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Summary. The instability of a plane compressible gas sheet in a quiescent viscous liquid medium of infinite 
expanse has been studied. It is found that there exist two unstable modes of disturbances, sinuous and 
varicose. For temporal instability, sinuous disturbance is stable if the gas Weber number, defined as the ratio 
of aerodynamic to capillary forces, is less than unity, varicose mode controls the instability process except for 
large Weber numbers when both modes become equally important, and gas compressibility effect always 
enhances instability development and induces an additional range of unstable wave numbers. For 
spatial-temporal evolution of disturbances, it is found that convective instability does not exist at all and the 
instability of plane gas sheets is always absolute in nature, which is strikingly opposite to the instability of 
plane liquid sheets. The absolutely unstable disturbance is found always temporally growing, although it 
may be spatially growing or decaying depending on flow conditions. Gas compressibility always enhances 
and liquid viscosity damps out both the temporal and the spatial part of absolute instability growth rate. 
Although the Weber number always promotes the temporal growth rate of absolute instability, it has a dual 
effect of enhancing and inhibiting the spatial growth rate. 

1 Introduction 

Bubbles from the disintegration of gas jets and sheets are of fundamental importance in many 
practical and industrial applications. Instability and disintegration of gas sheets are conveniently 
utilized in various chemical and pharmaceutical industries for gas dissolution in a liquid medium 
[1], in mining industries for coal and mineral preparation by froth floatation technique [2], [3] and 
in bubble plumes widely used for aeration, protection of structures against ocean waves and for 
mixing of stratified reservoirs [4]. The sizes of bubbles, generated by the disintegration of 
a continuous gas sheet, are important factors contributing to the effectiveness and efficiency of 
many industrial operations involving bubble formation. A sound knowledge of the gas sheet 
instability and disintegration process is thus essential for the control of bubble formation and gas 
dissolution processes. Although extensive studies have been carried out on structure and mean 
flow of bubble plumes formed by round jets and two dimensional gas sheets [5]-[7], little 
attention has been paid to the instability of gas sheets and jets preceeding the formation of 

bubbles. 
However, a similar problem, the instability of plane liquid sheets in a gas medium, has been 

widely investigated in connection with liquid atomization and sprays used in power generation 
and propulsion systems [8] -  [10] and spray drying operations [11]. Squire [12], York, Stubbs and 
Tek [13] and Hagerty and Shea [14] studied the temporal instability of a plane inviscid liquid 
sheet in a surrounding inviscid gas medium, and Li and Tankin [15] analyzed the temporal 
instability of plane viscous liquid sheets. According to the causality condition of Briggs [16] and 
Bers [17], Lin, Lian and Creighton [18] studied the absolute and convective instability of a viscous 
liquid sheet in a stationary gas medium. They reported that the sinuous mode of disturbance is 
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neutrally stable below a critical liquid Weber number of one and in the sense of Briggs [16] and 
Bers [17] they termed it as pseudo-absolute instability. They also concluded that for sinuous 
mode at liquid Weber numbers higher than the critical value of one and for varicose mode at any 
Weber number, convective instability exists for a non-zero gas density. Li [19] further 
investigated the spatial instability of plane liquid sheets and found that liquid viscosity has both 
a stabilizing and a destabilizing effect for sinuous mode at low Weber numbers, while for varicose 
mode and sinuous mode at higher Weber numbers, it is always stabilizing. The same problem has 
also been addressed by Ibrahim [20] and the subject has been reviewed by Li [21]. 

Recently, Li and Bhunia investigated the temporal instability of an incompressible plane gas 
sheet [22]- [23]. It was found that there exist two unstable modes of disturbances, sinuous and 
varicose, and surface tension always reduces, while the relative velocity between the gas and 
liquid phases and the gas density always enhance instability development. For both unstable 
modes, the presence of liquid viscosity increases the instability limit, which is however 
independent of the absolute value of viscosity. It was also shown that the sinuous mode becomes 
stable when the gas Weber number, defined as the ratio of aerodynamic forces to surface tension 
forces, is less than the critical value of one. At slightly larger gas Weber numbers, liquid viscosity 
exhibits dual effects - it may enhance or suppress the growth of unstable disturbances, 
depending on specific flow conditions. However, for sinuous mode at high Weber numbers and 
varicose mode at any Weber numbers, liquid viscosity always reduces disturbances growth rates 
and dominant wave numbers. Unlike the case for plane liquid sheets, varicose mode controls the 
instability process for all Weber number ranges and for both inviscid and viscous liquids, and 
only at high Weber numbers varicose and sinuous modes become almost equally important. It 
was further found that the wave velocity for both unstable modes is much smaller than the gas 
velocity at the mode of maximum instability, implying that in practice the disturbance waves 
appear almost stationary rather than travelling-wave type, in contrast with the plane liquid sheet 
results. 

The present work reports the subsequent study on the temporal, absolute and convective 
instability of a two-dimensional compressible gas sheet in a viscous liquid medium and the effects 
of various physical parameters, such as surface tension, gas density, liquid viscosity and gas 
compressibility, on the instability process. The analysis shows that the sinuous mode is neutrally 
stable below a critical value of gas Weber number, which is always constant at one. Varicose 
mode dominates the instability process, although at large gas Weber numbers both modes 
become equally important. Strikingly opposite to the plane liquid sheet case, the spatial- 
temporal evolution of disturbances is always absolute in nature for plane gas sheets, and 
convective instability does not exist at all. A linear stability analysis is formulated and dispersion 
relations are derived in the next Section. These dispersion relations are then solved numerically 
to obtain gas sheet instability characteristics which are presented subsequently. 

2 Instability analysis 

A two-dimensional, inviscid, compressible gas sheet of uniform thickness 2a and density ~g is 
injected with a uniform constant velocity Ug into a quiescent liquid medium of infinite expanse. 
The liquid medium has a density 0t and dynamic viscosity #~. The effect of gravity and liquid 
compressibility is neglected. The neglect of gas viscosity is based on the observation that the 
viscosity of the gas is only weakly stabilizing and does not influence the relevant phenomenon 
appreciably, as Lin and Ibrahim [24] found in a related work. 
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The base flow field is given by, for the gas phase, a constant velocity Ug in the direction of flow, 
a constant pressure Pg and a constant density fig, and for the liquid phase, a zero velocity in all 
directions and a constant pressure Pt. Further, Po = Pt from the continuity of normal stresses 
across the gas-liquid interfaces. On this base flow are superimposed fluctuations in velocity, 
pressure and gas density, denoted as uj = (u j, v j) = uj{x, y, t), pj = pj(x, y, t) and Og = Qo( x, Y, t), 
respectively. Here the subscript j = "g" represents the quantities related to the gas phase and 
j = "/" to the liquid phase. The corresponding disturbed gas-liquid interfaces are illustrated in 
Fig. 1, and represented by y = _ a + ~_+ for the upper and lower interface, respectively. 

Equations governing the perturbed flow are the conservation of mass and momentum along 
with an equation of state for the gas phase. They are, after linearization 

(~j ~-'~- g ~  ej-I-Oj(V'uj)=O, (1) 

~uj J . U  Ou~ _ 1 gp j  + (1 - 6j) vlVZuj, (2) 
~t + J O Ox Oj 

Po \Oeoj~ eo = cZo. (3) 

where 6j = 1 forj  = g and 0 forj  = 1, v, is the kinematic viscosity of the liquid, the subscript "s" 
denotes isentropic process and c is the velocity of sound in the gas medium and is a constant. The 
kinematic and dynamic boundary conditions apply at the liquid-gas interfaces as follows: 

v j = ~ - + f j U  o at y ~  +a ,  (4) 

OVt d2 ~ + 
(z~,r)o -- (z,,y)t = P,  -- 2#,  ~ y  --  Pg = +_ a 

(z~r)t = [at \ ~3y + OxJ = 0 at y ~ + a. 

at y ~  +a ,  (5) 

(6) 

A normal mode solution to the governing equations is sought in the following form: 

[pg, vg, ~Pt, ~+, ~-]  = [fro(Y), go(Y), ~,(Y), Go, ~oe '~ e 'tk~-~`) (7) 

where ~Pt is the stream function for the liquid phase, Go is the initial disturbance amplitude and 0 is 
the phase angle difference between the two surface waves at the upper and lower interfaces, as 
shown in Fig. 1. Then the bounded solution to the governing equations subjected to the above 
boundary conditions yields, in dimensionless form, either 

(m - ~r~)2  ~r~2 4 4 m 3 
tanh (rm) + - -  + m2i~2 n) - 0 (for 0 -- O) (8) R e e  -- ~ m3(m -- We o r Q Q Q 

y - Unperturbed Surface 
/ Liquid / {+ 

+ a / ~ ~ . ~ / ~ ' ~  ~ 

- a ~ ~ i d Z ~ ~ ~ P e r  t '~uOrb2urflc e Fig. 1. Schematic of a plane gas sheet and surface waves 
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o r  

02. 4 4 m 3 
(m - -  ~c~)2 coth (rm) + - -  + - -  m2i[2 ma(m - n) - = 0 (for 0 = re) (9) 

0 0 Re -- ~ 0  W% 

where m = ka is the dimensionless wavenumber,  f2 = oga/Ug is the dimenionless wave frequency, 
Re = Uga/vt is the Reynolds number,  Weg = ~gUg2a/a is the gas Weber number,  Q = 0g/0t is the 

density ratio, n = [//m z - i Reg2, r = V m  2 - (m - 0 )  2 Ma2/m and Ma  = Ug/c is the M a t h  

number. Clearly, when M a  = 0, r = 1, Eqs. (8) and (9) then reduce to the dispersion relations for 
the incompressible gas sheets obtained earlier by Li and Bhunia [22]. It  is also interesting to note 
that only two values of 0 are possible, as given above in Eqs. (8) and (9). The case of 0 = 0 
corresponds to waves at the upper and lower interfaces oscillating exactly in phase which are 
often called sinuous disturbance. Similarly the case of 0 = z~ represents two interfacial waves 
displacd exactly out of phase, which are usually referred to as varicose disturbance. 

3 Results and discussions 

3.1 Temporal instability 

In the dispersion relation, Eqs. (8) and (9), derived in the previous Section, if the wave number  m is 
real and the imaginary par t  of the wave frequency f2, is positive for a certain mode of disturbance, 
the disturbance will grow exponentially with time and will eventually lead to the breakdown of 
the gas sheet. Various physical parameters  influence the temporal  instability of the gas sheet, they 
are surface tension, gas density and velocity, liquid density and viscosity and gas compressibility. 
Effects of all these parameters,  except the gas compressibility, on the temporal  instability have 
been investigated recently [22], [23]. Therefore, only the gas compressibility effect is considered in 
the present study. The gas compressibility effect is quantitatively expressed in terms of 
dimensionless Mach number  and its effect on the instability characteristics will be investigated 

here. 

3.1.1 Instability limit 

The instability limit me, also often known as the cut-off wave number,  is the max imum 
wavenumber  of the disturbance causing instability. Hence, the instability limit can be obtained 
by setting f2,---0. For  a compressible gas sheet, the instability limit mc is determined by 
numerically solving the dispersion relations (8) and (9) for sinuous and varicose mode of 
disturbances, respectively. Figure 2 illustrates the typical variation of the instability fimit with 
the Mach number,  where the flow conditions are given by the density ratio 0 = 0.1 and gas Weber 
number  Weg = 3.0. It  is evident that  for both  the sinuous and the varicose mode of disturbances, 
the instability limit always increases with the Mach number  for viscous and inviscid surrounding 
liquid. This implies that gas compressibility effect induces an additional range of wave numbers 
and corresponding wavelengths of disturbances for which the gas sheet is unstable, and the 
absolute value of this additional range depends on the degree of gas compressibility. It  is further 
seen that  at low Mach numbers the dependence of the instability limit on the Mach number  is 
fairly weak, and the gas sheet can be considered essentially incompressible if the Mach number  is 
less than approximately 0.3. Above this value, the instability limit increases rapidly with the 

Mach number.  



Ins tabi l i ty  of  p lane  compress ib le  gas  sheets  121 

5.5 

5.0 

E ~ 4.5 

E 4.0 

~ 3.5 

"~ 3.0 
c 

2.5 

2.0 
0 0.2 0.4 0.6 

Mach  Number ,  Ma  
0.8 

0"35/ : : Ma=0 .8  

~-o.~ I .......... ~ \ \  . \  ........ 
. . . .  . . . . . . . .  

go,15I ........ / : ~ . - \ \ \  \ 

o . , o t /  ............................ \ 7 \  ...... \ ..... 

~176 .......... \ ; ~  i 
0 3 4 

a Wave Number, ka 

Fig. 2. Ins tabi l i ty  l imit of  s inuous  and  var icose 
m o d e  for inviscid and  viscous (Re = 10) sur-  
r o u n d i n g  liquids. We 0 = 3.0 a n d  O = 0.1 

0 4  / / Ma = 0.8 

0.3 �9 i . . . . .  

rc 0.2[- / /  ~ . . . .  \ \  4 . . . . .  ~ . . . . .  

o0, / . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . .  . . . .  

I/ 
0 t- 

0 2 3 4 5 
b Wave Number, ka 

Fig. 3. Dimens ion less  g rowth  rate vs. wave n u m b e r  
for different M a c h  number s .  O = 0.1, Weg = 3.0 and  

Re = 100. a S inuous  m o d e  b varicose m o d e  

Figure 2 also shows that at the given Weber number the varicose mode has a larger instability 
limit for both an inviscid and a viscous liquid at any Mach number. However, further numerical 
calculations indicate that at higher Weber numbers the instability limit for sinuous mode 
asymptotically approaches the same value as that for the varicose mode at all Mach number 
conditions. 

Similar to the incompressible gas sheet, viscosity also broadens the instability limit for 
compressible gas sheets. For any values of the M ach number, there is an additional range of wave 
numbers for which the gas sheet is unstable only for viscous surrounding fiquid, representing the 
viscosity-enhanced instability region [15], [22]. The inviscid and viscous curves in Fig. 2 further 
reveal that the range for the viscosity-enhanced instability broadens with the Math  number, 
especially at conditions close to the transonic flow. 
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3.1.2 Growth rate 

Disturbance growth rate is determined by solving the dispersion relations, Eqs. (8) and (9), by using 

Muller's method [25]. The effect of gas compressibility on the disturbance growth rate is shown in 

Fig. 3 for the gas Weber number We o = 3.0 and the density ratio e = 0.1. It is clear from Fig. 3 that for 
sinuous mode the growth rate increases with the Mach number for any wavenumber, although at low 
wave numbers the increment is very small and hardly detectable. On the other hand, for varicose 

mode at low wave numbers the Mach number first enhances and then reduces the wave growth rate. 
At large wave numbers the growth rate for varicose mode always increases with the Mach number. It 
is also noted from Fig. 3 that the maximum growth rate, which eventually controls the instability 
process, always increases with the Mach number for both modes of disturbances along with the 

dominant  and cut-offwavenumbers. Thus it can be concluded that the gas compressibility has an 
overall destabilizing effect on the plane gas sheet. This observation is valid for all conditions of the 

Weber number, the Reynolds number and the density ratio. 

3.1.3 Maximum growth rate and dominant  wave number 

For  temporal instability, the breakdown of a continuous gas sheet into a train of bubbles is 
usually considered to be dictated by the maximum growth rate and the corresponding wave 
number or wavelength of the disturbances. Figure 4 shows the variation of the maximum growth 

rate with the Mach number for a gas Weber number W% = 3.0 and a density ratio ~ = 0.1. It is 
evident that irrespective of the mode of disturbance and liquid viscosity, the maximum growth 
rate always increases with the Mach number as shown earlier, although at low Mach numbers 
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(Ma < 0.3) the increment is small. Thus the gas sheet may be considered incompressible if 

Ma < 0.3. Comparing the inviscid and viscous results in Fig. 4, it becomes clear that a viscous 
effect always reduces the maximum growth rate for both sinuous and varicose modes of 

disturbances. It is also clear that at this condition of the gas Weber number (We o = 3) varicose 

mode has a larger maximum growth rate than the corresponding sinuous mode at any Mach 
number and thus dictates the overall instability process. At any Mach number, further numerical 
calculations indicate that at higher Weber numbers the maximum growth rate for sinuous mode 

approaches, from below, that of varicose mode until they become almost equal and thus equally 
important in the instability process. It should be pointed out that Fig. 4 is representative of the 

Mach number effect on the maximum growth rate for any Weber numbers and density ratios. 
The variation of the corresponding dominant wave number with the Mach number is shown 

in Fig. 5 for the same conditions as in Fig. 4. Clearly, the dominant wave number increases with 
the Mach number, indicating that gas compressibility effects shifts the mode of maximum 

instability to a disturbance of shorter wavelength. It is also evident that viscous effects reduce the 
dominant wave number for both modes of disturbances, and the reduction for varicose mode is 

far more than that for the corresponding sinuous mode. Although at the present condition of the 
Weber number sinuous mode has a larger dominant wave number than the varicose mode, it is 

found that at any Mach number the dominant wave number has a complex variation for the two 
types of disturbance waves depending on the value of the gas Weber number, as shown earlier by 
Li and Bhunia [22], [23] for the incompressible gas sheets. 

3.1.4 Wave velocity 

The dimensionless disturbance wave velocity, normalized by the gas sheet velocity Uo, is given by 
f2,/m, and the typical effect of the Mach number is shown in Fig. 6. It is clear that for both modes 

of disturbances the wave velocity is enhanced by the gas compressibility effect, although the effect 
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is small at low wave numbers. The wave velocity for the sinuous mode vanishes at rn = 0 and at 
the instability limit m = me, and it reaches the maximum value approximately at the dominant 

wave number range. On the other hand, the wave velocity for the varicose mode decreases 
rapidly and monotonically from the value of one at m = 0. Over a wide range of wave numbers 

including the dominant  wave number, it is weakly dependent on the wave number until it finally 
decreases rapidly again to zero at the instability limit. Around the dominant  wave numbers, the 
wave velocity for both modes is smaller than the gas sheet velocity, especially at low Mach 

numbers. However, the wave velocity of a compressible gas sheet is in general not  negligible at the 
dominant  wave numbers when compared with the gas sheet velocity, in contrast with the result 

for incompressible gas sheets [22]. With an increase in the Mach number, the wave velocity 
increases rapidly, especially close to the transonic flow region. 

3.2 Absolute and convective instability 

A localized initial disturbance for an unstable system may not only grow with time as discussed in 
the previous Section, but also be amplified as it propagates and/or spreads in space. Therefore 
a study of the space-time evolution of an initially small disturbance is essential for the 

understanding of the instability process. It is thus necessary to investigate both absolute and 
convective instability, as shown by Briggs [16] and Bers [17]. The absolute instability is 
determined by using a convenient mesh-searching technique [26]. 

3.2.1 Pseudo-absolute instability of sinuous mode 

Similar to the temporal case, there also exists a critical gas Weber number of one, below which the 
sinuous mode of disturbance remains neutrally stable. Figure 7 shows the formation of the 

pinch-point singularity for the sinuous mode at the Weber number Weg = 0.9, Reynolds number 
Re = 1, density ratio Q = 0.001 and Mach number Ma = 0. It is seen that the two branches of 

solutions in the complex m plane, one from the upper (mi > 0) and the other from the lower 
(ml < 0) plane, approach each other and merge to form a pinch point at (mo, f2o). According to 
Briggs [16] and Bers [17], this pinch point represents an absolute instability if f2o,~ > 0. Further 

calculations show that for any Reynolds number, density ratio and Mach number (up to 

Ma < 1), the pinch point is always fixed at mo = (0, 0) and f2o = (0, 0), if the gas Weber number is 
less than one. Thus, although the formation of the pinch point may suggest the existence of an 
absolute instability in the system, the gas sheet is neutrally stable under these flow conditions 
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because Qo,~ = 0. This result is similar to the instability of a plane liquid sheet subjected to 
sinuous disturbances with liquid Weber number less than one [18], [19], and, following Lin et al. 
[18], this neutral instability is termed as pseudo-absolute instability. 

3.2.2 Absolute instability 

Figure 8 shows the pinch point formation for the sinuous mode of disturbance at a gas Weber 
number Weg = 3, Reynolds number Re = 100, density ratio Q = 0.001 and Ma = 0. From Fig. 8 
it is clear that the two branches ofmo, from the upper and lower plane respectively, merge to the 
pinch point rno ~ (1.504, - 2 . 8  x 10 -3) and Oo ~ (4.62 x 10 -4, 1.41 x 10-2). Hence, this point 
represents absolute instability of the gas sheet with the absolutely unstable wave spreading in the 
direction of flow at a spatial growth rate ofmo,i = - 2.8 x 10- 3, and at a fixed spatial location the 
wave amplitude increases with time at a temporal rate of f2o,, = 1.41 x 10 -2. 

On the other hand, if f2o,, is negative at a pinch point, then the absolute instability disappears 
and convective instability occurs [16], [17]. Thus the condition f2o,~ = 0 indicates the inception of 
the convective instability. For a liquid jet in surrounding gas medium, it is shown [26] - [29] that 
for a given Reynolds number and density ratio there exists a maximum Weber number, referred 
to as the critical Weber number, below which f2o,~ > 0, indicating the occurrence of absolute 
instability, and above which f2o,~ < 0, implying the existence of convective instability. However, 
for the present problem of gas sheets in a liquid medium, it is found that for both the varicose and 
the sinuous mode in the unstable range, i.e., W% > 1 for the sinuous and W% > 0 for the varicose 
mode, there is no flow condition for which f2o,i < 0. This suggests that there does not exist any 
convective instability for gas sheets. Thus, unlike the instability of a plane liquid sheet where only 
convective instability exists [18], [19] and a cylindrical liquid jet for which both absolute and 
convective instability are possible depending on the flow conditions [26]-[29], a gas sheet is 
absolutely unstable at any flow condition. An absolutely unstable gas sheet has two components 
of instability growth rate, temporal growth rate ~20,~ and spatial growth rate mo,~, which will be 
presented in the following Section. 

3.2.3 Temporal growth rate of absolute instability 

Generally the temporal part of absolute instability growth rate is increased by increased density 
ratio, reduced surface tension and reduced liquid viscosity for both sinuous and varicose modes 
of disturbances. A typical set of results is shown in Fig. 9 for the effect of liquid viscosity on the 
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temporal growth rate of the absolute instability for both sinuous and varicose mode. It is seen 
that the temporal part of the growth rate increases with the Weber number, indicating that 
surface tension has a stabilizing effect, while gas inertial effect enhances the absolute instability. It 
is also seen in Fig. 9 that for any gas Weber number the growth rate increases with the Reynolds 
number. Thus, unlike the temporal instability of plane gas sheets where viscosity plays a dual role 
of stabilization and destabilization for the sinuous mode of disturbances at low Weber numbers 
[22], liquid viscosity always acts as an instability inhibitor for the temporal growth rate of 
absolute instability, no matter how small the Weber and Reynolds numbers may be. Further 
numerical calculations indicate that Fig. 9 well represents the viscous effect for any gas density 
ratio and Mach number. 

Shown in Fig. 10 is a comparison between the temporal growth rate of absolute instability of 
sinuous and varicose modes of disturbances for inviscid and viscous (Re = 100) liquid at 
a density ratio 0 = 0.001 and a Mach number Ma = 0. It is clear that the varicose mode of 
disturbance has a larger growth rate for both inviscid and viscous surrounding liquid and thus 
dominates the instability process. However, at high Weber numbers, the growth rate of the 
sinuous mode approaches asymptotically that of the varicose mode, implying that at high Weber 
numbers both modes are almost equally important in controlling the instability process. 
However, for viscous liquids, the varicose mode has a higher growth rate than that of the sinuous 
mode over a wider range of gas Weber numbers (Weg > 8) as compared to inviscid liquids where 
the growth rates of the two modes are almost equal at a smaller Weber number (W% ~ 5.5). The 
damping effect of liquid viscosity on the growth rate of both modes of disturbances is also evident 
in Fig. 10, especially at higher Weber numbers. 

The gas compressibility effect on the temporal growth rate of absolute instability is shown in 
Fig. 11 for both the sinuous and the varicose mode of disturbances at the density ratio ~ = 0.1, 
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Fig. 11. Dimensionless temporal growth rate 
of absolute instability of sinuous and varicose 
mode for incompressible (Ma = 0) and com- 
pressible (Ma=0.8) gas at ~ =0.1 and 
Re = 100 

Reynolds number Re = 100 and Mach number of 0 and 0.8, respectively. Further results are 
given in Table 1 for Ma = 0, 0.4, 0.6 and 0.8, respectively. It is evident that the growth rates for 
both modes increase with the Mach number, indicating that gas compressibility enhances the 
temporal growth rate of absolute instability. Further, it is seen that the increment of growth rate 
with the Mach number becomes more significant at higher gas Weber numbers. Clearly, for both 
a compressible and an incompressible gas sheet, the temporal growth rate for the varicose mode 
is larger than that for the corresponding sinuous mode, indicating that the varicose mode 
governs the instability process for both incompressible and compressible gas sheets. However, as 
noted earlier, at large gas Weber numbers the temporal growth rate for the sinuous mode 
asymptotically reaches that for the varicose mode and both modes become equally important in 
the instability process. A comparison between Figs. 10 and 11 reveals that the temporal growth 
rate of absolute instability increases with the gas-to-liquid density ratio for both the sinuous and 
the varicose mode. This observation is valid for Ma up to one. 

3.2.4 Spatial growth rate of absolute instability 

Similar to the temporal part, the spatial part of the absolute instability growth rate is also 
increased by the density ratio of gas to liquid and reduced by liquid viscosity. On the other hand, 
surface tension and gas inertia, in the dimensionless form of gas Weber number Weg, has 
a complex effect on the spatial growth rate. 
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Table 1. Dimensionless temporal growth rate of absolute instability (Oo,i). Q = 0.1 and Re = 100 

We o g2o, i ( x l O - 1 )  

Sinuous Varicose 

M a = 0  0.4 0.6 0.8 M a = 0  0.4 0.6 0.8 

0.1 0.0 0.0 0.0 0.0 0.044 3 0.052 2 0.056 6 0.059 3 
1.0 0.0 0.0 0.0 0.0 1.650 7 1.667 0 1.714 3 1.736 3 
2.0 1.257 2 1.344 8 1.458 5 1.569 5 2.262 5 2.379 8 2.484 4 2.4901 
3.0 2.342 7 2.504 5 2.706 6 2.879 5 2.823 5 3.002 3 3.198 6 3.292 9 
4.0 3.228 7 3.453 9 3.734 4 3.977 7 3.437 8 3.6721 3.949 6 4.149 6 
5.0 4.003 4 4.2871 4.643 9 4.9710 4.090 6 4.378 8 4.733 8 5.038 9 
6.0 4.7105 5.0499 5.4824 5 . 9 0 4 3  4.7464 5.0879 5.5194 5.9305 
7.0 5.3710 5.764 3 6.2718 6.796 5 5.386 0 5.780 2 6.287 3 6.806 7 
8.0 5.9981 6.443 5 7.0254 7.657 9 6.0042 6.4500 7.0317 7.6617 
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Fig. 12. Dimensionless spatial growth rate of abso- 
lute instability vs. gas Weber number for various 
Reynolds numbers. Q = 0,001 and Ma = 0, a Sinuous 
mode, b varicose mode 

Figure 12 shows the spatial growth rate as a function of the gas Weber number  for various 

Reynolds numbers with 0 = 0.001 and Ma = 0. It is seen that at large Reynolds numbers (104 

and 1000) the growth rate increases monotonical ly with the gas Weber number,  suggesting that 

the surface tension effect inhibits and the gas inertial effect promotes the instability. However, for 

smaller Reynolds numbers the spatial growth rate for both sinuous and varicose mode increases 

with the gas Weber number  first until reaching a maximum value, then it decreases, as shown in 

Fig. 12 a for Re = 100. When the gas Weber number  is increased further, eventually mo,~ becomes 

positive at large Weber numbers, indicating that now the absolutely unstable disturbance decays 

spatially as it spreads downstream, although it is still amplified with time. This suggests that the 

gas Weber number  has both a stabilizing and a destabilizing effect on the spatial growth rate, 

which clearly contrasts with the results of both the temporal instability and the temporal part of 
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absolute instability growth rate where the gas Weber number always enhances instability. For 
highly viscous liquids, the spatial growth rate mo,i would be positive for any value of the Weber 
number, just like the result for Re = 100 shown in Fig. 12b. The above results also imply that 
viscous effects always reduce the spatial growth rate for both sinuous and varicose modes, and 
the reduction becomes more significant as the gas Weber number is increased, such that 
mo,i becomes positive first at high Weber numbers as the viscous effect is increased, and 

eventually it is positive for any Weber numbers when the Reynolds number is sufficiently small. 
Figure 12 also indicates that viscous effect is more significant for the varicose mode than for the 
sinuous mode. 

The results presented in Fig. 12 further suggest the existence of a critical gas Weber number at 
which mo,i = 0 for a given set of Reynolds numbers, density ratio and Mach number. Further 
numerical calculations indicate that out of the four dimensionless parameters, density ratio, gas 
Weber number, Reynolds number and Mach number, if any three are kept constant, there exists 
a critical value of the fourth parameter which marks the transition from spatially growing 

disturbance wave (mo,i < 0) to spatially decaying disturbance wave (m0,~ > 0) or vice versa. 
A typical set of results for both the sinuous and the varicose mode of disturbances is presented in 

Table 2 where a critical Reynolds number, at which mo,i = 0, is determined for a given density 
ratio Q = 0.001 and Mach number Ma = 0. For the given conditions, if the Reynolds number is 

less than the critical value given in Table 2, mo,~ is positive indicating a spatially decaying wave. 
On the other hand, mo,~ is negative if the Reynolds number is larger than the critical value, 

implying spatially growing waves. It is seen in Table 2 that the critical Reynolds number increases 
with the Weber number for sinuous disturbances and decreases for varicose disturbances. For 
W% < 1, as shown earlier, pseudo-absolute instability exists for the sinuous mode such that 

mo,g is always equal to zero for any Reynolds numbers. It should be pointed out that for both the 
sinuous and the varicose modes the temporal growth rate 12o,~ is always positive, even though the 
spatial growth rate may be negative or positive, depending on the flow conditions. Physically it 
may be interpreted that although liquid viscosity always has a stabilizing effect on both temporal 

and spatial growth rate of absolute instability, for Reynolds numbers higher than the critical 
value, viscous effects being relatively small, disturbance waves grow in amplitude both with 

downstream distance and with time. On the other hand, if the Reynolds number is less than the 

Table 2. Critical Reynolds numbers at density ratio 0 = 0.001, Ma = 0 

Gas Weber number 
Weg 

Critical Reynolds number, Rec 

Sinuous mode Variscose mode 

0.4 -- 338.0 
0.8 -- 279.0 
1.2 19.5 246.5 
1.6 31.0 225.0 
2.0 42.0 209.5 
2.4 52.8 197.5 
2.8 64.2 188.0 
3.2 76.3 182.0 
3.6 88.9 178.0 
4.0 101.9 176.0 
4.4 115.5 176.5 
4.8 129.5 179.0 
5.2 143.0 183.5 
5.6 157.0 189.5 
6.0 171.0 197.0 
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Fig. 13. Dimensionless spatial growth rate of abso- 
lute instability vs. gas Weber number for various 
Mach numbers. Re = 100 and Q = 0.1. a Sinuous 
mode, b varicose mode 

critical value, viscosity damps out any spatially growing wave such that at any given time the 
disturbance amplitude decreases in the downstream direction. However, at any fixed spatial 
location disturbance the amplitude grows with time until the continuous gas sheet breaks up 

eventually. 
Similar to the temporal growth rate discussed in the earlier Section, the gas compressibility 

also has a destabilizing effect on the spatial growth rate. In Fig. 13 is shown the effect of the Mach 
number on the spatial growth rate of absolute instability for the density ratio Q = 0.1 and the 
Reynolds number Re = 100. Clearly, the spatial growth rate for both the sinuous and the 
varicose mode increases significantly with the Mach number, especially at high gas Weber 
numbers. Further numerical calculations indicate that Fig. 13 is representative of the compressi- 
bility effect on the spatial growth rate for any density ratio and Reynolds number. Thus, it may be 
concluded that the compressibility effect enhances the absolute instability as a whole. Further, 
a comparison between Figs. 12 and 13 indicates that the gas-to-liquid density ratio increases the 
spatial growth rate, thus promoting the instability process. 

3.2.5 Wave velocity 

Wave velocity is enhanced by increased density ratio and gas compressibility effect and reduced 
by liquid viscosity for both the sinuous and the varicose mode of disturbances. The gas Weber 
number, on the other hand, has a more complex effect. A typical set of results is shown in Fig. 14 
for the sinuous and the varicose mode of disturbances at the density ratio ~ = 0.1 and Reynolds 
number Re = 100. For the sinuous mode of disturbances, wave velocity initially increases with 
the gas Weber number until it reaches a peak value and then decreases slowly with the Weber 
number. Whereas for varicose mode, the wave velocity decreases monotonically with the Weber 
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Fig. 14. Dimensionless wave velocity vs. gas Weber 
number for various Mach numbers. Re = 100 and 
Q = 0.1. a Sinuous mode, b varicose mode 

number. It is also clear that the wave velocity increases with the Mach number for both modes of 
disturbances, although at small gas Weber numbers the increment is small. Evidently the wave 
velocity for compressible gas sheets is not significantly small compared to the gas sheet velocity, 
in contrast with the incompressible case at the mode of maximum instability [22]. 

4 Conclusion 

The temporal, absolute and convective instability of a plane compressible gas sheet in a quiescent 
viscous liquid medium of infinite expanse has been investigated. It is found that two unstable 
modes of disturbances, sinuous and varicose, exist in the instability process, and temporal and 
absolute instability occur whereas convective instability is absent for such a gas sheet. 

For temporal instability, both the gas compressibility and the liquid viscosity increase the 
instability limit for both unstable modes. Gas compressibility always enhances the disturbance 
growth rate though the increase is small at low Weber numbers and low Mach numbers. For 
sinuous mode, there exists a critical Weber number of unity below which it is always stable. The 
maximum growth rate, dominant wave number and wave velocity for both modes all increase 
with the Mach number. 

An analysis of space-time evolution of disturbances shows that for the sinuous mode of 
disturbance there exists a critical gas Weber number of one, below which pseudo-absolute 
instability occurs. Whereas only absolute instability exists for the sinuous mode above this 
critical value of one and for varicose mode at any gas Weber numbers. In contrast with the 
instability of plane liquid sheets and circular liquid jets, there does not exist any convective 
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instability for plane gas sheets. It is further found that, depending on the flow condition, the 
absolutely unstable disturbance may be spatially growing or decaying, but it is always 
temporally growing. Gas compressibility enhances, while liquid viscosity reduces both the 
temporal and the spatial part of the absolute instability growth rate. Surface tension always 

inhibits, while gas inertia enhances the temporal growth rate of absolute instability. On the other 
hand, surface tension and gas inertia have a complex dual effect of enhancing and suppressing the 
spatial growth rate of absolute instability. 

For  both temporal and absolute instability, the varicose mode has a higher growth rate than 
the coresponding sinuous mode and thus controls the overall instability process of plane gas 

sheets for low and intermediate Weber numbers. At large Weber numbers, the growth rates of 
both modes are almost equal and thus are equally important in the instability process. 
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