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Slip flow past an approximate spheroid 

H. Ramkissoon, St. Augustine,  Trinidad 

(Received March 5, 1996; revised May 28, 1996) 

Summary. Creeping axisymmetric slip flow past a spheroid whose shape deviates slightly from that of 
a sphere is investigated. An exact solution is obtained to the first order in the small parameter characterizing 
the deformation. As an application, the case of flow past an oblate spheroid is considered and the drag 
experienced by it is evaluated. Special well-known cases are deduced and some observations made. 

N o t a t i o n  

A., B., C., D., E., F= b2, d2, - Constants 
a, b, - radii of spheres 
fl - coefficient of sliding fraction 
D - drag 
~, ct., parameters characterizing the deformation of the sphere 
c - a(1 + ~) 
# - viscosity coefficient 

0 
a 

r 
a dimensionless coordinate - 

a 
I .  - Gegenbauer function 
P. - Legendre function 
T - Stream function 
U - stream velocity at infinity 

1 I n t r o d u c t i o n  

The problem of the Stokes symmetrical  flow due to the t ransla t ion of an approximate  spherical 

solid part icle in an unbounded  fluid medium was first investigated by Sampson [1]. The case of 

asymmetr ic  flows has been examined independent ly  by  Brenner [2] and Acrivos and Taylor [3]. In  

all cases the authors  assumed the no-slip condit ion.  I t  is of some interest to examine the 

possibil i ty that  the fluid may  slip at the surface. In  the case of the perfect sphere this p roblem was 
solved by Basset [4]. 

In  this brief Note  the problem of symmetric flow past  a spheroid whose shape deviates slightly 

from that  of a sphere is examined under  the assumpt ion of slip at the surface. An explicit 

expression is obta ined for the s tream function associated with the flow field to the first order  in 

the small pa ramete r  characterizing the deformation.  As an application,  we consider the flow past  

an oblate  spheroidal  particle and  determine the drag experienced by it. Special known cases are 

then deduced. 
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2 Statement and solution of the problem 

We consider the problem of slow, steady axisymmetrical flow of an incompressible fluid past 

a spheroid whose shape varies slightly from that of a sphere and which is assumed to be 
macroscopically at rest in an otherwise uniform stream of speed U in the direction of the negative 

z-axis in the absence of body forces. We refer the motion to a spherical co-ordinate system (r, 0, ~0). 

The stream function characterizing this type of flow is given by [5] 

lp(r, O) = ~ (A,r" + B,,r -"+1 + Cnr n+ 2 q- O,r -"+3) I , (0  (2.1) 
r l=2  

where ( = cos 0 and I , (0  is the Gegenbauer function related to the Legendre function P, (0  by the 

relation 

P , -  z(~) -- P,,(O 
I,(~)= 2 n - 1  , n >  2. 

In particular 

1 1 
Iz(0  = ~ (1 - ~2), 13(0 = ~ ((1 - ~2). 

These functions have the following special property [5]: 

( m - 2 )  ( m - 3 )  m ( m - 1 )  ( m + l )  ( m + 2 )  
ImI2 = 2(2m - 1) (2m - 3) Im-2 -b (2m + 1) (2m -- 3) Im -- 2(2m -- 1) (2m + 1) I=+2, 

m > 2. (2.2) 

The stream function ~p is related to the velocity field (u, Uo, O) by the usual relationship 

1 &p 1 ~p 
Ur = r 2 sin 0 O0' Uo r sin 0 & " (2.3) 

We take the surface S of a spheroid to be of the form r = a[1 +f(0)]. The orthogonality of the 
Gegenbauer functions permit us, under general circumstances, to assume the expansion 

f(O) = ~ ~klk(~). Hence, we can take S to be 
k=l 

r = a[1 + ~mlm(~)] (2.4) 

and neglect terms of O(~m2). Our main problem is to determine the flow field. 

Using the condition 

1 (2.5) 1t) -+ ~ Ur 2 sin 2 0 as r + oo, 

we see that we can write (2.1) in the form 

Ua 2 = 0"2 ~- - -  ~- d20" I 2 ( ~ )  + [E.a -"+1 + Fnff -n+ 3] In( 0 (2.6) 
0" n = 3  
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r 
where a = - .  The only coefficients which contribute to flow past a sphere are b2 and d2. 

a 

Consequently all other coefficients in (2.6) are of 0(c~.,). Hence, except where bz and dz are 
encountered, we may take the surface to be a = 1. 

The unknown coefficients appearing in (2.6) must be determined from the boundary 
conditions. The kinematic condition of impenetrability at the surface demands that we take 

7 t = 0  onS .  (2.7) 

As regards the slip condition we use the most plausible hypothesis [4] that the tangential velocity 
of fluid relative to the solid at a point on its surface is proport ional  to the tangential stress 
t,o prevailing at that point. In our case this hypothesis takes the form 

tro= flUo on S (2.8) 

where the constant fl is the coefficient of sliding friction. Utilizing the impenetrability condition 
and the fact that 

one can rewrite (2.8) in the form 

O ( 1 0 ~ p )  l ~ p  
# r ~ r  ~ O r r  = f l r ~ - r  o n S .  (2.9) 

With the aid of (2.4), the boundary conditions (2.7) and (2.9) lead respectively to the following: 

0 = (1 + b2 + d2) Iz(0  + (2 - b2 + dz) ~.,I,,(9 12(0 + ~ (E, + F,) I , (0 ,  (2.10) 
n = 3  

0 = [(2 -- b2 + dz) + 0(2 - 4b2 + 2dz)] 12(0 + [(2 + 262) + 0(12b2 - 2dz) ~mI,,(O 12(0 

+ Z E,(1 - n) {1 + 0(n + 2)} + F.(3 - n) {1 + On}] I . (0 ,  
n = 3  

where 0 = 
fla" 

The leading terms in the above system must vanish. Hence, 

l+b2+d2=0,  (2-b2+dz)+0(2-4bz+d2)=0. 

From (2.12) we see that 

l 6 0 + 3  
bz - dz - 

6O + 2" 60 + 2" 

Substituting these into (2.10) and (2.11) gives respectively 

60 
60 + 2 emImIz + (E. + F.) I .  = 0 

n = 3  

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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and  

6 ( 2 0 2 + 5 8 +  1) 
o~mlmI2 + 

68 + 2 n=3 ~ 
[E.(1 - n) {1 + 0 (n + 2)} + F.(3 - n) (1 + On)] I .  = 0. (2.15) 

In  solving (2.14) an d  (2.15) with the aid of (2.2) we see tha t  E,, F ,  vanish  for all n except when  n has 

the values m - 2, m and  m + 2. The  surviving coefficients are 

Era_ 2 
�9 ,.(m -- 2) (m -- 3) [7 -- c~(5 -- m) (1 + O(m -- 2)] 

2(2m -- 1) (2m -- 3) (108 -- 2 -- 4Ore) 

F , , - 2  = 
O~m(m - -  2) (m - 3) [~(3 - m) (1 + Ore) - .  ~,] 

2(2m - 1) (2m --  3) (100 - 2 - 48m) ' 

o~,nm(m -- 1) [~(3 -- m) (1 + 8m) -- 7] 
E,n = 

(2m + 1) (2m -- 3) (28 --  2 -- 48m) 

~,.m(m -- 1) [7 -- a(1 -- m) (1 + mO + 20)] 
f m = 

(2m + 1) (2m - 3) (28 - 2 - 48m) 

a,,(m + 1) (m + 2) [y - ~(1 - m) (1 + mO + 28)] 
Em+ 2 = 

2(2m - 1) (2m + 1) ( - 6 0  - 2 - 4Ore) 

Fm+ 2 = 
O~m(m + 1) (m + 2) [ - 7  - ~(1 + m) (1 + m O +  48)1 

2(2m - 1) (2m + 1) ( - 6 0  - 2 - 4Ore) 

60 6(202 + 50  + 1) 
where �9 = - -  a n d  7 = (2.16) 

60 + 2 60 + 2 

We have thus  de te rmined  the field for the flow past  an  approx imate  sphere when  there is slip on  

the surface. I t  is given by  

Ua 2 _ if2 q_ --0- + d20- I2(() + [Era-2 if-m+3 -1- Fm-2a-'n+5]lm-2(()  

+ [Era ff-m+l + F m  G-m+3] Im(~) + [Era+2 i f -m-1 + Fro+2 if-m+1] Im+2(~) (2.17) 

where the coefficients are given by  (2.13) and  (2.16). 

3 Application to a spheroid 

As an  appl ica t ion  of the foregoing analysis  we now consider  the par t icu lar  case of slip flow past  

an  obla te  spheroid whose equa t ion  we take as 

x z + y2 z 2 
1. (3.1) 

c 2 + c2(1 _ ~)2 

As before we neglect terms of 0(e 2) in  which case (3.1) becomes in  po la r  form 

r = a[1 + 2~I2(~)] or  a = 1 + 2d2(ff), (3.2) 
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where a = c(1 - ~). In order to apply the results of the previous Section we must  take m = 2 and 
~,, = 2~. Substituting into (2.17) and simplifying gives the stream function as 

;}] {(c; c} 
~l = U c  2 "~ A - + B I2(~') + E,, + F4 I4(~'), 

C 
(3.3) 

where from (2.13) and (2.16) 

A = d2(1 - ~) + F2 = 
3 2# + tic 

2 3# + tic 
- - +  3~ 

{6# 2 + 6#fie + flZeE}, 
10(3# tic) 2 + 

B = bE(1 - 3e) + E 2 = tic 3~ {24# 2 + 44#f ie  + 9f l2c2} ,  
2(3# + tic) 10(3# + tic) 2 

6E 6# 2 + 6#tic + fl2e2 
E 4  ~ - - - -  

5 (7# + tic) (3# + tic)' 

f 4 
6~ ( - 1 6 #  2 + 2#tic + flEcE) 

5 (3# + tic) (7# + tic) 

(3.4) 

We now focus on an important  physical feature of the flow - the force experienced by the 
spheroid. 

The evaluation of this drag is most  readily done by the application of the elegant formula 
derived by Payne and Pell [6]. In our case of slow, steady axisymmetric flow past the oblate 
spheroid, the formula gives the drag D experienced as 

I / /  t / t  
D = 8~c# lim - -  (3.5) 

r~ ~ r sin 2 0 ' 

where ~ o  is the stream function corresponding to the fluid mot ion at infinity. Here 

1 
~ = - Ur 2 sin E 0 = UrEI2(~). (3.6) 

2 

Substitution of (3.3) and (3.6) into (3.5) gives 

D = 4rc#cUA. 

Utilizing (2.13), (3.4) and simplifying, we obtain the drag, 

D =  --67c#cU I2~u-p# + tic ~ 1 + tic 5(3# + tiC) 2 {6#2 + 6#tic + flEcE) . (3.7) 

The following special cases can be deduced immediately: 

(a) No-sl ip  f low past  an oblate spheroid 
Here fl ~ o0 and so 

(1) 
D = - - 6 ~ c # e U  1 - - ~  , (3.8) 

a result obtained by Happel  and Brenner [5]. 
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(b) Perfect slip flow past an oblate spheroid 
Here fl = 0 and so 

D = - 4 n # c U  1 - ~ e  

This is a new result. 

(c) Slip flow past a sphere 
Here e = 0 and so 

(fie + 2#'~ 
O = -6~#cU \fie + 3#J' 

a result previously obtained [5]. 

(d) No-slip flow past a sphere 
Here ~ = 0, f ~ oo giving 

C p D = -6n#cU = - w-~ U21rc2 

24 U2e 
where Cw = Ree' R e -  v 

This is the well-known Stokes Formula. 
We now make the following observations: 

H. Ramkissoon 

(3.9) 

(3.10) 

(i) The force, in the general case, exerted on the oblate spheroid given by (3.7) is smaller than that 
experienced by a sphere of radius equal to the equatorial radius of the spheroid. 
(ii) For  both no-slip and perfect slip flow past an oblate spheroid, the reduction factor of this 
force is the same. It is 1/5 ~. 
(iii) A sphere of radius 

(1) 
b =  1 - ~ e  c (3.11) 

would have the same volume as our sphere (3.1) and the resistance of this sphere from (3.10) is 

(fib + 2#~. (3.12) 
D = 6rcpbU \fib + 3#] 

Substituting (3.11) into (3.7) gives after some simplification 

I (  2e) flb + 2# 2e #fib 1 (3.13) 
D = -6n#bU 1 + --~ fib + 3----~ + 15 (3# + fib) 2 " 

Comparison of (3.12) with (3.13) shows that a sphere of equal volume experiences a smaller 
resistance than the oblate spheroid. 

(iv) It was seen [5] that the drag on a gaseous spherical bubble rising slowly through a liquid is 
identical to that for flow past a solid sphere at whose surface perfect slip occurs. It is therefore not 
surprising to see that (3.9) gives the drag on a gaseous oblate spheroidal bubble [7]. 
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