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Summary. A numerical investigation has been undertaken to characterize the axisymmetric laminar flow 
generated by a rotating disk inside a cylinder with an open top, containing a viscous fluid above as layer of 
fluid-saturated porous medium. The mathematical model is based on a continuum approach for both fluid 
and porous regions. Attention is focussed on conditions favouring steady, stable, axisymmetric solutions of 
the Darcy-Brinkman-Lapwood equation. The accuracy of the method is verified by solving some vortex flow 
problems in disk-cylinder geometries and comparing the results with: (a) existing numerical solutions and, (b) 
experimental pressure measurements in a similar geometry. Calculations are performed to investigate the 
fluid exchange between the porous region (porewater) and the overlying water. Results indicate that flow 
through composite (fluid-sediment) systems can be handled with good accuracy by the method presented 
here. With our approach the magnitude of advective porewater transport in sediments may be predicted. This 
finding is important for improved designs of flux chambers and also for understanding advective transport 
phenomena. 

Notation 

B binary parameter (0 or 1) 
Da Darcy number 
K permeability of the porous medium 
H Height 
L reference length 
p pressure 
R radius 
Re Reynolds number 
t time 
u radial velocity component 
U reference velocity 
v azimuthal velocity component 
v seepage velocity 
V intrinsic velocity 
w axial velocity component 

Greek symbols 

e porosity (fluid volume/total volume) 
r/ azimuthal component of vorticity 
/~ dynamic viscosity 
fi effective viscosity 
f2 angular velocity 
~p streamfunction 
Q fluid density 



76 A. Khalili et al. 

Subscripts 

d disk 
i, j coordinates of the grid points in r - z plane 
p porous medium 
dp disk to porous medium 

Superscipts 

* non-dimensional parameters 

1 Introduction 

Study of mass and heat transfer in porous sediments on one hand, and through water- 
sediment interfaces on the other, has become essential for the understanding of biological 
processes and geochemical cycles of elements in aquatic systems. Sedimentation [1], diffusion 
[2], bioturbation [3] and advective interfacial flows [4] are examples of such transfer processes 
which link the water column production to the sedimentary degradation processes: energy- 
rich organic matter is incorporated into the sea bed where it is decomposed with electron 
acceptors (e.g. 02, NO3-, SO4-) originating from the water column while nutrients and 
CO2, the products of remineralization, are released from the sediment [5]. Likewise, pollu- 
tants adsorbed to sedimenting particles are buried and may re-enter the food chain when the 
geochemical environment causes desorption, thus increasing their mobility (see for example 

[6]). 
So far, the conventional approach to study these geochemical and biological phenomena has 

been to collect a sediment sample from the sea-bed, bring it up to the surface and then make 
observations and carry out experiments on it either on-board ship or in the laboratory. Methods 
that have been used to evaluate biogeochemical activities in sediments and at the water-sediment 
interfaces are mostly experimental (except for a few numerical works which account for the 
convective transport, (e.g., Savant et al. [4], Svenson and Rahm [7], Svenson and Rahm [8]) and 
include direct measurements of benthic fluxes during the incubations of sediment together with 
the overlying water, and measurements of solute distributions in and above sediments (Malan 

and McLachlan [9]). 
In the last deacade, in-situ measurements or direct experiments at the sea-bed were 

preferably carried out in so-called benthic landers to assure a better reproduction of 
the real biogeochemical processes in the samples rather than bringing them up to the 
surface which would subject them to large pressure and temperature gradients (Tengberg 

et al. [10]). 
The purpose of this paper is to report the results of a numerical-theoretical study of the fluid 

exchange processes in composite systems (fluid overlying a fluid-saturated porous sediment). The 
primary aim is to examine to what extend the fluid flow in composite systems (here, in centrally 
stirred chambers) can be reproduced by a mathematical approach. In this paper, the emphasis is 
put on the hydrodynamical quantities involved, such as the velocity components and the 
pressure. This will form the basis for our future investigations concerning the question of how far 
the exchange of nutrients, toxins and solutes can be considered to be the result of non-diffusional 

but convective processes. 
The geometrical configuration considered here (Fig. 1) consists of a circular rotating disk 

inside a stationary cylinder with two different regions : region I filled with a viscous medium only 
(in this case, water) with the disk rotating in it, and region II, the lower part of the cylinder, 
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Fig. 1. Geometry of the system 

containing a fluid-saturated porous sediment. The reasons for this choice are two-fold. First, it 
allows a better comparison of our results with the experimental investigations of Huettel and 
Gust [11]. Second, this geometry is frequently used in benthic landers to maintain well-known 
and stable hydrodynamical conditions [10]. The flow structure of the present geometry may be 
described as follows: in the fluid layer, we have a fully three-dimensional motion. A primary 
motion perpendicular to r - z plane (due to the rotation of the disk) and a secondary motion in 
the r - z plane (because of the combined effect of the rotating disk along with the existence of the 
stationary side walls). However, the flow is primarily two-dimensional in the porous layer as we 
will demonstrate in the next sections. For the numerical simulations presented here we assume 
axisymmetry. This assumption is justified by the well-known axisymmetric flow structure in 
disk-cylinder geometries for moderate Reynolds numbers as shown by Escudier [12]. In the 
present paper we examine the behaviour of the secondary motion which causes the percolation of 
fluid through the porous region and thus the exchange of fluid between the pore water and the 
overlying water. 

The numerical study presented here is based on a continuum approach for both the fluid and 
the porous layer. The governing equations of motion are formulated in a general way and contain 
a binary parameter. Depending on the value of this parameter, the Navier-Stokes equation 
(Batchelor [13]) in the fluid layer and the Darcy-Brinkman-Lapwood equation in the porous 
layer (Lapwood [14], Wooding [15] and Nield and Bejan [16]) can be derived. However, the 
equation of continuity of fluid flow remains the same in both regions. The Darcy-Brinkman- 
Lapwood formulation combined with the continuum approach provides two advantages: first it 
accounts for both, the nonlinear and viscous drag which are neglegted in the original Darcy 
equation (compare with Batchelor [13], Dullien [17] and Scheidegger [18]) second, the continuum 
approach does not require any conditions for the hydrodynamical quantities at the interface and 
as a consequence, the numerical simulation remains independent of any additional material- 
dependent parameters which are usually needed when the Beavers and Joseph condition [19] is 
applied. 

In the next section, the mathematical formulation and the detail of the numerical method 
used, are described. 
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2 Assumptions and mathematical fomulations 

2.1 Assumptions 

The geometrical configuration for the problem investigated here is shown in Fig. 1. As shown in 
the figure, a cylinder of height H and radius R, filled with water (free surface at the top) contains in 
its lower part a fluid-saturated porous sediment of depth Hp. The circular disk of radius Ra is 
positioned at a distance Hap above the sediment surface and rotates about the z-axis with 
a uniform angular velocity (2a. The fluid is assumed to be incompressible and Newtonian. The 
porous matrix is considered to be homogeneous and having uniform permeability and porosity 
both not varying with time. The free surface of the fluid is assumed to remain horizontal at all 
times. 

2.2 Mathematical formulations 

with the above-mentioned assumptions, the governing equation (in vector notation) for the fluid 
flow in both regions I and II may be written as: 

0 ~ + ( V ' V )  = - V p - B  v +#Vzv (1) 

where B is a binary parameter and takes the values zero in the fluid layer and one in the porous 
layer. We get, in the former case, the Navier-Stokes equation for the fluid region and in the latter, 
the Darcy-Brinkman-Lapwood equation (see for example [20], [21] and [22]) for the fluid flow in 

the porous layer. 
Equation (1), for both choices of the binary parameter B, has to be solved using the 

appropriate initial and boundary conditions in agreement with the equation of continuity, 
which, for a constant property fluid takes the form 

V.v = 0 (2) 

in both regions. 
In Eq. (1)-(2), K denotes the permeability of the porous medium and is assumed to be a scalar 

because of the isotropic nature of the porous medium considered here; # represents the effective 
viscosity which is taken to be the same as # (dynamic viscosity) in both regions, for simplicity and 
as suggested by Brinkman [21]. Further, p, 0 and t are the fluid pressure, density and time, 
respectively. The average of the fluid velocity over an elementary volume (of solid matrix plus 
fluid) is called the seepage velocity and is denoted by v, while the average of the same quantity 
over the fluid volume only, is called intrinsic velocity and denoted by V. The symbol V is the usual 
gradient operator which has to be written in the cylindrical coordinates for the purpose of this 

paper. 
The quantities v and Vare related to each other by the Dupuit-Forchheimer relationship [16] 

v = e V, (3) 

with e denoting the porosity. Therefore, in region I, where e = 1, the quantities V and v are the 
same. 

Introducing the reference length L and reference velocity U to define non-dimensional 
variables (denoted by *) 
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v V P* p t * -  t V * =  V L  (4) 
v * = ~ ,  V* = ~-, = ~ - y ,  (L/U)' 

and replacing V by v using the Dupuit-Forchheimer relationship (and dropping the *), Eq. (1) 
may be written in the following dimensionless form 

1 Ov 1 B 1 
-e Ot + -~ (v" V) v = - Vp - DaR--~ v + R e  172v' (5) 

whereas Eq. (2) remains unchanged. Here, Re and Da are Reynolds and Darcy number, 
respectively, defined' as Re = p L U / ~  and Da = K / L  2. Because of the geometry used in this 
paper, a cylindrical coordinate system (7, 0, z) is introduced, and Eqs. (2)-(5) are written for the 
r (radial), 0 (azimuthal) and z (axial) directions (see Appendix). 

Further,  the equation of continuity (2) is used to introduce a streamfunction ~o, defined by 

1 0~v 
u - (6) 

r OZ' 

1 0qJ 
w =- + - -  (7) 

r O r '  

and the pressure is eliminated from Eq. A1-A3 (see Appendix), resulting in the following 
equations 

e 0t Y r~zz -DaR---e q + Re \-~s 2 +  
(8) 

r Or r 2 Oz2] ' 

1 Ov 1 U~rr+ + - - v  = v \ ~ r Z + ~ z ~ +  (9) 
0 t  + ~  W~z r DaRe +Ree r Or ~5 , 

for the entire domain taking into account different values for B. The azimuthal component  of 
vorticity r/is defined as 

<~u 0w 

q = 0z Or' 

so that 

O2~p 02~0 1 0tp (10) 
-/'/7 = ~ T  2 -t- 0z 2 r Or" 

The pressure in the entire domain is obtained by taking the divergence of Eq. (1) and using the 
continuity equation (2). The resulting equation is called the Poisson equation for pressure and 
may be written in vector form and discretized in time as 

VZp n+l = - V . H  n, (11) 

where 

H" = (v"" 17) v". (12) 

1 Taking the radius R a of the disk as the characteristic length and Rd~':2 d as the reference velocity, the 
Reynolds and Darcy numbers for this flow can be written as Re = pf2aRd2/#, and Da = K/Ra ~. 
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with superscripts denoting time-steps. The corresponding final equation 

cylindrical coordinates is given by 

O r - ~ - + ~ z 2 + r ~ r  = \ O r /  \ O z /  - -2~z-~-r-~ r dr r 2 "  
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for pressure in 

(13) 

2.3 Initial and boundary conditions 

To solve the Eqs. (8 ) -  (10), proper initial and boundary conditions are required. In order to verify 
and compare our results with those obtained in the existing literature and also to give more 

insight into the physics of the problem, we consider here two different cases. The first case, where 
the fluid fills the entire container and, the second, where there is a layer of fluid-saturated porous 

medium at the bot tom of the fluid-filled container. 

2.3.1 Initial conditions 

The disk, the rigid endwalls and the fluid are stationary for t < 0. The disk is set into a constant 

rotation for t > 0. Thus the initial conditions may be written as 

~p,v,~/=0 at t < 0  and for all r and z 

v = rf2a at t > 0 and for 0 < r < Rd, z = Ha 

Note that conditions for t / and  ~p are all derived from equations for u and w. 

2.3.2 Boundary conditions for ~p, v and t/ 

For  both cases the fluid-filled and fluid-sediment filled cylinder, we apply no-slip conditions at all 
rigid walls, free surface cndition at the top surface and symmetry condition at the axis to get 

~p=O, v = O ,  t / = O  at r = O ,  < z < H  

1 O2~p 
~p=0,  v = O ,  t l -  r dr 2 at r = R ,  0 <  < H  

~p = 0, v = 0, 

0v 

~p = O, v = rl2d, 

1 02~p 
at 0 - < t - < R ,  z = 0  / 7 -  r ~z 2 

t / = 0  at O < r < R ,  z = H  

1 ~2~p 
at 0 < r < Rd, z = Hd r / =  r 0z 2 

It should be emphasized that the vorticity distribution at the top side of the rotating disk differs 
from that at the bottom, a fact which is taken care of during the actual finite-difference 

formulation described in the next section. 

2.3.3 Boundary conditions for p 

The boundary conditions for pressure at the solid walls are derived from the governing equation 
of motion along the direction perpendicular to each wall. At the symmetry axis, the normal 
gradient of pressure is taken to be zero. At the free surface on top, the pressure is assumed to be 
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constant (ambient pressure) and is taken to be one. The precise form of the boundary conditions 
are given below: 

v0__~_, = 0  at r=O, 0 < z < H  
Or 

0p l(e2u aau) 
rKe\or'O - = ~ - - - z - - ~ + - r ~ r j  at r=R,  0 < z < H  

Op 1 02w 

Oz Re Oz 2 
at 0 < r _ < R ,  z = 0  

p = l  at O < r <  R, z =  H 

Op 1 02w 
-- at 0 < r _ < R a ,  z = H a  

Oz Re Oz 2 

2.4 The finite-difference formulation 

To solve the differential equations of motion a combination of various numerical techniques is 
used. First, we make use of the Arakawa scheme [23] to discretize the advective terms in the 
governing equation (1). Arakawa showed that the advective part can be written in terms of 
a Jacobian J, for example, as J(~p, v) = a~p/Or Ov/Oz - O~p/Oz Or~Or. This Jacobian can then be cast 
in a special finite-difference form that conserves energy. The resulting numerical scheme is 
fourth-order accurate in space. Next, a second-order accurate central-difference formulation is 
applied to discretize the viscous terms. The Poisson equations for streamfunction and pressure 
(10) and (13) are also solved using second-order accurate schemes. The iterations were performed 
using the Successive Over-Relaxation (SOR) scheme [24]. 

The time-integration is done by a second-order accurate explicit Adams-Bashforth scheme 
[25] which can be written as 

/.)n+ 1 = on + _~ (3F" -- F "-1) 

where the superscripts refer to the time-steps, A t is the non-dimensional time-step and F" refers to 
the time-derivative Ov/Ot at the n-th time-step. 

In the following, a brief description of some further details of the numerical scheme applied 
are given. In all computations uniform grids were used. The rotating disk is assumed to be 
infinitesimally thin so that the interface between the water and the porous layer falls at some 
horizontal grid-line. The streamfunction ~p and the azimuthal velocity v are equal at the top and 
the bottom surfaces of the rotating disk, as can be verified from the boundary conditions given 
above. However, for the vorticity and the pressure, this statement is not true and special 
treatment of the boundary conditions for these variables is required for top and the bottom 
surfaces of the disk. 

For boundary conditions, second-order accurate expressions are derived using one-sided 
differencing except for vorticity boundary conditions which are treated to first order accuracy for 
reasons of stability. The boundary conditions at the top side of the disk are computed using 
one-sided differences using values above the disk only. Similarly, for the boundary conditions at 
the bottom side of the disk, only the values from below the disk are used. 
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3 Results and discussion 

In this section, following the description of the features of the laminar flow, the results for the 
cases studied are presented. 

The fluid, filling completely the cylindrical container, is initially (t < 0) at rest. At time t > 0, 
the disk is impulsively set to rotate at a constant angular velocity. An Ekman boundary layer 
develops on the rotating disk. This rotating boundary layer acts now as a centrifugal fan, 
throwing fluid radially outwards in a spiralling motion and 'sucking' fluid into it from above and 
below. Two secondary meridional circulation regimes (one anti-clockwise recirculating zone 
above the disk and one clockwise below it) are then formed due to the existence of the solid walls 
and the rotating disk. Above the disk, the fluid which is pumped out of the Ekman layer spirals up 
the cylindrical wall, establishing a Stewartson layer until it reaches the top free surface (no 
penetration through the free surface is possible) where it is turned and advected towards the 
central axis. From here, the fluid then spirals down and is pumped back into the Ekman layer. 
The fluid below the disk spirals down the stationary sidewall, partially percolates the sediment 
from the vicinity of the sidewall and reaches a certain depth before it is sucked back towards the 
rotating disk. 

We have calculated the fluid flow for different Reynolds numbers ranging from moderate to 
high, starting from Re = 1000 up to Re = 9948. The numerical study of this flow suggests that for 
high Reynolds numbers (i.e. Re = 9948, which coincides with one of the cases studied 
experimentally by Huettel and Gust [11]), the flow undergoes a series of transitions showing 
oscillatory flow patterns and does not give a clear indication of the nature of the unsteadiness. 
Thus, in drawing conclusions from the results, we restrict ourselves to those cases in which the 
assumption ofaxisymmetry holds and, therefore, present the flow simulation for Re = 1000 only. 
However, for the range of other characteristic parameters concerning the geometry and the 
properties of the porous medium, same values as in the experimental set-up of [11] are taken. This 
leads to the following normalized (with respect to Rd = 10 cm), dimensionless magnitudes: 
R = 1.25, H = 3, Re = 1, Ha = 2.5, g2a = 1, Hp = 1.5, Hap = 1.0, ~ = 0.346. Taking the permeabi- 
lity to be K = 1.4805 x 10 -11 m 2, we obtain a Darcy number of Da = 1.4805 x 10 -9. 

Uniform grids of 51 x 121 and 101 x 241 mesh points were used to simulate flow fields at 
Reynolds numbers of 1000 and 9948, respectively. The stability of the computation was ensured 
by taking a time-step 2 At = 0.0005 for fluid-filled and At = 0.000004 for water-sediment •led 
container. 

The accuracy of the numerical results of the method presented here is verified by reproducing 
the experimental visualizations of Escudier [12] and numerical results of Lopez [26] for the flow of 
a viscous fluid in a cylindrical container at rest with a rotating lid, and by comparing our results 
for the fluid-filled container with the results obtained by Khalili et al. [27]. In both cases, the 
agreement is found to be very good. Further, the results of the pressure calculation for the 
fluid-porous filled cylinder are compared with the experimental measurements of Huettel and 
Gust [11] which will be shown below. 

As the flow is axisymmetric, the attention for the numerical integration (Fig. 2 to Fig. 5) is 
confined to the right half of the container (Fig. 1) and the flow field is shown in this area only. 

Figure 2 shows the development of the streamfunction contours, i.e. intersection of stream 
surfaces to with the meridional plane for the fluid-filled cavity from an early stage (Fig. 2a) upto 
the steady state (Fig. 2t). The maximum change anywhere in the flow-field over a time-step was 

2 In non-dimensional time-units. 
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Fig. 2. Temporal development of stream- 
lines for the fluid-filled container 
(Re = 1000) a t = 10, b t = 50, e t = 100, 
d t = 150, e t = 200, f t  = 242 

calculated for all variables at each time-step and time-integration was terminated when the 
conditions ~pT. +1 - tpinj < 10-9/)in~- 1 __ l)in, j < 1 0 - 8  and -"+ 1 n = = qi,i - qu  =< 10-7 were achieved at all 

mesh points. Note  that the dotted lines denote an anti-clockwise rotation whereas the solid ones 
indicate a clockwise rotation. As can be seen from these figures, the distribution of the secondary 
motion, though initially restricted in the vicinity of the rotating disk, occupies the entire domain 

with increasing time. 
Figure 3 compares the steady state contours of the streamfunction ~p of both cases, that of the 

fluid-filled container (Fig. 3 a) with the fluid-sediment filled container (Fig. 3 b, sediment layer 
shown in grey). Because of high resistance to the flow by the sediment layer, the secondary flow 

penetrates the porous medium only to a certain depth, leaving a considerable part  of the 
underlying pore-water region at rest. For  a better comparison of the flow in the two cases, we 

have depicted the ~p = 0.002 streamlines as a dashed-dotted line. As can be seen from the figures, 
this relatively weak flow nearly reaches the bot tom of the cylinder in the first case (Fig. 3 a) 
whereas it is damped in the sediment layer (Fig. 3 b). 

When the cylinder contains porous material, we observed that the steady state is reached in 
a shorter time (t = 100) compared with a pure fluid-filled container (t = 242). This is due to the 
stabilizing effect of friction imposed on the fluid particles. 

The distribution of q, the azimuthal component  of the vorticity vector, is shown in Fig. 4. As 
can be seen, the strong vortex sheet is mainly confined to a region in the vicinity of the rotating 
disk with relatively small vorticity away from it in the case of the fluid-filled cavity (Fig. 4 a). In 

contrast, the vorticity in the porous region (Fig. 4 b) is nearly zero, as in this region the azimuthal 
gradient of the radial velocity components balance the radial gradients of the axial velocity, 
resulting in a quasi-irrotational flow there. 
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for Re = 1000 (min. = -0.02, max.= +0.02, 
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Fig. 4. Lines of constant azimuthal vorticity r/ for 
Re=1000 (min .= -10 ,  max.= +10, Ar/=l). 
a Fluid-filled container, 5 fluid and sediment-filled 
(grey region) container 

The computed results for the tangential velocity component v are shown in Fig. 5 a and 5 b. In 
the absence of the porous layer, the entire fluid body is set into rotation in 0 direction (with 

decreasing velocity away from the disk) and in circulation in the r - z plane, whereas it remains 
free of tangential velocity in the porous region. Thus the flow in the porous layer is primarily 
two-dimensional and takes place in the r - z plane only. Also in the graph (Fig. 5) showing the 
distribution of the tangential velocity component  v, a dashed-dotted line for v = 0.05 is depicted 

to demonstrate the different positions of the equivalent contours. 
Of particular interest is the distribution of the computed differential pressure at the 

water-sediment interface along the container radius from the central axis towards the vertical 
outer wall. As can be seen from Fig. 6, the pressure initially increases, reaches a point of inflection 

and, at the outer wall, then has almost zero radial gradient. Though the Reynolds number 
corresponding to this picture is 1000, the qualitative behaviour is the same as that of the 

experimental measurements of [11] and Glud et al. [28]. 
The calculations shown above stress the importance of secondary flows and related advective 

porewater exchange for flux measurements in benthic chambers deployed on permeable sea beds. 
As illustrated by the streamline contours (Fig. 4) the ensuing porewater flows flush the upper 
layers of the sediment to a certain depth defined by the permeability K of the incubated core and 
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Fig. 6. Radial distribution of differential pressure at the 
fluid-sediment interface. Dashed, continuous and 
dashed-dotted lines denote a grid point below, at and 
above the interface respectively 

the magnitude of the secondary flow. Calibration experiments performed by Glud et al. [29] with 
two common benthic chamber designs with central stirring of different angular velocities indicate 
advective porewater flushing in natural sediments with K > 10-12 m 2. Also Huettel and Gust 

[11] observed similar phenomena in water-sediment filled containers with stirring devices and 
concluded that advective flushing can enhance interfacial solute flux up to 6-fold (with chamber 
water reaching 8-fold deeper into the sediment) compared to reference sediments exposed to 
two-dimensional flow in a straight open channel. Since most of the highly degradable sedimented 
organic matter is concentrated in the upper centimeter of the sea bed (Berner [5]), the stirring 
induced directed porewater exchange affects the most sensitive geochemical reaction zone. The 
model presented here allows us to define the precise conditions (depending on the physical 
property of the sediment, position, size and angular velocity of the rotating disk) under which flux 
measurements can be performed unaffected by advective porewater flushing. 

4 C o n c l u s i o n s  

A numerical solution of the axisymmetric Darcy-Brinkmann-Lapwood equation has been 
obtained and used to examine the fluid exchange in a composite fluid-sediment layer. The 
accuracy of the numerical solutions has been established by: (a) comparing them with well 
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known solutions of fluid flow in disk-cylinder geometries, (b) qualitative comparison with 
available experimental results and, (c) varying the grid resolution. The qualitative agreement 
between the numerical solutions and the experimental measurements and visualizations is found 
to be good. Certain quantities of the flow particularly interesting for interfacial solute fluxes in 
marine environments, such as the penetration depth of the flow into a permeable sediment can be 
obtained by the approach detailed in this paper  and a clear picture of the topology of the flow can 
be shown, which is not easy by experimental visualizations or measurements.  A number  of 
interesting questions remain. Is it possible to simulate the same flow assuming a potential flow in 
the porous layer? Is Darcy 's  law applicable in the case of a multidirectional flow, where the flow 
has a component  perpendicular to the fluid-porous interface? To investigate these questions is 
our future aim. 

Appendix 

Equations of motion in cylindrical coordinate system (axisymmetric) 

-~ & + V w Ozz dr DaRe u + Ree \~r 2 + r Or r 2 + dzZj (A.1) 

l Or 1 (  Ov Ov uv~ B 1 (O2v l a y  v d2v "] 
- - -  \ u  ~rr + w + . . . .  r /  v + + + (A.2) dt + ~ Ozz DaRe Ree \~zrz r Or r 2 ~z2J 

Ow 3u~ Op B 1 (aZw 10w 02w'~ 
1 Ow 1 u ~-r + w ~zz / dz DaRe Ree \ Or E r ~-r + -fffiz 2 )  (A.3) = - - w +  + -  

By taking O/dz (A.1) - O/& (A.3), pressure can be eliminated from these equations and the 

streamfunction-vorticity formulation can be derived. 

Continuity equation in cylindrical coordinate system (axisymmetric) 

Ou u Ow 
a r  

(A.4) 
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