g (in agreement with d). More precisely, if a
node x of g is labeled p and its j - th son y is labeled p', then the nodes (c~,,/)
of DGp and (e, 0) of DG v, are glued together in DG# We shall refer to this
node in DGe as (c~, y) . In this way, we view every attribute eeAtt(lhs(p')) as

Context-free hypergraph grammars 165

an attribute (e, y) of y. Hence, in the semantic rules of rp, (e, 0) refers to
attribute (e, x) of node x, and (e , j) , with j > 1, refers to attribute (c~, x~) of
the j-th son xj of x.

An AG G is reduced if for every derivation tree g of its underlying grammar
Go there is a directed path in DGe from every node (~ , x) to the node
(ed, root(g)) (see [Fill). The AG G is circular if there exists a derivation tree
g of Go such that D Ge contains a directed cycle, otherwise G is non-circular.
In this paper, we shall consider non-circular AG's only.

The evaluation of the attributes (~, x) of the nodes of a derivation tree
g of the underlying grammar Go of a non-circular AG G over D =(V,, F), is
as usual. A semantic rule (c~, j)=t where t=7(tl, t2, ..., t,), expresses that the
value of the attribute (e, x) referred to by (e , j) is computed by applying
the function 7o to the values of t l , t2, . . . , t n. This is called the evaluation of
the semantic rule (c~, j)=t (for (e, x)). Thus, each attribute (c~, x) of a node
x in g gets a unique value in V, denoted val~((e, x), g) or just val((e, x), g).
Notice that in case G is a reduced non-circular AG, every attribute (c~, x)
of g is used in the computation of the value of (c~e, root(d)).

The translation realized by a non-circular AG G with underlying grammar
Go, is "c(G)= {(yield(g), valG((~ d, root(d)), g))[g is a derivation tree of Go}. By

(AG, D) we denote the class of all translations realized by AG's over semantic
domain D. The output language realized by G, denoted OUT(G), is the range
of z(G), i.e., OUT(G)= {valG((ed, root(g)), g)lg is a derivation tree of Go}.

Turning G into a reduced AG can be accomplished without changing the
translation realized by G (Theorem 4.1 of [Fill). Remark that in that case the
output language realized by G does not change either.

Proposition 2.1 For every non-circular AG G over the semantic domain D there
is a reduced non-circular AG G' over D such that z(G')=z(G). []

An AG G over a semantic domain D = (V, F) is term-generating if D is the
free F-algebra, i.e., V= T(F) and 7D(tl, t2, ..., t ,)=7(t l , t2 , t,) for all 7eF (see,
e.g., [-CouFra; EngFil; Fiil]). Thus, for such an AG, OUT(G)__ T(F) is a term
language. The class of all output languages realized by term-generating AG's
is denoted as OUT(AG, TERMS).

Notice that, in our approach, every AG G is term-generating, in the sense
that G determines a term-generating AG Gterm: just change the semantic domain
D=(V,F) into Dterm=(T(F),F). It should be clear that the following "Mezei-
Wright-like" result holds (see [-MezWri]): for every derivation tree g of the
underlying grammar Go of G and Gterm , vala((c~d, root(g)), g)
=(vale ((ca, root(d)), g))o. Thus, to compute the value of (ed, root(g)) in
V, one may first evaluate the attributes formally, i.e., as terms in T(F), and
then evaluate the term-value of (~d, root(g)) in D.

Example 2.2 Consider the AG Gbin defined in (1.5) in [Knu], which assigns a
"meaning", i.e., a rational number, to every binary number. In our notation
this AG is defined as follows.

(1) Go=(No, To, Po, So) where No={N,L,B}, To={0,1, '}, So=N, and Po
={Pl, Pa,...,P6} with p1=N--+L.L, p 2 = N ~ L , p 3 = L ~ L B , p4=L--+B, P5
= B ~ 1, and P 6 = B ~ 0 .
(2) D=(V,, F) where V is the set of rational numbers and F = { +, 21",--, 0, 1}
with rank r (+) = 2, rank r (21") = rankr (--) = 1, and rank r (0) = rankr (1) = 0. For
every 7 e F, the function 7D is as expected.

t66 J. Engelfriet and L. Heyker

(3) A =(s, #, v}, where v represents the "value" of the nonterminals N, L, and
B, E represents the "length" of a list of bits L, and s represents the "scale"
of a bit B, or the last bit in a list L. Inh(U)=0, Syn(N)={v}, Inh(L)={s},
Syn(L)={~, v}, Inh(B)= {s}, and Syn(B)= {v}. The designated attribute of Gbi,
is ed=v.
(4) For the production Pl = N ~ L . L , ins(p1)={@, 0), (s, 1), (s, 2)}, outs(p 0
={(#, 1), @, t) , (E, 2), @, 2)}, and its semantic rules are
(v, 0) = +(@, 1), (v, 2)), (s, 1)=0 , and (s, 2) = - ((/ ' , 2)). The other produc-
tions have the following semantic rules.

p 2 = N ~ L : (v , O) = @ , l) ,

p 3 = L ~ L B : (d , O) = +((d , 1), 1),

(v, o) = + ((v, 1), (v, 2)),
p4=L---~B: (E, 0) = 1,

<v, 0) = <v, 1),

Ps = B --* 1 : <v, 0) = 2]'(<s, 0)), and

p 6 = B ~ 0 : <v, 0) = 0 . []

(s, 1)=0 ,

(s, 1> = + ((s, 0), 1),

(s, 2) = (s, 0),

(s, 1) = (s, 0),

2.3. Context-free hypergraph grammars

A directed hypergraph consists of a set of nodes and a set of (hyper)edges,
just as an ordinary graph except that an edge may be incident with any number
of nodes rather than two. The edges are directed in the sense that with every
edge a sequence of nodes is associated (possibly with repetitions). Moreover,
in our hypergraphs, each edge is labeled with a symbol from a ranked alphabet,
in such a way that the rank of its label equals the length of its sequence of
incident nodes. Finally, we assume that every hypergraph has a sequence of
designated nodes, called external nodes. Formally (cf. [BauCou; MonRos]), a
hypergraph is defined as follows.

Definition. Let ~ be a ranked alphabet. A hypergraph over ~ is a tuple H
=(V, E, nod, lab, ext), where V is the finite set of nodes, E is the finite set of
hyperedges (or edges), nod: E--+ V* is the incidence function, lab: E ~ E is the
labeling function, and extE V* is the sequence of external nodes. It is required
that for every e e E, rank~ (lab (e)) = 4t: nod (e). []

If nod(e)=(v 1, v2 , v~), r eN , then r is said to be the rank of e, denoted
rank(e), and e is called an r-hyperedge (thus, rank(e)=rankx(lab(e))). The node
v i is also denoted by nod(e, i), and we say that e and vl are incident. Similarly,
if ext=(vl , va , Vm), meN, then vi is denoted by ext(i). Moreover, m = ~ext
is the rank of H, denoted rank(H), and H will be called an m-hypergraph. A
non-external node of H is also called an internal node.

If the alphabet is irrelevant or clear from the context, a hypergraph over
a ranked alphabet 2 will shortly be called a hypergraph.

For a given hypergraph H, its components are denoted by Vu, Eu, nodu,
lab u, and extu, respectively.

Context-free hypergraph grammars

c 1,3

U
Fig. 1

167

For a ranked alphabet Z, the set of all hypergraphs over X is denoted by
HGR(Z), and the set of all m-hypergraphs, meN, over Z is denoted by HGR,,(Z).
A hypergraph language is a subset of HGR(X), for some ranked alphabet Z.

For hypergraphs H, KsHGR(X), K is a subgraph of H if VK~_Vn, EK~_En,
and nodK and labK are the restrictions of nod~r and labn to EK. Note that,
as in [Habl, but in contrast to the subhypergraph defined in [HabKrel] , we
do not require that extK = ext, .

We assume the reader to be experienced in the problem of concrete vs.
abstract graphs (where an abstract graph is a class of isomorphic concrete
graphs). As usual in the theory of graph grammars we consider hypergraph
languages to consist of abstract hypergraphs, but in all our constructions we
deal with concrete hypergraphs (taking an isomorphic copy when necessary).
The notion of isomorphism is the obvious one, preserving the incidence structure,
the edge labels, and the sequence of external nodes.

Example. Consider the ranked alphabet X= {a, b, c} with ranks(a)=0, ranks(b)
= 3, and ranks(c) = 2. Figure 1 contains a picture of a 3-hypergraph/-/= (V, E,
nod, lab, ext) over Z. A node of H is indicated by a fat dot, as usual, and
an edge of H is indicated by a box containing lab(e), with a line between e
and nod(e, i) labeled by i. These lines (or the corresponding integers) are called
the "tentacles" of the hyperedge e (see [HabKrel]) . A 2-hyperedge e is also
drawn as a directed line from nod(e, 1) to nod(e, 2), with label lab(e), as usual
in ordinary graphs. The external node ext(i) is indicated by a label i. In Fig. 1,
H has nodes vl, v2,/)3, 1)4, Us, and edges el, e2, e3, e4 (both enumerated from
left to right), and it satisfies nod(el)=(vl, vl, v2) , nod(e2)=(v2, vl) , nod(e3)
=(v2, v3, v4), nod(e4)=(), l ab(e0=b, lab(e2)=c, lab(e3)=b, lab(e4)=a, and
ext = (v2, v5, v2). Notice that Fig. 1 is also a picture of all hypergraphs isomorphic
with H (i.e., it is a picture of an abstract hypergraph). []

We now turn to context-free hypergraph grammars (cfhg's), see, e.g., [Fed;
BauCou; Cou3 and 4; HabKre 1 and 2; Hab; Lau; EngHey 1; EngRoz; MonRos;
LenWan]. A cfhg is similar to an ordinary context-free grammar, but (labeled)
edges of hypergraphs are rewritten rather than symbols of strings. Thus, a pro-
duction of a cfhg is of the form (X, H) where X is a (nonterminal) edge label
and H is a hypergraph of the same rank as X. The application of this production
to a hyperedge e (with label X) of a sentential form K of the grammar consists
of substituting /-/ for e in K, identifying nodK(e, i) with extH(i) for all i~
[1, rank(X)]. To define this formally, it is convenient to use the following two
operations on hypergraphs: identification and substitution.

(1) Identification of nodes. Let H~HGR(X) and R ~_ V~ x Vn. Intuitively, we
want to identify nodes v and v', for every pair (v, v')~R. Let =R denote the

168 J. Engelfriet and L. Heyker

smallest equivalence relation on V~ containing R. For vmVH, let [V]R denote
the equivalence class of v with respect to -R , and let Vu/--R={[v]RIveVr~}.
Then we define the hypergraph I-I/R=(Vt~/=R, Eta, nod, labu, ext) such that if
ext~=(vl , v2, ..., v,,), then ext=([vl]R, [V2]R , [V,,]R), and, for every edge
e eEl, if nod~(e)=(v, , v2, ..., vr), then nod(e)= ([Vl]R, [V2]R, .--, [Vr]R).

(2) Substitution. Let K, H~HGR(Z) , and let eeEK such that rank(e)= rank(/,/).
Then the hypergraph K [e/H], the result of subst i tut ing/ . / for e in K, is defined
as follows. We assume that VK~ V~=0 (otherwise an isomorphic copy of H
should be taken). Let K' be the result of removing e from K and adding H
(disjointly), i.e., K'=(V, E, nod, lab, ext) where V= VKu VH, E=(EK-{e})uEI~,
n o d = n o d ~ : u n o d ~ , restricted to E, lab=labKulabr~, restricted to E, and ext
= extK. Then K [e/H] = K'/R, where R = {(nodK (e, i), ext u (i)) I i~ [1, rank (/./)] }.

Finally, to define the start of a derivation of a cfhg, we also need a notation
for a hypergraph consisting of a single edge, with the appropriate number of
nodes. For a~X, with rankz(o-)=m, the hypergraph ([1, m], {e},nod, lab, ext)
with nod(e)=ex t=(1 , 2, ..., m), and l ab (e)=a will be denoted as ~;. It will be
clear from the context whether the label a or the hypergraph cr is meant by
(7.

We are now prepared for the definition of context-free hypergraph grammars
(cf. [BauCou]).

Definition. A context-free hypergraph grammar (abbreviated cfhg) is a tuple G
= (Z, A, P, S), where Z is a ranked alphabet, A ___ 2 is the terminal alphabet (and
Z - A is the nonterminal alphabet), P is the finite set of productions, and S ~ Z - A
is the initial nonterminal. Every production in P is of the form (X, H) with
X ~ Z - A , H ~ H G R (2) , and rankz(X)=rank(H). [2]

For a production 7r = (X,/-/), X is the left-hand side and H is the right-hand
side of ~, denoted lhs (rc) and rhs (~z), respectively.

For a hyperedge e of a hypergraph H~HGR(Z) , e is called a terminal edge
if lab~(e)~A, and a nonterminal edge otherwise. H is said to be terminal if all
its edges are terminal. We denote the set of all terminal (nonterminal) edges
of H by tedg(/-/) (nedg(H), respectively). Thus, E~ is partitioned into tedg(H)
and nedg(H). Whenever technically convenient, we assume that tedg(H) and
nedg(H) are given some fixed but arbitrary order, of which the j-th element
is denoted tedg(H,j) and nedg(H,j), respectively. The terminal part of H is
the hypergraph (V~, tedg(H), nod, lab, extn), where nod and lab are nod u and
lab/~ restricted to tedg(H). Note that the terminal part of H is a subgraph
of H.

Let G =(Z, A, P, S) be cfhg. Formally, application of a production ~ = (X, H)
of G is defined as follows. Let K~HGR(Z) , and let e~nedg(K). Then rc is appli-
cable to e if labK(e)=X, and the result of the application is the hypergraph
K[e/H]. We write K~(e,~)K', or just K ~ K ' , if K' is the result of applying

to e of K, i.e., if K' is (isomorphic to) K[e/HI. As usual, o * denotes the
transitive reflexive closure of =>.

Definition. Let G = (X, A, P, S) be a cfhg. The (hypergraph) language generated
by G, denoted L(G), is the set {He HGR(A){S o * H}. A hypergraph/-/~ HGR(Z)
is a sententiaI form of G if S ~ * H. []

Notice that rank (H)= ranks(S) for every sentential form of G.

Context-free hypergraph grammars 169

33" = S ::=
1

2
1"/ = C ::= :

2

A
v

1

o o

1 2

I ' 1

3

4

2,3
71 = C ::= �9

3

1,4
Fig. 2

A cfhg G =(s A, P, S) is reduced if every X e Z - A occurs in at least one
derivation S=~* F with FeL(G). It should be clear that any cfhg G (with L(G)# 0)
can be turned into an equivalent reduced cfhg G' by dropping its useless nonter-
minals (and productions).

Example. Consider the cfhg G=(2, A, P, S) where N= {S, C, i, o} with rankz(S)
=0, rankx(C)=4, rankx(i)= 3, and rankz(o)=2, A = {i, o}, and P = {re1, rcz, re3}
as given in Fig. 2, with each production (X, H) written as X: : = H. This cfhg
generates all "double circles" of the form given in Fig. 3. Notice that
L(G) ~_ HGRo (N), because ranks(S) = 0. []

Derivation trees of cfhg's and the terminal hypergraphs they yield are defined
as follows (see, e.g., [Lau]). The definition depends on the (fixed, but arbitrary)
order on nedg(rhs(~z)), for every production ~.

Definition. Let G = (X, A, P, S) be a cfhg. A derivation subtree of G is a directed
ordered tree g, in which each node is labeled by a production of P, defined
inductively as follows. Simultaneously we define the yield of d, denoted yieldG(d)
or just yield(g), and the root of g, denoted root(g).

170

o

J. Engelfriet and L. Heyker

~3 O

O

o

0 ~3

Fig . 3

(1) d is a node x labeled by a production z with ~nedg(rhs(~))=0 . In this
case yield(d) is the terminal hypergraph rhs(rc), and root (d)= x.
(2) d consists of a node x with label rc=(X, H), m = ~nedg(H) derivation sub-
trees dl, d2 d , , (m > l) such that root(dj) is labeled by a production rcj~P
with lhs(~j)=lab~(nedg(H,j)) for all j~[1 , m], and m edges from x to the roots
of the derivation subtrees d 1, d 2 , din, in that order. In this case yield(d) is
the terminal hypergraph

H Fnedg (H, 1)/yield (d 1)1 [nedg (H, 2)/yield (d2)] ... [nedg (H, m)/yield (dm)l,

and root(d) = x.
A derivation tree of G is a derivation subtree of G of which the root is

labeled by a production 7rEP with lhs(Tr)=S. []

It can be shown in a straightforward way that, as in the case of ordinary
context-free grammars, a hypergraph can be generated by a cfhg G if and only
if it is the yield of a derivation tree of G (cf. Theorems 4.5 and 4.8 of [Kre],
and Example 2.20 of FCou2]). More strongly, for every XEZ--A,
{HeHGR(A)[X~*H}={yield(d)ld is a derivation subtree of G, and root(z')
is labeled with some production ~zeP such that lhs(Tz)=X} (cf. Theorem II.3.6
of [-Hab]).

Application of a production (X, H) of a cfhg to a sentential form K may
result in the identification of some of the nodes of K. This is due to the fact
that the sequence of external nodes of H may contain repetitions (cf. Fig. 2).
This feature of cfhg's (which is not present in FHabKre l and 2; Hab]) is useful,
e.g., when simulating copy rules in an AG, as we shall see in Sect. 4. A cfhg
in which such an identification is not allowed is called identification-free. Thus,
for an identification-free cfhg, the terminal part of a sentential form K is always

Context-free hypergraph grammars 171

a subgraph of a terminal hypergraph F generated from K. In other words,
the part of F that has already been generated in K, will not change by the
remainder of the derivation. This property simplifies visualizing the derivations
of a cfhg.

Definition. An m-hypergraph H is identification-free if ext~(i)=#ext~(j) for all
i, j~ [1, m] with i~=j. A cfhg G is identification-free if rhs(~) is identification-free
for every production ~ of G. []

Notice that an identification-free cfhg generates identification-free hyper-
graphs only. In [-EngHeyl, Lemma 3.2] it is shown that every cfhg can be
turned into an identification-free cfhg that generates the same identification-free
hypergraphs. This result is similar to the removal of 2-productions from an
ordinary context-free grammar.

Proposition 2.3 For every cfhg G there is an identification-free cfhg G' such that
L(G')= {H~L(G)]H is identification-free}. []

A consequence of this proposition is that, for every cfhg G of which the
initial nonterminal has rank 0 or 1, there exists an identification-free cfhg G'
such that L(G')= L(G).

As observed above, in a sentential form K of a cfhg that is not identification-
free, application of a production (X, H) to a nonterminal hyperedge e may
result in the identification of nodes in nodK(e) as a consequence of repetitions
in extu. The "reverse" may also occur. External nodes of H can be identified
as a consequence of repetitions in nodK(e), called "loops".

Definition. Let G =(2 , A, P, S) be a cfhg. A hypergraph H over ~ is loop-free
if for every e~nedg(H), nod(e, i)+nod(e,j) for all i, j in [1, rank(e)] with i+j.
G is loop-free if rhs(~) is loop-free for every production 7c~P. []

A sentential form of a loop-free cfhg is not necessarily loop-free. To see
this, consider two nonterminal hyperedges e and e' in a loop-free sentential
form K with nodK(e, i)=nodK(e', i') and nodK(e,j)=nodK(e',j'), for some i, i',
j, f . Then, if nodK(e, i) and nodr(e,j) are identified as a consequence of applying
a loop-free production (X, H) to e (i.e., extu(i)=extr~(j)), e' has a loop in the
sentential form K [e/H]. But it is easy to see that, for a loop-free and identifica-
tion-free cfhg, all sentential forms are loop-free (and identification-free). This
implies that, after application of a production 7c, rhs(rc) is a subgraph of the
sentential form (and hence the terminal part of rhs(rc) will be a subgraph of
the generated terminal hypergraph). Thus, every derivation subtree of a deriva-
tion tree / yields a subgraph of yield(/). This simplifies proofs that use induction
on the structure of derivation subtrees.

For that reason, we shall use the Well-Formedness Theorem of [-Hab, Theor-
em 1.4.6], where well-formed means loop-free. Because in [Hab] the sequence
of external nodes of the right-hand side of a cfhg production does not contain
repetitions (by definition), this theorem states the existence of a loop-free and
identification-free cfhg generating the same hypergraph language as a given
identification-free cfhg.

Proposition 2.4 For every identification-free cfhg G there is a loop-free and identifi-
cation-free cfhg G' such that L(G') = L(G). []

In the proof of Theorem 3.1, we shall use a monadic second order logic
(abbreviated MSOL), defined in [-Cou4], to express properties of hypergraphs.

172 J. Engelfriet and L. Heyker

A language of MSOL, ~ , , , for some ranked alphabet A and some mEN, consists
of formulas that express properties of m-hypergraphs over A. Such a formula
defines a hypergraph language in HGRm(A), consisting of all hypergraphs that
satisfy the formula.

Formulas are built by using node constants ext(i), 1 < i<m, node variables
v, w, v', Vl, v2, ..., edge variables e, e', el, e2 , node set variables V, V',
..., and edge set variables E, E', For a given hypergraph H, ext(i) denotes
exta(i), the node and edge variables range over all elements of V u and E R,
respectively, and the node set and edge set variables range over all subsets
of V u and EH, respectively.

~A,,, contains the atomic formulas (1) x=x ' , for either node variables (or
constants) x and x', or edge variables x and x', (2) xEX, for either node variable
(or constant) x and node set variable X, or edge variable x and edge set variable
X, and (3) edge(e,/)1,/)2, " " , Ur), for aEA, edge variable e and node variables
(or constants) vl, v2, ..., vr, where r abbreviates ranka (a).

Intuitively, these formulas express that two nodes (edges) are equal, that
a node (edge) is an element of a set of nodes (edges), and that, for hyperedge
e, nod (e) = (vl,/)2 Ur) and lab (e) = a.

The formulas of the language ~ , ,~ of MSOL are constructed from the above
atomic formulas through the propositional connectives A, v , -7, -% and the
quantifiers V and 3, as usual. A formula is closed if it has no free variables.
If cp is a closed formula in L~A.m, then an m-hypergraph H over A either satisfies
the property defined by q~ or it does not. We write H ~ ~0 if H satisfies q).

Furthermore, we shall use the abbreviat ions/~ and V to denote the conjunc-
tion and disjunction of a (finite) set of formulas.

Example. Consider the ranked alphabet A = { a , b , c } with ranka(a)=0,
ranka (b)= 3, and rank~ (c)= 2. The 3-hypergraph H over A, given in Fig. 1, does
not satisfy the closed formula ~0 in 5f~, 3, where (p expresses that no external
node is isolated (i.e., for every external node v =ext(i), 1 < i < 3, there is a hyper-
edge e, with an arbitrary label d, that is incident with v). The formula q5 is
defined as follows:

3 (
(p <=>gvA : v=ext(i)-+ V 3e3v1 3 /) 2 . . . 3 V r : edgd(e, v,, /)2 ' " ' ' ' Vr)

i = 1 d ~ A

j = l

where r abbreviates rankA(d). []

In many constructions concerning cfhg's, the following proposition (Corol-
lary 4.8 of [Cou4]) is useful.

Proposition 2.5 Let A be a ranked alphabet, and m e N . Let G be a cfhg with
L(G) ~ HGRm(A). Let (p be a closed formula in ~ ,m .

(1) One can decide whether for all H in L(G) H ~ qo.
(2) One can construct a cfhg generating {HEL(G) I H ~ (p}.

Context-free hypergraph grammars

D : f i r 1

Fig. 4

2/%

173

V 5

3. Term generation by context-free hypergraph grammars

A term is often represented by a node in a finite, node-labeled, directed, ordered,
acyclic graph (DOAG). As opposed to a representation by trees, this allows
sharing of subterms. In this paper we analogously, but more conveniently, repre-
sent a term by a node in a hypergraph, as in [Cou3; HabKrePlu]. Although
we are interested in the generation of terms without variables (cf. Sect. 2.2),
we will also need to represent terms with variables (in particular because the
right-hand side of a semantic rule of an AG is a term with variables). Recall
from Sect. 2.1 that, for technical reasons, we always consider a sequence rather
than a set of variables.

Let F be a ranked alphabet and Y a sequence of (distinct) variables. In
a DOAG D where a node v represents a term t = , / (t l , t2, . . . , t,) in T(F, Y),
v is labeled 7. Further, D contains n (i.e., rankr(7)) ordered edges directed from
v to the nodes representing the terms tl, t2 t, in T(F, Y), respectively. In
a hypergraph H where a node v represents t, 7 is represented by a hyperedge
e labeled 7 (unless 7~Y). The tentacles of e, ordered in the sequence nod(e),
are used to connect the nodes representing tl, t2, ..., t, with v, respectively.
This means that e is a (rankr(7)+l)-hyperedge of H. Variables from Y are
represented by external nodes rather than hyperedges (the i-th variable by the
i-th external node).

Example . Consider the ranked alphabet F = {f, g, + , . , 2, 5} with rankr(g) = 3,
r ank r (+) = rankr(*) = 2, rankr (f) = 1, and rankr (2) = rankr (5) = 0.

In the D O A G D given in Fig. 4, the order of the outgoing edges is from
left to right at each node, and the node labels are displayed to the left of the
nodes. A corresponding hypergraph H is given in Fig. 5. In both graphs, the
nodes represent terms in T(F, Y), where Y-(y~, Y2, Y3)- For example, the nodes
vl, v2, v3, v4, and vs represent f(*(g(y3, 5, 2), Yl)), +(*(2, Y3), g(Y3, 5, 2)), *(2, Y3),
.(2, Y2), and Y2, respectively. Note that Yl, Y2, and Y3 are represented by ext~(1),
extH(2), and ext,(3); extra(4) and ext,(5) are used to indicate distinguished nodes
of H (a possibility not present in D). []

We only wish to consider hypergraphs of which every node represents a
term (as the one in Fig. 5). To define such "jungles" [HabKrePlu] we need
some more terminology.

First we need a notion of direction of a hyperedge e, in addition to the
one given by the order of nod(e). This new notion of direction of an r-hyperedge

174

H =

~ 2

2 V1

J. Engelfriet and L. Heyker

13

1 ~ 2

Fig. 5

e with nod(e) = (Vl, vz, ..., vr) is as follows (cf. [Cou3]). The nodes vl, v2 vr- 1
are the "source" nodes of e, and we say that e is an outgoing edge of these
nodes. The node vr is the " ta rge t" node of e, and e is called an incoming edge
of yr. In this sense, according to [H a b K r e l and 2; Hab; HabKrePlu] , e is
a hyperedge of type (r - 1 , 1). For 2-hyperedges (i.e., ordinary edges) the two
notions of direction coincide. Note that in the representation of terms by hyper-
graphs the direction is taken opposite to the one in D O A G ' s (cf. Figs. 4 and
5).

With this new notion of direction, a path in a hypergraph H from a node
v to a node w is a sequence (Vo, Vl, - . . , Vn)@ V/~ +1 with n>O, Vo=V, and v,=w,
such that for every ir n] t h e r e exist esE~z and j~[1 , r a n k (e) - l] with
nodz~(e, j) = vi_ 1 and nodn(e, rank(e))= vl. We call such a sequence (Vo, vl v,)
a hyperpath (of length n) from v to w. A cycle is a hyperpath of positive length
from a node v to itself. A hypergraph is acyclic if it does not contain any
cycles. Obviously, a hypergraph of which every node represents a term should
be acyclic.

To be able to determine uniquely which term in T(F, Y), where Y
=(Yl, Y2 , Yk) is a sequence of distinct variables, is represented by a node
v in a hypergraph H with r a n k (H) > k , we demand firstly that the external
nodes representing the k variables are distinct (because extu(i) represents y~).

Definition. Let H be a hypergraph, and kc [0, rank(H)]. H is k-identification-fi~ee
i fextH(i)#ext~(j) for all i,j~[1, k] with i#j. []

Secondly, we demand that each node v, except the first k external nodes
corresponding to variables, has precisely one incoming hyperedge.

Definition. Let H be a hypergraph. H is one-incoming for k, where
k ~ [0, rank (H)], if

Context-free hypergraph grammars 175

(t) each vs VH-{ext~(i)l 1 <i<k} has precisely one incoming hyperedge, and
(2) no v e {extn (i) I 1 < i < k} has incoming hyperedges.

H is one-incoming if it is one-incoming for 0, i.e., each node of H has precisely
one incoming hyperedge. []

Since a 0-hyperedge in a hypergraph is not incident with any node, it does
not contribute to any term represented by a node of that hypergraph. Thus,
for technical convenience, we omit 0-hyperedges. We are now ready to define
the notion of jungle. It is the same as the one defined in [HabKrePlu; HofPlu],
apart from a few technicalities (such as the presence of external nodes, cf.
[Cou3]).

Definition. Let H be a hypergraph, and ke[0, rank(/-/)]. H is a jungle with k
variables if H is acyclic, k-identification-free, one-incoming for k, and has no
0-hyperedges. []

After having defined the hypergraphs of which the nodes represent terms,
we now define which terms are represented by the nodes of such a hypergraph.
For that purpose we use an unfolding operation that duplicates shared subterms,
as with the unfolding of DOAG's.

Recall from Sect. 2.1 that, for a ranked alphabet Z, dec(Z) is obtained by
decreasing the rank of each symbol by 1.

Definition. Let H be a jungle with k variables over a ranked alphabet Z, and
let vEVn. Let Y=(Yl, Yz Yk) be a sequence of k distinct variables. The term
associated with v in H over Y, denoted term(v, H, Y), is the term in T(dec(Z), Y)
defined as

term(v, H, Y)=

Yl ifv is ext,(i) for some ie[-1, k]

lab~(e) if e is the incoming edge of v, and e has rank 1

lab~(e)(term(nodH(e, 1), H, Y),

term(nodH(e, 2), H, Y)

term(nodu(e, r - 1), H, Y))

if e is the incoming edge of v,
and e has r a n k r > 2 . []

Notice that in the above definition the recursion always ends, because H is
acyclic (and finite).

Since, in H, the external nodes ex t , (k+ t), extH(k+2) ext,(rank(H)) are
distinguished nodes, H represents r a n k (H) - k (not necessarily distinct) terms
in particular. For example, if Y-(YI, Y2, Y3), then the jungle H of rank 5 with
3 variables, given in Fig. 5, represents 2 terms, viz.

term(extn(4), H, Y)=*(2, Y3) and term(extra(5), H, Y)=f(*(g(Y3, 5, 2), Yl)).

Thus, in case rank(H)= k + 1, H represents one term in particular. Such jungles
will be used to represent right-hand sides of semantic rules of an AG.

176 J. Engelfriet and L. Heyker

Definition. Let H be a jungle with rank(H) 1 variables, rank(H)=>1. Let Y
be a sequence of rank(H)--1 distinct variables. The term associated with H
over Y,, denoted term(H, Y), is term(extH(rank(H)), H, Y). []

In this paper we are mainly interested in jungles without variables, i.e., with
0 variables, in order to compare their associated terms (without variables) with
those generated by AG's. That is why we focus attention on cfhg's generating
jungles without variables with which only one term is associated, in the rest
of this paper. From now on, by a jungle a jungle of rank 1 without variables
is meant, unless it is explicitly mentioned that a jungle of rank m with k variables,
for some k (0 < k < m), is considered. This is equivalent to the following definition.

Definition. A jungle H is an acyclic one-incoming 1-hypergraph without 0-hyper-
edges. The term associated with H, denoted term(H), is term (extu (1), H, ()). []

Definition. A cfhg G is term-generating if every hypergraph in L(G) is a jun-
gle. []

Thus the hypergraph language of a term-generating cfhg G consists of a
set of jungles. The set of terms associated with these jungles is called the term
language of G.

Definition. Let G be a term-generating cfhg. The term language generated by
G is TERM(G)={term(H)]H~L(G)}. []

Notice that for a term-generating cfhg G = (N, A, R S), TERM (G)___ T(dec(A)),
the set of terms over dec(A).

The class of all term languages generated by cfhg's will be denoted as
TERM (CFHG), i.e., TERM (CFHG)= {TERM (G) IG is a term-generating cfhg}.

Example. Consider the term-generating cfhg G = (s A, P, S) with
s = {S, A,f, g, h, a}, ranks(S) = rankx(a) = 1, rankx(A) = ranks(g) = rankx(h) = 2,
and rankx(f)=3, A ={f , g, h, a}, and P={7~1, 7c2, g3} as given in Fig. 6. For
the jungle H~L(G) of Fig. 7, the associated term in T(dec(A)) is

term(H)=f (g(f (g(f (a, a)), h (f (a, a)))),

h(f (g(f (a, a)), h (f (a, a))))).

Notice that application of production 7t 2 "causes" sharing. In the terms repre-
sented by the nodes of H, the terms f (a, a) and f (g (f (a, a)), h (f (a, a))) are shared.
The term language generated by G can be described inductively by

(1) f(a, a)aTERM(G),
(2) if teTERM(G) then/(g(t) , h(t))aTERM(G). []

The right-hand sides of the productions of a term-generating cfhg G do not
have to be jungles themselves. In fact, they even do not have to be jungles
with variables (consider production ~1 of the cfhg defined in the above example).
But (assuming that G is identification-free, loop-free, and reduced), the yield
of every derivation subtree { is a subgraph of a jungle in L(G); using this,
it is not difficult to see that yield(g) is a jungle with k variables for some ka[0,
rank(yield(d))], provided we permute the sequence of external nodes of yield(g)
in such a way that the first k external nodes have no incoming hyperedge in
yield(g) and the remaining ones have an incoming hyperedge in yield(g). This

177

1

3

I 2

"j-J" = A ::--
2

1 2

2 2

Context-free hypergraph grammars

= S ::=

YI = A : :=
3

1 2

Fig . 6

also explains our interest in jungles (with variables) of arbitrary rank. In the
example above, A generates terminal jungles of rank 2 (without variables).

We now consider a more complicated example to provide the reader already
with some notion of the correspondence between cfhg's and AG's.

Example. Consider the cfhg G = (Z, A, P, S) with

Z={N,L,B, +,2t , - - ,0 , 1},

ranks (N) = ranks (0) = ranks (1) = 1,

rank x (B) = rankz (2 T) = ranks (-) = 2,

rank s (L) = ranks (+) = 3,

A = { + , 21", --, 0, 1}, P={nl, ha, n3, n4, ~5, n6}, as given in Fig. 8, and S=N.
This term-generating cfhg generates the same term language as the A G Gbi n

of Example 2.2, viewed as a term-generating A G (i.e., to be precise, L(G)

178 J. Engelfriet and L. Heyker

H =

Fig. 7

=OUT((Gbin)term)). Thus, each jungle generated by G represents the "meaning"
of a binary number.

The nonterminals of G are the nonterminals of the underlying context-free
grammar Go of the AG Gbl n. Their ranks in Z are equal to the number of
attributes they have. The terminals of G are the function symbols that occur
in the semantic rules of the productions of Po, and their ranks in ~ equal the
number of arguments they have plus one. Thus A -= inc(F), where F is the ranked
alphabet of the semantic domain of Gbl n,

The productions of P correspond to those of Po, including their semantic
rules, with ~i corresponding to pi. The order of the tentacles of the nonterminals
and of the external nodes corresponds to an (arbitrary but fixed) order of the
sets of attributes of these nonterminals. In this example Att(N)={v},
Att (L)= {s, ~, v} and Art(B) = {s, v}, in those orders. The order of the nedg-set
of the right-hand side of a production of P is determined by the sequence
of nonterminals in the right-hand side of the corresponding production of P0.

Compare the derivation tree g shown in Fig. 9 with the one of (1.2) in [Knu],
which is the derivation tree g' of the binary number 1101.01 (obtained by chang-
ing ~ into p~ in g). This derivation tree g yields the jungle H of Fig. 10, which

Context-free hypergraph g rammars 179

"j-j" =

I

1 N :;=

nedg I nedg2

1

1")" 2 = N ::= 1 ~ i 1 2

3 L ::=

/4 = L ::=

2 3

1 32 1 1 !

nedg 1 nedg2

I 2 3

Fig. 8

1 2
I"/5 = B ::=

1"~ = B ::=
6

1 2

represents the value of the designated attribute in g'. In fact, the term in T(dec(A))
associated with H is

term(H)= + (+ (+ (+ (2 T (+ (+ (+ (O , 1), 1), 1)),

2T(+(+(0 , 1), 1))),
0),

2T(0)),

+(0, 2T(- (+(1 , 1))))).

This term is also the value of v of N in g', when Gbi n is viewed as a term-
generating AG. Evaluation of this term in the semantic domain D=(V,F) of
Gbl n gives (term (H)) o = 13.25, the meaning of 1101.01.

Notice that the subterms +(+(0 , 1), 1), 0, and --(+(1, 1)) are being shared.
This is "caused" by the applications of production ~z3, and corresponds to

180 J. Engelfriet and L. Heyker

t =

~7 / 3 \
71

~7
5

:ff

~7 ~7 / 3 \
~7 ~7 / 3 \ 5

~7
6

77
I ~

6

5

Fig. 9

Fig. 10

I 32

I 1

Context-free hypergraph grammars 181

the multiple use of the outside attribute (s, 0) in the semantic rules of the
production P3 of G o.

Notice finally (cf. the discussion preceding this example) that B generates
terminal jungles of rank 2 with 1 variable, and L generates terminal jungles
of rank 3 with 1 variable (where no permutation of the external nodes is
needed). []

The reader should be aware of the fact that the definition of T E R M (C F H G)
given in this section is quite flexible. The present definition was chosen to be
suitable for the comparison of cfhg's with AG's as far as terms are concerned
(in particular for the simulation of AG's by cfhg's, in the next section). In the
remainder of this section we discuss some alternative ways of defining
T E R M (CFHG).

The above example (in particular Fig. 10) shows that not always all the
hyperedges and nodes of a jungle are used in the computation of the term
associated with that jungle. This is a consequence of the fact that the attribute
E of the first L in the production N ~ L. L and the attribute s of B in the
(rightmost occurrence of the) production B ~ 0 are not used by the A G Gbl n

in the computation of the value of the designated attribute of the root of the
derivation tree 7' of Go, that corresponds to the derivation tree 7 of the cfhg G,
given in Fig. 9. This is illustrated in Fig. 11 that shows the dependency graph
DG~,, see also (3.1) in [Knu]. In Fig. 11 a dashed edge from an attribute /~
to an attribute ~ indicates that the dependence of e on /? is determined by
a copy rule. A short incoming arrow indicates a semantic rule with a constant
right-hand side (i.e., in T(F)).

We call the hyperedges and nodes of a jungle H that are not used in the
computation of term(H), garbage. A jungle without garbage is said to be clean.
A more formal way to define this, is the following.

Definition. Let H be a jungle with k variables. H is clean if for every v~VH
there exists a hyperpath from v to ext~r(i), for some i e [k + 1, rank(H)]. []

A clean jungle of rank 1 without variables is shortly called a clean jungle.
Compared to the representation of a term by a DOAG, a clean jungle can
be viewed as a tree with sharing, where the external node of the jungle corre-
sponds to the root of the tree.

Definition. A cfhg G is clean term-generating if every hypergraph in L(G) is a
clean jungle. []

Clearly, garbage can be removed from a jungle without changing the associat-
ed term. Thus, one may consider it to be more natural to represent terms by
clean jungles only, and to restrict attention to clean term-generating cfhg's.
In the "garbage theorem" (Theorem 5.3) it will be shown that this is possible
without changing the term-generating power of cfhg's. At this moment we just
mention this alternative way of defining T E R M (C F H G) as {TERM(G)[G is
a clean term-generating cfhg} ; we postpone the "garbage theorem" to Sect. 5.

As another example of the flexibility of the definition of the class
TERM(CFHG) , we do not have to restrict ourselves to term-generating cfhg's.
We could just as well allow all cfhg's that generate 1-hypergraphs, and consider
the terms associated with the (clean)jungles they generate. This is stated in
the following theorem. At the same time we reassure the reader who is worried
about the decidability of "(clean) term-generating".

182

|

J. Engelfriet and L. Heyker

v

"x..k

\
\

x-a,

Fig. 11

Theorem 3.1 Let G be a cfhg generating 1-hypergraphs.

(1) It is decidable whether G is (clean) term-generating.
(2) {term(H) lH6L(G), H is a (clean) jungle} ~ T E R M (C F H G) .

Proof Let G = (X , A, P, S) be a cflag with r a n k z (S) = 1.
By definition, a 1-hypergraph is a jungle if it is acyclic, one- incoming, and

has no 0-hyperedges. A n d it is a clean jungle if, moreover , there is a h y p e r p a t h
f rom each of its nodes to ext(1). One can easily see tha t these three (four) p rope r -
ties for a 1-hypergraph to be a (c lean) jungle can be expressed in an M S O L
formula ~p of ~ . l, as follows (for M S O L , see Sect. 2.3).

T o define this ~p, we first need M S O L formulas O(v, w), ~(v, w), and ((e, v)
to express tha t there is a hyperedge f rom a node v to a node w, tha t there
is a hype rpa th f rom v to w, and that a hyperedge e is incoming for a node
v, respectively. There is a hype rpa th f rom v to w iff for all sets of nodes V

Context-free hypergraph grammars 183

with veV, if V is "closed" then w~V. A set of nodes V is closed, expressed
as O(V) in 57~,~, iff all outgoing edges of nodes of V are incoming for nodes
of V only.

(hyperedge) O(v, w)~:, V 3e3vl 31) 2 . . . 3 1) r _ l :

a6A

r - 1

where r abbreviates ranka (a).

(closed) O(V)<=>VvVw: (veVAO(V, w))~w~V.

(hyperpath) r w) <::, V V: (re VA O(V)) ~ we E

(incoming) ~(e, v) ~:~ V (3 vl 3 v2... 3 vr_ 1: edga(e, vl, Va, ..., vr- 1, v))
a~A

where r abbreviates rank~ (a).
Further we need the following auxiliary formulas.

(acyclic) ~o i ~ ~ (3 V 3 W : 0 (V, W) A ~/g (W,/))).

(one-incoming) qo 2 ~ V v: ((3 e: ~(e, v))

A ((V el V e2 : ~(el, v) A ~(e2, v)) ~ (e 1 = ez))).
(no 0-hyperedges) q)3 ~=~ A (--13 e: edga (e))

aEAo

where A o = {a e A I rankn (a) = 0).

(clean) q~4 ~:~ V v: ff (v, ext (1)).

Then the formula (p expressing that a 1-hypergraph is a (clean) jungle is
defined as qo ~*- (Pl/x qo 2/x q)3(/x cp4).

(1) By Proposition 2.5(1), it is decidable whether H~q~ for all H~L(G). This
means that it is decidable whether G is (clean) term-generating.
(2) By Proposition 2.5(2), one can construct a cfhg G' generating the hypergraph
language L(G')={H~L(G)IH~o }. G' is (clean) term-generating, because all
H~L(G') satisfy ~0. Thus the term language generated by G' is defined. In fact
TERM (G') = {term (H) IH e L(G')} = {term (H) IH e L(G) and H ~ (p}, i.e.,
{term(H)lHsL(G), H is a (clean) jungle}eTERM(CFHG). []

4. Simulation of attribute grammars by context-free hypergraph grammars

In this paper we compare the term-generating power of cfhg's with that of
AG's. In particular, we prove that TERM(CFHG)- -OUT(AG, TERMS). In
this section we show that OUT(AG, TERMS)_~ TERM(CFHG), i.e., that term-
generating cfhg's can simulate all term-generating AG's.

The output language of an AG G is obtained by considering all the derivation
trees of its underlying grammar Go, and determining the values of the designated
attributes of their roots. The computation of such a value for a derivation
tree g of Go depends on the semantic rules of the productions that are applied
in g.

184 J. Engelfriet and L. Heyker

Fig. 12

Thus a cfhg has to simulate both the underlying cfg and the evaluation
of the semantic rules of the AG. The simulation of the cfg is straightforward,
because in fact a cfhg may be viewed as a cfg in which graphs are added to
the productions. In particular, we shall represent the attributes of the nontermin-
als in a cfg production p by nodes in the right-hand side of the corresponding
cfhg production n, as in the dependency graph D G v. The nonterminals in rhs(p)
will be represented in rhs(7c) by nonterminal hyperedges with tentacles to the
nodes representing their attributes. The attributes of lhs(p) form the external
nodes of rhs(rc). The way in which a cfhg can simulate the evaluation of a
semantic rule is explained in the following example.

Example. Consider again the term-generating AG Gbln of Example 2.2. If we
"substitute" the corresponding cfhg productions, given in Fig. 8, in the depen-
dency graph of Fig. 11, we get the jungle H of Fig. 12. A dashed line between

Context-free hypergraph grammars

/" \ I / '<,i. <<,.,

I 4 3 __ 2\ 1~ 4 ~

3

>,<v,2>)

11 # I

185

I (b) +(<~,I>,I) ::= ,) 2 3 4 5

1,5 2 3 4
<s,O> x= o

Fig. 13

two nodes indicates that these nodes are identified in H. To keep the figure
surveyable, for every hyperedge e, we only numbered the tentacle rank(e) indicat-
ing the direction of e. The same jungle is also shown in Fig. 10. From Fig. 12
it should be clear that term(H) is the value of the designated attribute v of
root(Q, where L is the derivation tree given in Fig. 9.

For technical reasons we shall define separate cfhg productions for the simu-
lation of the productions of the underlying grammar Go, including their semantic
rules, and for the simulation of the evaluation of these semantic rules (in contrast
to the cfhg productions of Fig. 8).

For example, for production P3 = L ~ L B of P0, the corresponding cfhg pro-
duction, that simulates PB including its semantic rules, is shown in Fig. 13a.
The attributes of P3 are represented by nodes. The semantic rules of P3 are
represented by nonterminal hyperedges labeled with the right-hand sides of
these semantic rules. Since, in principle, a semantic rule defines an inside attribute

186 J. Engelfriet and L. Heyker

of P3 in terms of all the outside attributes of P3, a hyperedge e representing
((e, j) = t) has tentacles to all nodes representing the outside attributes, and
to the node representing (~, j) . In particular, nod(e,/) represents the i-th attri-
bute in the sequence outs(ps) , 1<i_<4= 4~outs(ps) , and nod(e, @outs(p3)+l)
represents (e , j) . Notice that the direction of e corresponds to the direction
of the original dependencies determined by (c~, j) = t. For clearness' sake, some
tentacles are not drawn completely in Fig. 13a, but the nodes with which they
are incident should be clear (assuming that outs(ps) is the sequence ((s, 0),
(d, 1), (v, I) , (v, 2))).

The other cfhg productions corresponding to P3 are used to rewrite the
nonterminal hyperedges that represent the semantic rules of P3, into correspond-
ing jungles of rank @ outs (P3) + 1 with @ outs(p3) variables. Thus, they simulate
the evaluation of the semantic rules of Ps. In Fig. 13b two of these productions
are given. Notice that the application of all these productions to Fig. 13 a would
produce production 7c s of Fig. 8. []

To translate the right-hand side te T(F, outs(p)) of a semantic rule of a pro-
duction p of Go into a jungle /4 (with variables) such that term(/-/, outs(p))=t,
we associate with t and outs(p) a jungle of rank @outs(p)+l with 4~outs(p)
variables, denoted jung(t, outs(p)). This hypergraph resembles the usual tree
corresponding to t, except that the variables are shared. In [-HabKrePlu] it
is called the "variable-collapsed tree" corresponding to t.

Definition. Let F be a ranked alphabet, let Y=(Yl , Y2, . . . , Yk) be a sequence
of k distinct variables, and let t~T(F, Y). The jungle associated with t and Y,
denoted jung(t, Y), is the jungle of rank k + 1 with k variables over inc(F) defined
inductively as follows. In the definition, we take ext(i) equal to y~, for all 1 < i N k,
in all hypergraphs.

(1) I f t = y i , l<__i<=k, then

jung(t, Y)=({Yl, Yz , Yk}, O, O, O, (yl, Y2, . . . , Ya, Yi)).

(2) Let t=y (t l , t2, ..., t~) with ?,eF, rankr(y)=n, n>0 , and t i e r (F , Y) for all
ie[1, n]. Denote jung(tl, Y) as Hi. Take isomorphic copies of H i , / / 2 , ..-,/Hn,
such that for all i, j e [I, n] with i + j, Vn, c~ V~ j = { y l , Y z , Yk} and Eni ~ E~ j = ~.

Then jung(t, Y) =(V, E, nod, lab, ext) with

V= {v, ya, Y2 , Yk} U 0 Vm, where v is a "new" node,
/ - - 1

E={e} u @ EH,, where e is a "new" hyperedge,
i = 1

~(extm(k+ 1), extn~(k+ 1) , extu,(k+ 1), v) if e=e
n ~ if e e E m, 1 < i N n ,

{~a i f e = e
lab(e)= br~,(e) if e a E m , 1 < i < n , and

ext=(yl ,Y2 Yk, V). []

Example. Consider the ranked alphabet F = {f, g, + , . , 2, 5} with rankr(g)=3,
r a n k r (+) = r a n k r (.) = 2 , r a n k r (f) = l , and rankr(2)=rankr(5)=0. Let Y

Cotltext-free hypergraph grammars t87

H = 1,4 2 3
!

H
2

1 2 4

2 3
H= �9 �9

5

H ,~
4

2 4

3

1 3

4

1]
H

$

2

1

J

4

/

1

D

1

I,I

P

4

t

3 3

1 3

Fig. 14

=(Yl, 22, Y3), and consider the following terms in T(F, Y): tl =yl, tz=2, ts=
+(f(5) , Y0, t4=*(Y~, Ya), and t5 =g(t2, t3, t4)=g(2, +(/ (5) , Y0, *(Yl, Y3)). The

jungles with 3 variables over inc(F) associated with these terms and Y are given
in Fig. 14, i.e., Hi=jung(C, Y), for ie [1, 5]. []

As a consequence of the above definition and the definition of term(H, Y),
term(jung(t, Y), Y)=t for all terms teT(F, Y). This can be proved by induction
on the structure of t. The formal proof is left to the reader. In fact, this is
the only property ofjung(t, Y) that we need. In the above example

termOung(ts, Y), Y)
= te rm(Hs , Y)= g(term(H 2, Y), term(Hs, Y), term(H4, Y))
=g(term0ung(t2, Y), Y), term0ung(t3, Y), Y), term0ung(t4, Y), IT))
=g(2, +(f(5) , Y0, *(Yl, Ys))- ts -

188 J. Engelfriet and L. Heyker

To prove that OUT(AG, T E R M S) ~ T E R M (C F H G) , we shall now give a
detailed description of the siulation of a term-generating AG by a cfhg, using
the above definition to simulate the evaluation of the semantic rules by jungles
(cf. Fig. 13b that shows the jungles jung(+({~, 1), 1), Y) and jung({s, 0), Y)
associated with the right-hand sides of the semantic rules of the production
Ps of Example 2.2 and Y=({s, 0), {~, 1), {v, 1), {v, 2))).

Lemma 4.1 For every term-generating AG G there exists a term-generating
cfhgG' such that TERM(G')=OUT(G) . Moreover, if G is reduced then G' is
clean term-generating.

Proof Let G be a non-circular attribute grammar over (T(F), F) for some ranked
alphabet F, and let Go = (No, To, Po, So) be its underlying context-free grammar.
This implies that the terminal alphabet of G' must be inc(F).

Every term tET(F) in OUT(G) is the value of the designated attribute of
the root of some derivation tree g of G o. We shall construct a cfhg G' such
that if d' is a derivation tree of G' that corresponds to d, then term (yield (~')) = t,
see Fig. 12. For that purpose, each attribute c~ of a node x ofd will be represented
by a node v in yield(g') such that term(v, yield(d'), ()) equals the value of {a, x) .
Due to copy rules, distinct attributes may be represented by the same node.

Every X~No is a nonterminal of G' of rank #At t (X) ; in particular, So is
the initial nonterminal of G' (with rank 1). These nonterminals will be used
to simulate the derivation trees of Go. The terminals of G o need not be simulated
by G', because they have no attributes and consequently do not influence
OUT(G).

Every production p = Xo ~ Wo X1 w1 X2 w2 ... Xn Wn of Go is translated into
exactly one production p' = (Xo, H) of G', which simulates both p and its semantic
rules. The nodes of H are the attributes of p, i.e., ins(p)u outs(p). The attributes
of X o are the external nodes of H. Besides, H has n + #t:ins(p) nonterminal
hyperedges, as follows. Each nonterminal Xi, 1 < i< n, corresponds to a hyper-
edge labeled Xi of which the tentacles are connected to the nodes representing
its attributes. Each semantic rule ({c~,j)= t)Er,, for some inside attribute {a , j) ,
is represented by a hyperedge with tentacles to all nodes representing outside
attributes of p, and to the node representing {a , j) . To simulate the evaluation
of the semantic rule it represents, such a hyperedge will be rewritten to jung
(t, outs(p)). To do this, we use a set N,.s of nonterminals of G' that consists
of all pairs {t, p) representing the right-hand side t of a semantic rule of a
production p ~ Po. These nonterminals { t, p) have rank ~ outs (p) + 1. Notice that
p must be added to t to determine its set of variables outs(p). In fact, t can
occur in semantic rules of different productions. For example, the term
+({v, 1), {v, 2)) is the right-hand side of a semantic rule of both productions
Pl and P3 of Example 2.2 and outs(p1) @ outs(ps).

The formal definition of the cfhg G' is as follows. Let

N~s = {(t, p)[P~Po, t~ T(F, outs(p)),

rp contains ({c~, j) = t) for some {a, j)~ins(p)}.

We assume for the sake of convenience that At t (X)= [1, @Att(X)] for all X e N o.

Context-free hypergraph grammars 189

Then G' is the cfhg (Z, A, P', So) where N = N o w N~, vo F with

[# Att(a)
ranks(o-) =] # outs(p) + 1

I rankr(a) + 1

if aeNo
if a = < t , p } e N s
if a e F

A = inc(F), and P' is constructed as follows.
Let p = X 0 --+ w o X1 w1 X 2 w2 ..- Xn M?n EPo. Then P' contains the production

p' =(Xo, H) with H=(V, E, nod, lab, ext) where

V= ins (p) vo outs (p),

E = {el, e2, ..., e,} wins(p),

ext =(<1, 0>, <2, 0> < #Att(Xo), 0>),

and for all iE[1, n]:

lab (el) = Xi ,

nod(@=(<l , i), <2, i), ..., < #Att(X~), i>),

and for all <cqj>eins(p) with (<e,j> = t)erp:

lab(<e, j>)= <t, p>,

nod(<~, j)) = (outs (p, 1), outs(p, 2), ..., outs(p, # outs(p)), <~, j>),

where outs (p, j) denotes the j-th element of outs (p).

Furthermore P' contains the productions (<t,p>,jung(t, outs(p))) for all
<t, P>~Ns.

This ends the definition of G'. Note that G' is loop-free, but not necessarily
identification-free (cf. Fig. 13 b).

Now we shall argue that G' generates jungles, i.e., acyclic (i), one-incoming
(ii), hypergraphs of rank 1 (iii) without 0-hyperedges (iv), that TERM (G')= OUT
(G) (v), and that G' generates clean jungles if G is reduced (vi).

Since rankx(So)= 1, G' generates 1-hypergraphs. These hypergraphs do not
have any 0-hyperedges because A contains no symbols of rank 0 (recall that
A = inc(F)). Thus, properties (iii) and (iv) are satisfied.

To every derivation tree of G o corresponds a unique derivation tree of G'.
In fact, for each production p e p o we have constructed one production p' of
P', and every <t, p>eN~ s is the left-hand side of one production of P'.

Because of the non-circularity of G, the value of every attribute <e, x) of
a node x in a derivation subtree g of Go, is uniquely defined in terms of the
inherited attributes of the root of g. This means that if root(g) is labeled by
a production p with lhs(p)=Xo, then this value can be viewed as a term in
T(F, Y), where Y is a sequence obtained by giving the set
{<i, root(g)>lielnh(Xo) } some order. A formal definition of this term will not
be given, because it should be intuitively clear. It will be denoted by
val~(<cq x>, g), in agreement with the case that g is a derivation tree.

Since in a jungle with k variables the first k external nodes represent the
variables, we assume (without loss of generality) that Att(X)=[-1, #Att (X)]

190 J. Engetfriet and L. Heyker

is such that Inh(X)=[1, #Inh(X)] and S y n (X) = [# I n h (X) + 1, #Att(X)] , for
every X �9 N o.

The following claim is used to show properties (i), (ii), (v), and (vi).

Claim. Let d be a derivation subtree of Go of which the root x is labeled p
= Xo ~ Wo X1 wl X2 w2 ... Xn wn. Let ~' be the corresponding derivation subtree
of G', with yield(d')=F. Then F is a jungle of rank #Att(Xo) with #Inh(Xo)
variables such that, for every s�9 term(exte(s), F, Y)=val6(<s, x}, ~),
where Y=(<l ,x}, <2, x} , <#Inh(Xo),X}). Moreover, F is clean if G is
reduced.

This claim can be proved in a straightforward way with induction on the
structure of the derivation subtrees of Go. The formal proofs are omitted, but
the following four informal remarks on the properties (i), (ii), (v), and (vi), respec-
tively, should help to convince the reader of the correctness of the claim.

Remark I. For every semantic rule (<~z,j)=t)~rq of a production qePo that
is used in g, there is a hyperpath in jung(t, outs(q)) from every <fl, i} that occurs
in t to <~,j} (or, more precisely, from ext(k) to ex t (#outs (q)+l) , if <fl, i> is
the k-th element of outs(q)). In particular, if t=<fi, i} then this hyperpath has
length 0, i.e., <e, j) and <fl, i} are identified in jung(t, outs(q)). Moreover, there
is no such path if <fi, i) does not occur in t. Thus, for <c~,j)�9 and
<fl,/}�9 there is a hyperpath in the part of F corresponding to q, from
the node representing <fi, i} to the node representing <a, j} if and only if <c~, j}
depends on <fl, i>. Hence, since all jung(t, outs(q)) are acyctic by definition,
F is acyclic iff DGe is acyclic, where DG~ is the graph obtained from DGe
by contracting all edges that correspond to copy rules (i.e., all dashed lines
in Fig. 11). Since G is non-circular, DGt is acyclic. From this it easily follows
that DGx is acyclic too (because, in DG~, there is only one path from the start
node of an edge that will be contracted to its end node, viz. the one consisting
of the contracted edge).

Remark 2. Every node v in F not representing an attribute has one incoming
hyperedge in F, because it corresponds to an internal node of jung(t, outs(q))
for some t and q, which is one-incoming for #outs(q) by definition. For all
nodes of F that represent attributes, their incoming edges are "caused" by the
semantic rules that define these attributes. Since every attribute of [(except
those in Y) is defined by a unique semantic rule, the node representing the
attribute has one incoming hyperedge. Note however that one node may repre-
sent several attributes. In that case, these attributes are defined by copy rules
and one semantic rule that is either not a copy rule (hence the node has one
incoming hyperedge) or a copy rule of which the right-hand side is an element
of Y Thus, F is one-incoming for # Inh(X0).

Remark 3. Let v~,j be the node in F that represents the attribute (c~,j>�9
outs(p). For a semantic rule (<a, j} = t)�9 v, it should be clear that term(v~ d, F, Y)
equals term(jung(t, outs(p)), outs(p)) in which every <fl,/}�9 is replaced
by term(vpd , F, Y). Since term0nng(t, Y), Y)=t, for every toT(F, Y), this implies
that term(v~.j, F, Y) equals the term t, with the same replacement. This can
be used in an inductive proof of the fact that term(v~,.i, F, Y)=val~(<~, xj}, ~)
for all <~,j} (where xo denotes x and xj the j-th son of x). The induction
is on any linear order of the <c~, x~} obtained from a topological order of DG~.

Context-free hypergraph grammars 191

Remark 4. Lemma 4.1 of [Fill says that if the non-circular AG G is reduced
then, for each production q~Po, every outside attribute of q occurs in at least
one right-hand side of a semantic rule in rq. Hence, if G is reduced then from
each node in D Gx there is a path in D Ge to at least one of the nodes (s, root (g)),
where s~Syn(Xo). As observed in Remark 1, for every (~,j)~ins(q) and
(fl, i) touts(q) of a production qePo, there is a hyperpath (possibly of length
0) in F from the node representing (fl, i) to the node representing (e, j) if
there is an edge in DGq from (fl, i) to (~, j) . Thus, if G is reduced then, for
all v~Vv, there is a hyperpath in F from v to one of the external nodes extF(s),
where s~Syn(Xo), i.e., F is clean.

This ends our remarks on the claim. Now let g be a derivation tree of
Go. Let g' be the corresponding derivation tree of G'. From the claim we can
conclude that yieldG,(g') is a jungle such that term(yields,(/'))
=valG((C~ d, root(d)), g), and that yieldG,(d') is clean if G is reduced. This shows
that G' is term-generating, that TERM(G')= OUT(G), and that G' is clean term-
generating in case G is reduced. []

By firstly applying Proposition 2.1 to the AG G, we can always construct
a clean term-generating cfhg of which the term language equals the output
language of G. Note however that, as shown in [Fill, reduction of an AG
takes exponential time in general, whereas our construction of a cfhg clearly
takes polynomial time.

We end this section with a discussion concerning the translations realized
by AG's.

In the proof of Lemma 4.1, the set of productions of the cfhg G' consists
of two parts: a production p' associated with every production p of the underly-
ing grammar Go of a term-generating AG G over a semantic domain (T(F), F),
and a production for every (t, p)~Nrs. Using the context-freeness of cfhg's (see
[Cou21), it should be clear that an equivalent cfhg G" is obtained by applying
all (t, p)-productions to the right-hand sides of all productions p'. Thus, G"
contains one production p" for every PePo, and no other productions. (By the
way, this G" is in general neither loop-free nor identification-free.) As an example,
for G = Gbin, G" is the cfhg of Fig. 8 (where P'i' is denoted nl). In particular,
as mentioned before, the production of Fig. 13a turns into production n3 of
Fig. 8. For every derivation tree g of Go we have, as in the proof of Lemma 4.1,
that vale ((ca, root (g)), d) = term (yieldG,, (q~ (d))), where rp (d) is obtained from d
by relabeling every p with p".

Thus, for an AG G with an arbitrary semantic domain D, the translation
realized by G is z(G)= {(yield(g), (term(yieldG~;rm(q~(g))))n)[g is a derivation tree
of Go}. (Recall from Sect. 2.2 that every AG G determines a term-generating
AG G~erm). This suggests the following attribute evaluation method for G. Given
a derivation tree / of Go, turn it into a derivation tree qo(d) of G't'er m. Compute
the jungle H=yieldG~arm(~o(g)), in a bottom-up fashion. Compute the value of
H in D, i.e., (term(H)) D. An evaluation method of this type, called the DAG-
evaluator, is described in [Mad] and implemented in the NEATS System (see
also [DerJouLor]). The advantage of the method is that copy rules do not
have to be executed, because the corresponding nodes are already identified
in the right-hand sides of the productions of G't'e~ ~. The disadvantage of the
method is that the jungle H may take a lot of space (which can be improved
by evaluating "sub-jungles" as soon as possible).

192 J. Engelfriet and L. Heyker

We finally note that, of course, any term-generating cfhg G, together with
a semantic domain D=(V,F), can be viewed as a syntax-directed translation
device, realizing the translation {(d, (term(yieldG(t)))D)lg is a derivation tree of
G} (cf. the "pushdown processor" of [AhoUll, Sect. 9.2], that translates strings
into graphs). Above, we have shown that the translation of every A G can be
viewed as a parsing phase followed by such a translation realized by a cfhg
with the same semantic domain. In Sect. 6 we shall define a cfhg-based transla-
tion device that translates strings (rather than trees) into values of the semantic
domain, and show that this device has the same translation power as the AG.

5. Simulation of context-free hypergraph grammars by attribute grammars

In this section we examine the (more surprising) converse of Lemma 4.1. Given
a term-generating cfhg, it is not very hard to construct an underlying context-free
grammar of an AG such that there is a 1-1 correspondence between their deriva-
tion trees. The simulation of the jungles, that are the yields of the derivation
trees of the cfhg, by the attribute description and the semantic rules of an
AG is less straightforward. We shall add attributes to the nonterminals of the
cfg which can be distinguished in inherited and synthesized attributes. This
distinction and the definition of the semantic rules is based on the fact that
jungles are one-incoming.

Example. Consider the clean term-generating cfhg G = (Z, A, P, S) with
Z={S,B,F, +, 1},

rankz (F) = 4, rankz(+) = 3,

rankz (S) = rankz (1) = 1,

rankz(B)=2,

and P = {re 1 , re2, re3, ~c4} as given in Fig. 15.
This cfhg generates clean jungles of the form given in Fig. 16 (see also Fig. 17,

where nodes connected by a dashed line should be identified). Each jungle gener-
ated by G represents the "construct ion" of a Fibonacci number ~o (n), for some
n>4 , where (p(1)=l, ~o(2)=1, and q~(n)=q~(n-1)+qo(n-2) for all n>3 . For
example, the jungle H of Fig. 16 represents the construction of ~o(7)= 13, with

term(H)= + (+ (+ (+ (+ (1 , 1), 1), +(1, 1)), + (+(1 , 1), 1)),
+ (+ (+ (1 , 1), 1), +(1, 1))).

Note that, for the purpose of illustration, we do not consider the most natural
cfhg to generate these jungles.

Now we shall define a term-generating AG G' with OUT(G')---TERM(G).

(1) The underlying grammar G o of G' is (No, To, Po, So) with No=Z--A
={S, B, F}, To=P, So=S, and Po={pl=S~rclFB, p2=F~Tz2F, p3=F--+Tz3,
P4 = B--. ~z4}. Notice that there is a 1-1 correspondence between the derivation
trees of Go and those of G.
(2) The semantic domain of G' is (T(dec(A)), dec(A)).
(3) The attributes of a nonterminal XeNo are 1, 2, ..., ranks(X), one for each
tentacle of a hyperedge labeled X. The initial nonterminal has no inherited

S ::--

2 1

i
193

2

1 2 3 4

3 2

Context-free hypergraph grammars

11 =
I

1"1 = F ::=
3

1 2 3 4

1 2

//4 = B ::= i �9

I l l
Fig. 15

attributes and the designated attribute ed of G' is 1. B has inherited attribute
2, and the inherited attributes of F are 2, 3, and 4. Notice that the choice
of the attributes is quite obvious, but not their division in inherited and synthe-
sized; this will be explained later.
(4) The semantic rules are as follows.

For p l=S~rhFB, rp, contains the rules (1, 0) = (1 , 1), (2, 1)=1 ,
(3, 1) = +((1, 2), 1), (4, 1) = (1 , 2),
and (2, 2) = (1 , 1).

For p 2 = F ~ 2 F, rp2 contains the rules (1, 0) = (1 , 1), (2, 1) = (2 , 0),
(3, 1) = +((3, 0), (4, 0)), and (4, 1) = (3 , 0).

For P3 = F--, ~3, rp3 contains the rule (1, 0) = + ((3, 0), (4, 0)).
For P4 = B ~ 7:4, rp, contains the rule (1, 0) = 1.

194 J. Engelfriet and L. Heyker

Fig. 16

The way in which the derivation tree of G, that yields the jungle H of Fig. 16,
is drawn in Fig. 17, together with its yield H, emphasizes the correspondence
between the AG G' and the cfhg G (dashed lines correspond to copy rules of
G').

For every production Pi of G', the attribute (e, j) (with j > 1) represents
nod(nedg(rhs(~i),j), e), and the attribute (e, 0) represents ext(e) of rhs(rcl).
Notice that one node in rhs(rci) can be represented by more than one attribute
of Pi- For example, for Pl, (1, 0) as well as (1, 1) and (2, 2) represent ext(1)
of rhs(Tzl). We defined the semantic rules of G' in such a way that the value
of an attribute (~, x) of a derivation tree d' of Go equals the term associated
with the node that is represented by (c~, x) in the yield of the corresponding
derivation tree d of the cfhgG. In particular, val~,((c~d, root(g')) ,g ')
=term(yieldG(g)). With this intuition it is easy to "read off" these semantic
rules from the right-hand sides of the productions of G (resulting in Fig. 17).
So, a dashed line between two attributes (corresponding to a copy rule of G')
means that they represent the same node in the right-hand side of a production
of G.

Figure 17 suggests that it would be more natural to define an AG G' not
in Bochmann normal form (consider nod~(e, 2) and nod~(e, 3) of re1, where

Context-free hypergraph grammars 195

2 1 I

J
/

/
/

/

/

/

/

I

F i g . 17

H = rhs(rq) and e is the nonterminal hyperedge with labu(e) -- F). Nevertheless,
by the definition of the semantic rules of G', G' indeed is in Bochmann normal
form. This is a consequence of the way we "read off" semantic rules from
the cfhg productions, which depends on the fact that jungles are one-incoming
(we shall return to this later). []

As opposed to Sect. 4, a cfhg G and an AG G' that generate the same term
language, can have different "sharings", because an attribute grammar can share
(values of) attributes only, whereas a cfhg can share the terms represented by
any node in the right-hand side of a production, even by nodes that are incident
with terminal hyperedges only. Comparatively, in Sect. 4, attributes are repre-
sented by external nodes and nodes incident with nonterminal hyperedges. In
the above example, the term 1 in the right-hand sides of the semantic rules
(2, 1} = 1 and (3, 1) = +((1 , 2}, 1) of Pl is shared in rhs(rcl). Similarly, G and
G' may not have the same "cleanness". In fact, even a term-generating A G

196 J. Engelfriet and L. Heyker

simulating a clean term-generating cfhg does not have to be "clean", where
clean for an AG means reduced. For instance, in the above example, the attri-
butes 2 of F and 2 of B are not needed for the computation of the value
of the attribute 1 of S.

Despite these differences T E R M (C F H G) _ OUT(AG, TERMS).

Lemma 5.1 For every term-generating cfhg G there exists a term-generating
AG G' such that O U T (G) = T E R M (G) .

Proof Let G =(2, A, P, S) be a reduced term-generating cfhg. We may assume
that G is identification-free by Proposition 2.3 (rankx(S)= 1). Consequently, we
may assume that G is identification-free and loop-free by Proposition 2.4.

It is easy to choose the underlying grammar Go of the non-circular A G G'
in such a way that there is a 1-1 correspondence between the derivation trees
of G o and those of G. We let the nonterminals of G o be those of G. The terminals
of Go are the productions of G, and if :~ =(X, H) is a production of G then
X---,rcX1X2...X,, is a production of Go, where m=4~nedg(H) and Xj
=lab~/(nedg(H,j)) for all j~[1, m]. We add zc to the right-hand sides of the
productions of Go to get a 1-1 correspondence between the productions of
G o and those of G.

It is obvious that since T E R M (G) _ T(dec(A)), G' must have semantic domain
(T(dec(A)), dec(A)).

One could imagine that a terminal r-hyperedge e in a jungle H "passes"
term(nodF/(e, i), H, ()), term(nodH(e, 2), H, ()) and term(nodu(e, r - 1),
H, ()) to nod/~(e, r), which "uses" these values (together with labn(e)) to construct
term(nodn(e, r), H, ()). The "passing" of values in an AG is determined by the
semantic rules. For that reason we let attributes correspond to nodes in a jungle
and semantic rules to "pieces of jungle" consisting of terminal hyperedges.

We give each nonterminal X e X - - A the attributes 1, 2, ..., rankx(X), one
for each tentacle of a hyperedge labeled X. Now we have to determine which
are its inherited and which are its synthesized attributes.

Consider a derivation subtree d' of a derivation tree d of G, that is associated
with the derivation X=*F~HGR(A) . Since G is identification-free, loop-free,
and reduced, F is (isomorphic with) an identification-free subgraph of the hyper-
graph yield(d) in L(G). Since G is term-generating, yield(/) is a jungle. Hence,
it can easily be seen that F is a jungle with k variables, for some ke[0, ranks(X)],
provided we permute the sequence of external nodes of F in such a way that
the first k external nodes have no incoming hyperedge in F and the remaining
ones have an incoming hyperedge in F (as already observed in Sect. 3). It is
natural to view these first k external nodes as inherited attributes of X, because
the terms associated with their corresponding nodes in yield(d) are initially
determined by the context of d', as in AG's. The remaining external nodes
have one incoming hyperedge in F, i.e., the associated terms of their correspond-
ing nodes in yield(d) are initially determined by d'. Thus it is natural to view
them as synthesized attributes of X.

Hence, we define the set of inherited attributes of a nonterminal X as
Inh(X)={i~[1 , rank~(X)]lextv(i) has no incoming hyperedge in F}, where
F ~ HGR(A) is such that X o * F in G (and thus Syn (X)
={i~[-1, rankz(X)]tir This set is (independently of the choice of F)
uniquely defined for every nonterminal X. In fact, consider derivation trees
/ and / ' of G, where d' is obtained from / by replacing a derivation subtree

Context-free hypergraph grammars 197

that corresponds to X o * F by a derivation subtree that corresponds to X o * F'.
By the context-freeness of cfhg's, there exists a hypergraph KeHGR(X) with
exactly one nonterminal hyperedge e (labeled X), such that y i e l d (g) = K [e / F]
and yield (g')= K [e/F']. Note that K is loop-free, and F, F' are identification-free.
Since G is term-generating, every node in yield(d) and yield(g) has one incoming
hyperedge. Thus, an external node exte(i) has no incoming hyperedge in F iff
extF, (i) has no incoming hyperedge in F' (iff nodK(e, i) has an incoming hyperedge
in K). As an example, the reader may now see from Fig. 17 that Inh(F) = {2, 3, 4}
and Inh(B)={2}. As another example, for the nonterminal A in Fig. 6,
Inh(A) =0, i.e., A has two synthesized attributes.

For technical reasons, we would indeed like to assume that the yield of
every derivation subtree of G is a jungle with variables. Notice that the tentacles
of a nonterminal hyperedge e labeled X in the right-hand side/- /of a production
(X, H) of G can easily be permuted such that nodi~(e, 1), nodn(e, 2)
nodn(e, =~Inh(X)) are represented by the inherited attributes and
nodn(e, ~ I n h (X) + l) , ..., nodu(e, rank(e)) are represented by the synthesized
attributes of X. The external nodes of the right-hand sides of the productions
that can be applied to e (i.e., productions n with lhs(rc)=X) can, of course,
be permuted in the same way. So, from now on we assume that Inh(X)=
[1, ~Inh(X) l and Syn(X)=[#e Inh(X)+ l , ranks(X)], for every X e X - A . For
example, if the tentacles of the nonterminal hyperedge labeled F in rhs(rcl) of
Fig. 15 would be permuted in such a way, then Inh(F) would be {1, 2, 3} instead
of {2, 3, 4}.

To define the semantic rules of the productions in Go, we use a kind of
unfolding operation. This operation is based on the fact that jungles are one-
incoming.

Consider a derivation tree g of G. Let x be a node in I with label 7r = (X, H).
Let lab H (nedg (H, j))= Xj for all j e [1, m], where m = ~ nedg (H). Each node v ~ V n
has one incoming hyperedge in yield(d). This incoming hyperedge e is "related
to" H according to one of the following three mutually exclusive, exhaustive
cases.

(i) e corresponds to a (terminal) hyperedge of H.
(ii) v = nodu(nedg(H, j), i) and e corresponds to an incoming hyperedge of ext(i)
in yield(l~), where l j is the derivation subtree of g such that root(l~) is the
j-th son of x, for some je[-1, m]. Note that th is j and i are unique.
(iii) For e, neither case (i) nor case (ii) holds. In this case v=extH(i) for some
unique i.

Notice that cases (ii) and (iii) correspond to the facts that i~Syn(Xj) and
i~Inh(X), respectively. Thus, incoming(v)= 1, for all w Vu, where incoming(v)
is defined as ~ { e ~ t e d g (H) l n o d n (e , r a n k (e)) = v } + ~ {(j, i) l l < j <= m, l<-_i
< rank(Xj), i t Syn(Xj), nodu(nedg(H, j), i) = v} + 4~ {islnh(X) lextn(i) = v}. This
will be used in the definition of the unfolding operation that determines the
set of semantic rules of the production p = X --+ rc X~ X 2 ... Xm.

The formal definition of the AG G' is now as follows.

(1) The underlying cfg Go is (No, To, Po, So) where N o = X-- A, T o = P, S o = S, and

Po= { X ~ n X1 X2 ... X, , I 3 H : n = (X , H) e R m = ~ nedg(H),
X~- labn (nedg (H, j)) for all j e [1, rn] }.

(2) The semantic domain is (T(dec(A)), dec(A)).

198 J. Engelfriet and L. Heyker

(3) For every X e N o, Inh(X)= {i~[1, ranks(X)] l exte(i) has no incoming hyper-
edge in F}, where F~HGR(A) is such that X=~*F in G (i.e.,
Inh(X)= [1, #eInh(X)], because we assume that every derivation subtree of G
yields a jungle with variables), and Syn(X)= [-~ Inh(X)+ 1, rankx(X)]. The des-
ignated attribute ~d is 1.
(4) For every p = X ~ ~ X 1 X 2 ... X m E P o with rc=(X, H), r v contains the semant-
ic rules <s, 0) = rule (extu (s), H) for all seSyn(X), and <i,j>
=rule(nodu(nedg(H,j), i), H) for all ieInh(Xj) and js[-1, m], where rule(v, H)
is recursively defined for v~VH as follows (it is the unfolding operation meant
above).

If v = extR(i) for some ieInh(X), then rule(v, H)= (i, 0).
If v=nod/~(e, s) for some e = nedg(H, j) (l < j < m) and s~Syn(lab~(e)), then
rule(v, I4) = (s, j) .
If v = nodn (e, 1) for some 1-hyperedge e E tedg (H), then rule (v, H) = lab~ (e).
If v=nodn(e, r) for some r-hyperedge e~tedg(H) with r > 2, then

rule (v, H) = labn (e) (rule (nod H (e, 1), H),

rule(nodH(e, 2), H),

rule(nodu(e, r - 1), H)).

Notice that this definition of "rule" corresponds to the way we "read off"
the semantic rules in the example at the beginning of this section.

The terminal part of H is a subgraph of a generated jungle, because G
is identification-free, loop-free, and reduced. Thus, the terminal part of H is
acyclic. Since besides, incoming(v)= 1 for all w V ~ and H is finite, rule(v, H)
is determined uniquely for each v e V m Furthermore, since rule(v,H)
E T(dec(A), outs(p)), G' is in Bochmann normal form (as required).

To show the correctness of the above construction, we shall discuss that
G' is a non-circular AG and that OUT(G')=TERM(G).

Consider the dependency graph of a derivation tree d' of Go. Every node
<~, x) of DG c represents a node v~,x of yields(d), where d is the derivation
tree of G that corresponds to g'. Besides, according to the definition of "rule",
an edge from (fl, y) to (c~, x) in DGe, represents the existence of a hyperpath
(possibly of length 0) from v~,y to v~.x in yields(g) (in fact, in the terminal part
of the right-hand side of the cfhg production that corresponds to the production
of G o of which a semantic rule "caused" the edge in DGI,). Thus, a cycle in
DG~, either represents a cycle in yieldG({) or it represents just one node in
yield~(~) (i.e., all nodes of the cycle represent the same node in yieldG(r The
first case cannot occur, because jungles are acyclic. In the latter case, the whole
cycle in DG~, must "consist of" copy rules. But, since G is identification-free,
there can be no semantic rule of the form (s, 0) = (i, 0) in rp, for any production
p of Go, where s~Syn(lhs(p)) and i~Inh(lhs(p)). However, such a copy rule must
always be present in such a cycle. Hence, G' is a non-circular AG.

To show that OUT(G')=TERM(G), we use the following claim, where, as
in the proof of Lemma 4.1, the value of an attribute ~ of a node x in a derivation
subtree d of Go is denoted as valG,(<~, x), ~).

Context-free hypergraph grammars 199

Claim. Let g be a derivation subtree of G of which the root is labeled n = (X, H).
Let g' be the corresponding derivation subtree of Go with root x'. For every
seSyn(X),

vala, ((s, x'), d')= term (ext (s), yieldo ({), Y),

where Y=((1, x'), (2, x'), ..., (@Inh(X), x')).

As in Sect. 4, we omit the formal proof of this claim. It can be proved
with induction on the structure of d (or, equivalently, d'). Let us just make
some informal remarks on the proof.

Since Y is a sequence of @Inh(X) variables and yieldG(3)=F is a jungle
with @Inh(X) variables, term(v, F, Y)~ T(dec(A), Y) for each v~ Ve.

Root(g) has label p = X ~ n X 1 X 2. . .Xm, where m=4#nedg(H) and X~
=labu(nedg(H,j)), for all j e l l , m]. The value of an attribute (~,j)eins(p) is
determined with the help of the operation "rule". Thus, for j = 0, valG, ((e, x'), d')
equals rule(extn(c~), H), in which every outside attribute (fl, i) is replaced by
vala,((fl, x'), g')=(fl, x'), if i=0, and by val~,((fl, x'i), d'), where x'i denotes the
i-th son of x', if i>0. Similarly, for j>0 , vala,((e, x'j), g'), where x) denotes
thej-th son of x', equals rule(nodH(nedg(H,j), e), H), with the same replacement.
Using the induction hypothesis (for the subtrees of g' with roots x'i), it can
be shown that, for every v~Vn, rule(v, H), in which the outside attributes are
replaced by the values they have in g' as indicated above, equals term(w, F, Y),
where w is the node corresponding to v in F, because "rule" is the "term-
operation" for right-hand sides of productions of G. Thus, valc,((c~, x'), d')
equals term(extF(c0, F, Y).

This ends our discussion of the proof of the claim. Now, let d be a derivation
tree of G. Let g' be the corresponding derivation tree of Go. Then, according
to the claim,

vala,((ee, root ({')), g')= term(ext(1), yieldG(g), ()) = term(yieldo(g)).

Thus, because of the 1-1 correspondence between the derivation trees of G
and Go, OUT(G')=TERM(G). Note that the construction in this proof takes
exponential time in general, due to the unfolding in "rule". []

From this result (Lemma 5.1) and Lemma 4.1 we conclude that cfhg's and
AG's have the same term-generating power.

Theorem 5.2 TERM(CFHG) = OUT(AG, TERMS).

As observed in the Introduction, this positions TERM(CFHG) in a family
of known classes of term (or tree) languages.

Furthermore, Lemma 5.1 and Lemma 4.1 are now used to prove the "gar-
bage theorem" that provides an alternative way of defining TERM(CFHG)
(as observed in Sect. 3).

Theorem 5.3. For every term-generating cfhg G there exists a clean term-generat-
ing cfhg G' such that TERM (G')= TERM (G).

Proof Let G be a term-generating cfhg. Then by Lemma 5.1 there exists a term-
generating AG G1 such that OUT(G1) = TERM(G). By Proposition 2.1 there
exists a reduced AG Gz over the same semantic domain as G 1 such that

200 J. Engelfriet and L. Heyker

OUT(G2)=OUT(G1). Hence G2 is term-generating. Thus, by Lemma 4.1 there
exists a clean term-generating cfhgG' such that TERM(G')=OUT(G2)
=OUT(GO=TERM(G) . []

6. The translation power of context-free hypergraph grammars

Recall from the end of Sect. 4 that a term-generating cfhg G, together with a
semantic domain D, can be viewed as a syntax-directed translation device realiz-
ing the translation {(d, (term(yieldG(/)))o)ld is a derivation tree of G}. To com-
pare the translation power of cfhg's with that of AG's, we introduce "cfhg-based"
syntax-directed translation schemes, that translate strings (rather than trees)
to values of the semantic domain. They are similar to the syntax-directed transla-
tion schemes of [AhoUll] and the string-to-graph translators (the "pair gram-
mars") of [-Pra].

Definition. A cfhg-based syntax-directed translation scheme (abbreviated cts) is
a 4-tuple T=(D, GL, GR, go), where D=(V,F) is a semantic domain, GL
=(N, T, P~L, S) is a cfg, the left grammar, GR = (r , inc(F), P~, S) is a term-gener-
ating cfhg, the right grammar, with S--inc(F)=N, and go is a mapping from
P~L to PeR such that if p=Xo~woXlwlX2w2 . . .X~ ,w , ,~PGr and go(p)
=(X, H)ePGR, then Xo=X, m= #nedg(H), and Xi=labH(nedg(H,j)), for all

j~[1, mJ. []

Notice that this kind of syntax-directed translation device is "simple" in
the sense of I-AhoUll], i.e., nonterminals of p cannot be deleted or duplicated
in go(p).

For a production P~PGL, its corresponding production in PGR is ~0(p). Similar-
ly, for a derivation tree ~ of GL, its corresponding derivation tree of GR, denoted
go(O, is obtained by relabeling the nodes of g with their corresponding produc-
tions. Thus, go is extended to derivation trees.

T realizes a translation from strings in L(GL) to values in D. For wr
a derivation tree g with yieldGL(O=w is considered and the value (in D) of
the term associated with the jungle that is the yield of the corresponding deriva-
tion tree go(~) of GR, is assigned to w.

Definition. Let T = (D, GL, GR, go) be a ets. The translation realized by T, denoted
~(T), is the relation {(yieldGL(~'), (term(yieldGR(go(~))))D)[~ is a derivation tree
of GL}. []

The set of all translations realized by cts's with semantic domain D is denoted
z(CTS, D).

Dropping the useless nonterminals (and productions) of both the right and
the left grammar of a c t s does not influence the realized translation, because
they do not occur in derivation trees. Thus, we may assume both grammars
to be reduced.

Example. Consider the cts T=(D, GL, GR, go), where D=(V, F) is the semantic
domain of the AG Gbin of Example 2.2, GL= (No, To, Po, So) is the underlying
grammar Go of Gbi n, GR = (No • inc (F), inc(F), P, So) is the term-generating cfhg
of which the productions are given in Fig. 8, and go: Po ~ P is defined as go (Pl) = ~i,
1 N i--< 6, as in the discussion at the end of Sect. 4, where GR is called G".

Context-free hypergraph grammars 201

The translation realized by T is z (1") = {(yield~o (g), (term (yielda,, ((p (g))))D)[g
is a derivation tree of Go}. Thus, to each binary number in L(GL) its rational
value (in V) is assigned by T, just like the translation realized by the AG Gbi n
(see also Sect. 4). Hence z(T)=z(Gbin). []

We shall prove that for every cts there is an AG that realizes the same
translation, and vice versa. More precisely, we show that z(CTS, D)=~(AG, D)
for every semantic domain D (Theorem 6.5). First we show that z(AG, D)_~
z(CTS, D) for every semantic domain D.

Lemma 6.1 For every AG G over a semantic domain D, there exists a ctsT
with semantic domain D such that z(T)=~(G). Moreover, if G is reduced, then
the right grammar of T is clean term-generating.

Proof. Let G be an AG over a semantic domain D with underlying grammar
Go. Recall from Sect. 2.2 that, to compute the value of the designated attribute
~e of the root of a derivation tree g of Go, one may first evaluate the attributes
as terms in T(F) (by Gt~rm), and then evaluate the term-value of (~d, root(g))
in D. This resembles the way in which the value of a jungle /-/ generated by
the right grammar of acts with semantic domain D is computed; first determine
the term associated with H, and then evaluate this term in D.

By Lemma4.1 there exists a term-generating cfhgG'term such that
TERM(G'term)=OUT(Gterm) (and such that G~rm is clean term-generating if G
is reduced). In the discussion at the end of Sect. 4, we showed that the translation

(G) realized by the AG G equals {(yield(g), (term (yieldG~rm((P (g))))D)[g is a deri-
vation tree of Go}, where a'l'er m is a term-generating cfhg that is equivalent
t o G'term (h e n c e G't'er m is clean term-generating if G is reduced), and (p is a mapping
from the productions of G o to those of G't'~r m. Since q) preserves nonterminals,
T=(D, Go, G't~erm, ~o) satisfies the definition ofcts. Thus, z(T)=z(G). []

To show the converse of Lemma 6.1, we need two auxiliary lemma's concern-
ing the translations realized by cts's. These lemma's allow the generalization
of results for cfhg's to similar results for cts's.

The first lemma says that, maintaining the realized translation, we may
change the right-hand sides of the productions of the right grammar of a c t s
arbitrarily, as long as the sequences of the labels of the nonterminal hyperedges
in these right-hand sides are preserved. Thus, even nodes and (terminal) hyper-
edges may be added to or deleted from the right-hand sides of the productions.
Additionally, however, the terms associated with the yields of the derivation
trees should be preserved.

Lemma 6.2 Let T=(D, GL, GR, (p) be a cts with GR=(Z , A, PeR, S). Let GR'
=(Z, A, P~R, S) be a term-generating cfhg. I f there exists a mapping Z: P~R ~ P~R
such that

(1) for every production ~=(X ,H)ePaR , lhs(z(~z))=X, #nedg(rhs()(~)))=
nedg (H) = m and lab~h~(x~))(nedg (rhs (X (~)), j)) = labH (nedg (H,j)) for allj ~ [1, m],
and
(2) for every derivation tree g of GR, term(yield6R,(;((g)))=term(yieldGR(g)) ,
where)s is extended to derivation trees in the obvious way,

then there exists ac t s T' with semantic domain D and right grammar GR' such
that z (T') = z (T).

202 J. Engetfriet and L. Heyker

Proof Let G L = (Z - A , T, PGL, S). Since X is a mapping from PGR to P~R that
preserves the sequences of nonterminal labels, i.e.,)~ has property (1), and since
q0 is a mapping from PGL to PG~ that also preserves these sequences,
T ' = (D, GL, GR',)~o (p) is a cts. Furthermore, r(T')
= {(yieldGL(g), (term (yieldGR. (Z(~0 (Z')))))v)] ~' is a derivation tree of GL}. Thus, be-
cause of (2), z(T ')= {(yield~L(g), (term(yieldGR(Cp(d))))D)[g is a derivation tree of
GL} =T(T). []

The second lemma states that we can add information to the nonterminal
labels of the right grammar of a c t s without affecting the translation it realizes
(with an appropriate change of the left grammar).

Lemma 6.3 Let T=(D, GL, GR, qo) be ac t s with GR=(X, A, P~R, S). Let GR'
=(Z,A,P~R,S') be a term-generating cfhg. I f there exists a mapping ~:
X' - A ~ Z - A such that

(I) for every ~'=(Y, K)eP~R, there exists a production ~ePag with ~(Tr')=~,
i.e., lhs(~z)= ~9(Y) and rhs(~) =(Vr, EK, nodK, lab, extK) where

, : , ~labr(e) for all eetedg(K)
aDte~=],O(labK(e)) for all e~nedg(K), and

(2) for every derivation tree d of GR, there exists a derivation tree d' of GR'
such that O(g')=g, where ~ is extended to (productions and) derivation trees
in the obvious way,

then there exists ac t s T' with semantic domain D and right grammar GR' such
that z(T') = z(T).

Proof Let GL=(Z--A, T, P~L, S). We shall construct a c t s T '=(D, GE, GR', rl)
such that z(T')=z(T). For that purpose, L(GE) must be L(GL). Thus, GE must
have the same terminals as GL. Besides, GE must have the same nonterminals
and initial nonterminal as GR'. Thus, GE = (Z ' - A , T, P~r, S') for some P~L.

The idea for the construction of P~L is obvious. If a production rc of GR
is turned into a production 7c' of GR' by a relabeling of the nonterminals, then
every production p of GL with (p(p)=~ is turned into a production p' of GE
by the same relabeling. Hence, we can extend ~ also to a mapping from the
productions (and derivation trees) of GE to those of GL. This can be illustrated
by

PePGL ~ ' ~CPGR.

Formally, P~L and q are constructed as follows.
Let ~ '= (X ' , H ') be a production of GR', with 4Unedg(H')=m, and X)

=labw(nedg(H' , j)) for all j ~ [t , m]. Let p=Xo---*woXt wl X2w2 ... X~W,,ePaL
be a production in ~0-1(O(rc')). Thus, X0=lhs(O(rc '))=O(X ') and X:
= labrhs(q,(~,))(nedg (rhs (~ (~')), j)) = ~ (X)).

Context-free hypergraph grammars 203

Then P~L contains the production p ' = X ' - - * WoJ (' l w l X ' z w 2 . . . X " w m and
(p ') = ~,.

It is easy to see that t/ is a mapping from P~L to P~R such that, for every
p'EP~L, lhs(p')=lhs(q(p')) and the sequences of nonterminals of rhs(p') and
rhs (t/(p')) are the same. Hence, T' indeed is acts.

The translation realized by T' is ~ (T')= {(yieldEL, (g), (term (yieldGR, (q (g))))o)lg
is a derivation tree of GE}. Since yieldEL,(g)=yieldEL(O(g)), for every deriva-
tion tree g of GE, and yieldER,(g)=yieldER(O(g)), for every derivation tree g
of GR', z (T') = {(yieldGL (~ (g)), (term(yieldER (~ (t/ (d))))),) I d is a derivation tree of
GE}. Now, since ~ and GE are constructed such that 0(~/(g))=cp(O(g)), for
every derivation tree d of GE, the latter relation equals
{(yieldEL(0 (g)), (term(yieldER ((p (~ (d)))))D)[d is a derivation tree of GE}. From
(2) it follows that, for every derivation tree d of GL, there exists a derivation
tree ~' of GR' such that d~q~-i(~,(g,)). Hence, by the construction of P~L, for
every derivation tree g of GL there exists a derivation tree g" of GE such that
r = ~ (d"). Thus, z (T') = {(yieldGL ({), (term (yieldaR (~o (g))))D) [g is a derivation tree
of GL}=z(T). []

Often, in applications of Lemma 6.3, the nonterminal alphabet of GR' is
an extension of the nonterminal alphabet of GR, i.e., S '--A is of the form
(s A) x I, for some set I, and 0 is the projection on S - A.

Example. For every cts T=(D, GL, GR, (p), where GR is identification-free, there
exists a c t s T' with semantic domain D such that (i) the right grammar of
T' is identification-free and loop-free, and (ii) -c (T')= ~ (T).

This is based on the construction in the proof of Proposition 2.4 [Hab,
Theorem 1.4.6] applied to GR. In fact, that construction may be viewed as con-
sisting of two consecutive transformations, viz. a relabeling of the nonterminal
hyperedges such that the labels contain information about which tentacles point
to the same node (in a sentential form), and the joining of the tentacles and
identification of the external nodes in the right-hand sides of the productions
in a unique way, according to the just mentioned relabeling. In fact, these two
transformations are combined into one (with three steps) in the proof in [Hab].
Lemma's 6.3 and 6.2, respectively, can be used to show the above for cts's.

To be more precise, let GR be the identification-free term-generating
cfhg (Z, A, R S) and consider the cfhgGRl=(X ~, A, P1, Sa) obtained from GR
by relabeling the nonterminals in the following way. The nonterminal alphabet
XN of GR~ is {(X, R E L) [X e S - A , REL is an equivalence relation on
[1, ranks(X)]}. The total alphabet $1 is S N u A, where

= ~rankx(o-) if o-cA
rank(a)x~ {ranks(X) if cr= (X, R E L) e S u , for some REL.

The initial nonterminal $1 is (S, {(1, 1)}). If (X, H) is a production of P and
REL is an equivalence relation on [1, rankx(X)], then P1 contains the production
((X, REL), K), where K=(VR, Eft, nodn, lab, extn) with lab(e)=labH(e) for all
eetedg(H), and, for all eenedg(H), lab(e) is (labn(e), REL(e)), where REL(e)
is defined as follows. By _H we denote the hypergraph in which the external
nodes of H are identified according to REL, i.e.,

_H = H/{(extn (i), ext~t (j))[(i, j) ~ REL}.

204 J. Engelfriet and L. Heyker

Then, for all e~nedg(H),

REL (e) = {(i, j) E [1, rank (e)] 2 I nod~ (e, i) = nodH (e, j)}.

Note that GRt is still identification-free. It is straightforward to show that
the mapping 0: SN--~N-A defined as 0((X, R E L)) = X , for all (X, R E L) e S N,
satisfies the conditions (1) and (2) of Lemma 6.3 (in (2), d' can be obtained
from d by a deterministic top-down relabeling of the nonterminals). From these
conditions it follows that L(GRI)=L(GR), and thus GR 1 is term-generating.
Hence, by Lemma 6.3, there exists a cts T1 with semantic domain D and right
grammar GR1 such that z(T1)= z(T).

To join the tentacles and to identify the external nodes in the right-hand
sides of the productions of G 1 in the way described in [Hab], we define for
every nonterminal a = (X, R E L) ~ S N the sequence EQ(a) obtained by ordering
the set {jE [1, rankz, (a)] IV i~ [-1, j - 1] : (i, j)~ REL} increasingly.

Now consider the cfhg GR'=(S', A, P', St), where S ' = S 1 (= S N u A) with

, , , frankz,(O-) if aEA
ranKz't~r) = ~ ~ EQ(o-) if Z~ZN,

and P' is constructed from P1 as follows.
Let rq =((X, REL), K)~P~. By _K we denote the hypergraph in which the

external nodes of K are identified according to REL, i.e., K
= K/{(extK (i), extK (j))l(i, j)~ REL}.

Then P' contains the production ~z'=((X, REL) ,M) , where M
=(V~, EK, nod, lab_K, ext) with for all e~EK andjE[1, rankz,(labK(e))] :

. . . . (nodK(e,j) if e~tedg(_K)
n~176 i) if e~nedg(_K),

where i is the j-th element of EQ(lab_K(e)), and for all je [1 , rankz,((X, REL})]:
ext (j)= extK (i), where i is the j-th element of EQ ((X, REL}).

Note that GR' is identification-free and loop-free. It is not difficult to show
that the mapping Z: P~ ~ P ' defined as Z(~l)=~z' (with ~z 1 and 7~' as described
above) satisfies the conditions (1) and (2) of Lemma 6.2. From these conditions
(and the fact that z(P1)=P') it follows that L(GR')=L(GRx), and hence GR'
is term-generating. Thus, by Lemma 6.2, there exists a c t s T' with semantic
domain D and right grammar GR' such that z(T')= z(T1)= z(T).

This shows our statement. Similarly, we may assume that the right grammar
of a cts is identification-free (by a similar adaptation of the construction in
the proof of Lemma 3.2 of [EngHeyl]). []

Thus, by the above example, we may assume that the right (term-generating)
grammar of acts is identification-free and loop-free, without changing its seman-
tic domain.

It may even be assumed for a cts that its right grammar is clean term-
generating. This can easily be proved with the help of Lemma 6.4 below, Proposi-
tion 2.1, and Lemma 6.1, in that order, similar to the "garbage theorem" in
Sect. 5. Consequently, we can give an alternative definition of the class of transla-
tions realized by cts's with semantic domain D, namely z(CTS, D)={z(T)]T

Context-free hypergraph grammars 205

is a c t s with semantic domain D, of which the right grammar is clean term-
generating}.

As in Sect. 3 we can give two other possible definitions of r(CTS, D) by
allowing all cfhg's generating 17hypergraphs.as right grammar of a cts. We
define the translation of such a cts T=(D, GL, GR, ~o) as ~(T)
={(yield~L(g),(term(yieldGR(Cp(g))))D)lg is a derivation tree of GL and
yieldGR((p(g)) is a (clean)jungle}.

Obviously, we cannot translate the proof of Theorem 3.1 (2) directly to cts's.
Nevertheless, we know from [Cou4] how to construct, for a given cfhg G generat-
ing m-hypergraphs over a ranked alphabet A and an MSOL formula 0 in 5r
a cfhg G' such that L(G')={H~L(G)IH~O}. In fact, if GR=(S, A, P~R, S) is a
cfhg generating 1-hypergraphs and 0 expresses that a 1-hypergraph over A is
a (clean)jungle, then a (clean) term-generating cfhg GR' can be constructed
such that there exists a mapping 0 from the nonterminals of GR' to N - A
that satisfies demand (1) of Lemma 6.3 and the following demand (2'): for every
derivation tree g of GR, yield(g) is a (clean) jungle if and only if there exists
a derivation tree g' of GR' with 0(g ')=g. Thus, with the construction in the
proof of Lemma 6.3 an "ord inary" cts T' (i.e., with a (clean) term-generating
right grammar, namely GR') is obtained that realizes the same translation as
T, because a derivation tree of GR that does not yield a (clean) jungle does
not influence ~(T). Hence, ~(T)= z(T')cz(CTS, D).

We now return to the main aim of this section, the comparison of the transla-
tion power of cts's with that of AG's, and we show that z(CTS, D)~_z(AG, D),
for every semantic domain D.

Lemma 6.4 For every cts T with semantic domain D there exists an A G G over
D such that z(G) = z(T).

Proof Let T=(D, GL, GR, ~) be a c t s with semantic domain D=(V,F). The
proof is a variation of the one of Lemma 5.1 with G corresponding to GR.

In that proof, we assumed for technical reasons that every derivation subtree
of the cfhg yields a jungle with variables. We mentioned that for every identifica-
tion-free, loop-free, and reduced term-generating cfhg G, we may define a (unique)
permutation of the external nodes and the tentacles of the nonterminal hyper-
edges of the right-hand sides of the productions of G such that every permuted
derivation subtree of G yields a jungle with variables. As argued before, we
may assume that GR is identification-free, loop-free, and reduced. Hence, we
may also assume that every derivation subtree of GR yields a jungle with vari-
ables, because such a permutation can obviously be realized by a transformation
of the type described in Lemma 6.2.

Therefore, we can construct for GR (that has terminal alphabet inc(F) by
the definition of cts) a term-generating AG G' over (T(F), F) such that OUT(G')
=TERM(GR) , analogous to the construction of the AG G' in the proof of
Lemma 5.1.

Recall that in that construction the "~" in the right-hand sides of the produc-
tions of the underlying grammar Go was added to obtain a 1-1 correspondence
between the productions of the cfhg and those of Go. In this case, we may
take GL instead of Go as underlying grammar of G', with, for every production
p=Xo--'woX1 wl X2w2 ... X,,wm of GL, rp=rp,, where p' is the production
Xo~q~(p)X1X 2 . . .X, , of Go. Since we may assume (p to be surjective, still
OUT(G')=TERM(GR). But as in the proof of Lemma 5.1 it can be shown

206 J. Engelfriet and L. Heyker

not only that OUT(G')=TERM(GR), but even that vala.(~d, root(d)) ,d)
=term(yieldGR(cp(g))) for every derivation tree g of GL. This shows that by
changing the semantic domain (T(F), F) of G' into (V, F), G' is an AG over
D such that ~(G')=~(T). []

Thus by Lemma's 6.1 and 6.4 we may extend our main result of Sect. 5,
Theorem 5.2, as follows.

Theorem 6.5 z(CTS, D)= z(AG, D), for every semantic domain D.

Conclusion

We have shown that context-free hypergraph grammars have the same term
generating power as attribute grammars, and, when provided with an additional
context-free grammar as input component, they have the same translation power
as attribute grammars. Thus, cfhg's provide a formalism to describe the semantics
of programming languages, similar to AG's.

It is shown in [-HabKrePlu; HofPlu] that hypergraph rewriting rules (that
are usually not context-free) can be used to simulate term rewriting systems
on jungles rather than trees. In particular they describe "folding" rules that
can be used to obtain jungles from trees, or to increase the sharing of subterms
in jungles. One goal one might try to achieve is to try to model as many aspects
as possible of the implementation of attribute grammars in the uniform formal-
ism of hypergraph rewriting (cf. [,Hof] where another type of graph rewriting
is used), i.e., to combine the context-free hypergraph grammar that simulates
formal attribute evaluation, with other hypergraph rewriting rules. For instance,
the actual evaluation of the jungles could be realized by term rewriting, and
hence by hypergraph rewriting, in case the sets of values of the attributes are
specified equationally as abstract data types (see [,Hof]). Another possibility
would be to use the folding rules of [-HabKrePlu; HofPlu] during formal evalua-
tion, to improve space efficiency.

Extending ideas in [Cou3], it has recently been shown in [CorRos] (see
also [-CorRosParJ) that there is a close relationship between jungle rewriting
and logic programming. Since it is well known that attribute grammars are
closely related to logic programming (see, e.g., [-DerMal; CouDer]), it is no
surprise that their result seems to be very similar to (but more general than)
ours. To be more precise, logic programming is close to attribute grammars
in which trees are used as actual attribute values (rather than representations
of expressions); moreover, these trees can not only be composed (i.e., substituted
in each other), but also tested (by looking at the top label) and decomposed
(by taking subtrees). Thus, attribute grammars as considered in this paper are
the special case that trees can be composed only. In [CorRos] it is shown
that the decomposition of trees can be realized in an elegant way by considering
context-free jungle grammars, in which the rewriting of jungles is defined within
the category of jungles rather than the larger category of hypergraphs. Such
rewriting may have a "global" effect on the rewritten jungle, as opposed to
the "local" effect of hypergraph rewriting. It seems that our result corresponds
precisely to the case of logic programming where one may in fact stick to the
"local" hypergraph rewriting because of the absence of tree decomposition.
However, the precise relationship between the two results needs more investiga-
tion.

Context-free hypergraph grammars 207

As mentioned in the introduction, the classes of tree languages and tree
translations defined by attribute grammars have been investigated in the tree
literature. The class of tree translations is contained properly in the class of
translations defined by macro tree transducers. In [EngVog2] the formalism
of context-free hypergraph grammars is extended in a natural way, and it is
shown that these extended grammars have the same power as macro tree trans-
ducers. One might also think about generalizing the cts in such a way that
duplication and deletion of nonterminals would be allowed (as in the generalized
syntax-directed translation schemes of [AhoUll]). This would be equivalent to
the formalism in EEngVog2].

Rather than generalizing the context-free hypergraph grammar, one may
try to consider restrictions that generate well-known subclasses of the class
of tree languages generated by attribute grammars. One such class is the class
of tree languages generated by IO context-free tree grammars (see [-DusPar-
SedSpe; EngFil]). We conjecture that this class has a nice characterization:
it is generated by the context-free hypergraph grammars of which all sentential
forms are jungles. Another question is which class of tree languages is generated
by context-free hypergraph grammars if one forbids sharing, i.e., the generated
jungles should all be trees, in the sense that from each node there is a unique
hyperpath to the external node (which is the root). This class of tree languages
certainly contains the tree languages generated by the grammars of ERao].

We finally mention the area of attributed graph grammars (see, e.g., EG6t]).
One possible type of attributed graph grammar would be the context-free hyper-
graph grammar extended with (inherited and synthesized) attributes, just as
in the case of an ordinary context-free grammar. Such an attributed cfhg could
be used to define a translation from graphs to values (in some semantic domain).
Another way of using it (as in EG6t]) would be to allow the terminal symbols
to have inherited attributes, to disregard the synthesized attributes of the initial
nonterminal, and to view the attributed cfhg as a device that generates attributed
hypergraphs, i.e., hypergraphs of which the edges have attribute values. One
example is the generation of pictures, where the graph represents the topological
aspects of the picture, whereas the attribute values represent its metrical proper-
ties. Another example is the generation of the attributed derivation trees of
an ordinary attribute grammar. It should be rather obvious that our results
can be generalized to such attributed cfhg's: every attributed cfhg can be simulat-
ed by an ordinary cfhg (in which the attribute values are represented as jungles,
attached to the edges by additional tentacles). Thus, in a theoretical sense, one
does not need attributed cfhg's; it suffices to consider cfhg's that generate graphs,
parts of which can be interpreted as values in some domain.

Acknowledgements. The authors wish to thank George Leih for several useful observations.
The remarks of the referees have been very helpful in writing the conclusion.

References

[AhoSetUll]

[AhoUll]

Aho, A.V., Sethi, R., Ullman, J.D.: Compilers; Principles, techniques, and tools.
Reading, MA: Addison-Wesley 1986
Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling.
Englewood Cliffs, NJ: Prentice-Hall 1972

208 J. Engelfriet and L. Heyker

[-BauCou] Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Math.
Syst. Theory 20, 83 127 (1987)

[Bar] Bartha, M.: An algebraic definition of attributed transformations. In: G6cseg,
F. (ed.) Fundamentals of computation theory. (Lect. Notes Comput. Sci.,
vol. 117, pp. 51 60) Berlin, Heidelberg, New York: Springer 1981

[Boc] Bochmann, G.V.: Semantic evaluation from left to right. Commun. ACM 19,
55-62 (1976)

[ChiMar] Chirica, L.M., Martin, D.F.: An order-algebraic definition of Knuthian seman-
tics. Math. Syst. Theory 13, 1-27 (1979)

[CorRos] Corradini, A., Rossi, F.: On the power of context-free jungle rewriting for term
rewriting systems and logic programming, University of Pisa, Italy, June 1990

[CorRosPar] Corradini, A., Rossi, F., Parisi-Presicce, F.: Logic programming as hypergraph
rewriting. In: Proceedings CAAP '91. (Lect. Notes Comput. Sci., vol. 493,
pp. 275-295) Berlin, Heidelberg, New York: Springer 1991

[Cou 1] Courcelle, B.: Equivalences and transformations of regular systems, applications
to recursive program schemes and grammars. Theor. Comput. Sci. 42, 1-122
(1986)

[Cou2] Courcelle, B.: An axiomatic definition of context-free rewriting and its applica-
tion to NLC graph grammars. Theor. Comput. Sci. 55, 141-181 (1987)

[Cou3] Courcelle, B.: On using context-free graph grammars for analyzing recursive
definitions. In: Fuchi, K., Kott, L. (eds.) Programming of future generation
computers II, pp. 83-122. Amsterdam: Elsevier 1988

[Cou4] Courcelle, B.: The monadic second-order logic of graphs, I: recognizable sets
of finite graphs. Inf. Comput. 85, 12 75 (1990)

[CouDer] Courcelle, B., Deransart, P. : Proofs of partial correctness for attribute grammars
with applications to recursive procedures and logic programming. Inf. Comput.
78, 1-55 (1988)

[-CouFra] Courcelle, B., Franchi-Zannettacci, P.: Attribute grammars and recursive pro-
gram schemes I and II. Theor. Comput. Sci. 17, 163-191,235-257 (1982)

[DerJouLor] Deransart, P., Jourdan, M., Lorho, B.: Attribute grammars; definitions, systems
and bibliography. (Lect. Notes Comput. Sci., vol. 323) Berlin, Heidelberg, New
York: Springer 1988

[DerMal] Deransart, P., Maluszynski, J. : Relating logic programs and attribute grammars.
J. Logic Program. 2, 119-155 (1985)

[DusParSedSpe] Duske, J., Parchmann, R., Sedello, M., Specht, J.: IO-macrolanguages and
attributed translations. Inf. Control 35, 87 105 (1977)

[EhrNagRosRoz] Ehrig, H., Nagl, M., Rozenberg, G., Rosenfeld, A. (eds.): Graph-grammars
and their application to computer science. (Lect. Notes Comput. Sci., vol. 291)
Berlin, Heidelberg, New York: Springer 1987

[Engl] Engelfriet, J.: Some open questions and recent results on tree transducers and
tree languages. In: Book, R.V. (ed.) Formal language theory: perspectives and
open problems, pp. 241-286. New York: Academic Press 1980

[Eng2] Engelfriet, J.: Tree transducers and syntax-directed semantics. TW Memoran-
dum 363, Twente University of Technology, 1981, presented at the 7th CAAP,
March 1982, Lille

[Eng3] Engelfriet, J.: The complexity of languages generated by attribute grammars.
SIAM J. Comput. 15, 70 86 (1986)

[EngFil] Engelfriet, J., Fil6, G.: The formal power of one-visit attribute grammars. Acta
Inf. 16, 275 302 (1981)

[EngHeyl] Engelfriet, J., Heyker, L.M.: The string generating power of context-free hyper-
graph grammars. J. Comput. Syst. Sci. 43, 328-360 (1991)

[EngHey2] Engelfriet, J., Heyker, L.M.: The term generating power of context-free hyper-
graph grammars. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph-
grammars and their application to computer science. (Lect. Notes Comput.
Sci., vol. 532) Berlin, Heidelberg, New York: Springer 1991, pp. 328 343

[EngLeiRoz] Engelfriet, J., Leih, G., Rozenberg, G.: Apex graph grammars and attribute
grammars. Acta Inf. 25, 537-571 (1988)

[EngRozJ Engelfriet, J, Rozenberg, G.: A comparison of boundary graph gram-

Context-free hypergraph grammars 209

[-EngVog 11

[,EngVog2]

[-Fed]
[,Fil]

[,Fill]
[Gan]

[Gat]

[Hab]

[HabKre 1]

[,HabKre2]

[HabKrePlu]

[,Hoq

[HofPlu]

[,HofSch]

[Knu]

[Kre]

[Lau]

[LenWan]

[Lor]

[-Mad]

[,MezWri]

mars and context-free hypergraph grammars. Inf. Comput. 84, 163 206
(1990)
Engelfriet, J., Vogler, H.: Macro tree transducers. J. Comput. Syst. Sci. 31, 71-146
(1985)
Engelfriet, J., Vogler, H.: The translation power of top-down tree-to-graph trans-
ducers, in preparation
Feder, J.: Plex languages. Inf. Sci. 3, 225-241 (1971)
Fil~, G.: Interpretation and reduction of attribute grammars. Acta Inf. 19, 115-
150 (1983)
Ffil6p, Z.: On attributed tree transducers. Acta Cybern. 5, 261-279 (1981)
Ganzinger, H.: On storage optimization for automatically generated compilers.
In: Weibrauch, K. (ed.) Theoretical computer science, 4th GI Conference. (Lect.
Notes Comput. Sci., vol. 67, pp. 132-141) Berlin, Heidelberg, New York: Sprin-
ger 1979
G6ttler, H.: Graph-grammars and diagram editing. In [EhrNagRosRoz],
pp. 216-231
Habel, A.: Hyperedge replacement: grammars and languages. Ph.D. Thesis, Bre-
men, 1989
Habel, A., Kreowski, H.-J.: Some structural aspects of hypergraph languages
generated by hyperedge replacement. In: Brandenburg, F.J., Vidal-Naquet, G.,
Wirsing, M. (eds.) STACS '87 Proceedings. (Lect. Notes Comput. Sci., vol. 247,
pp. 207 219) Berlin, Heidelberg, New York: Springer 1987
Habel, A., Kreowski, H.-J.: May we introduce to you: hyperedge replacement.
In [EhrNagRosRoz], pp. 15-26
Habel, A., Kreowski, H.-J., Plump, D.: Jungle evaluation. In: Sanella, D., Tar-
lecki, A. (eds.) Recent trends in data type specification. (Lect. Notes Comput.
Sci., vol. 332, pp. 92 112) Berlin, Heidelberg, New York: Springer 1987
Hoffmann, B.: Modelling compiler generation by graph grammars. In: Ehrig,
H., Nagl, M., Rozenberg, G. (eds.) Graph-grammars and their application to
computer science. (Lect. Notes Comput. Sci., vol. 153, pp. 159-171) Berlin, Hei-
delberg, New York: Springer 1983
Hoffmann, B., Plump, D.: Jungle evaluation for efficient term rewriting. In:
Grabowski, J., Lescanne, P., Wechler, W. (eds.) Algebraic and logic program-
ming. (Lect. Notes Comput. Sci., vol. 343, pp. 191~03) Berlin, Heidelberg, New
York: Springer 1988
Hoffmann, B., Schmiedecke, I.-R.: Multi-pass parsing for two-level grammars.
In: Dembinski, P. (ed.) Mathematical Foundations of Computer Science 1980.
(Lect. Notes Comput. Sci., vol. 88, pp. 275 290) Berlin, Heidelberg, New York:
Springer 1980
Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2, 127 145
(1968). Correction: Math. Syst. Theory 5, 95-96 (1971)
Kreowski, H.-J.: Rule trees represent derivations in edge replacement systems.
In: Rozenberg, G., Salomaa, A. (eds.) The Book of L, pp. 217-232. Berlin, Heidel-
berg, New York: Springer 1986
Lautemann, C.: Decomposition trees: structured graph representation and effi-
cient algorithms. In: Dauchet, M., Nivat, M. (eds.) CAAP '88. Proceedings.
(Lect. Notes Comput. Sci., vol. 299, pp. 28 39) Berlin, Heidelberg, New York:
Springer 1988
Lengauer, T., Wanke, E.: Efficient analysis of graph properties on context-free
graph languages (extended abstract). In: Lepist6, T., Salomaa, A. (eds.) Auto-
mata languages and programming. ICALP '88 Proceedings. (Lect. Notes Corn-
put. Sci., vol. 317, pp. 379-393) Berlin, Heidelberg, New York: Springer 1988
Lorho, B. (ed.): Methods and tools for compiler construction. New York: Cam-
bridge University Press 1984
Madsen, O.L.: On defining semantics by means of extended attribute grammars.
In: Jones, N.D. (ed.) Semantics-directed compiler generation. (Lect. Notes Corn-
put. Sci., vol. 94, pp. 259 299) Berlin, Heidelberg, New York: Springer 1980
Mezei, J., Wright, J.B.: Algebraic automata and context-free sets. Inf. Control

210 J. Engelfriet and L. Heyker

[MonRos]

[Pra]

[Rao]

11, 3-29 (1967)
Montanari, U., Rossi, F.: An efficient algorithm for the solution of hierarchical
networks of constraints. In: [EhrNagRosRoz], pp. 440~,57
Pratt, T.W.: Pair grammars, graph languages and string-to-graph translations.
J. Comput. Syst. Sci. 5, 560 595 (1971)
Raoult, J.-C. : Algebraic sets of tree-vectors and rational tree-transductions. Pub-
lication Nr. 502, IRISA, Rennes, France, 1989

