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Summary. The elliptic paraboloid failure surface criterion (EPFS) is adopted in this paper to describe the 
failure behaviour of anisotropic bodies. A method is described, based on an inequality-constrained least 
square problem for the determination of the parameters of the EPFS criterion. After the discussion of the 
influence of the strength differential effect on the failure behaviour of the material, a neural network learning 
approach is introduced to the problem of extrapolating the given experimental results beyond the given 
range of experimental data by establishing an appropriate law of evolution of the failure surface valid for the 
material up to fracture. 

1 Introduction 

We consider failure criteria in the 3D-principal stress space, which are appropriate for the 

description of the failure behaviour of anisotropic bodies, by taking into account the strength 

differential effect (SDE) along the instantaneous principal stress axes. The general form of any 

failure criterion is a polynominal of the stress tensor. Among the different criteria we choose here 

the elliptic paraboloid failure surface criterion (EPFS), which has been extensively studied by [1] 
and describes satisfactorily the failure properties of anisotropic materials. For the general 

properties of the EPFS we refer to [2]. Note that a tensor polynomial criterion is represented by 

hypersurfaces in the stress space and thus it is difficult to be visualized geometrically. Certain 
plane sections of these hypersurfaces can be plotted, thus offering a maximum visualization of the 

failure surface. However, these plane sections do not yield a direct information on the relations of 
the material strength in a prescribed direction to the externally applied load on the specimen 

under consideration. This fact constitutes a drawback of the tensor polynomial criteria generally. 
Therefore, one needs until now delicate experimentation and an extensive stochastic analysis 
based e.g. on Weibull's distribution theory [2], in order to identify with acceptable accuracy the 

values of the parameters of the failure polynomial. 
Here we present another method, which avoids the meticulous experimentation and the use 

ofprobabilistic tools. The method we present is based on an extension of the least square problem 

and identifies the coefficients of the tensor polynomial failure criterion, here the EPFS-criterion. 
The original part of the method is the consideration of an inequality constrained version of the 
least square approach to the identification problem, which by means of the additional inequality 
constraints takes into account important information of the physical problem. The result in the 
calculations is the straightforward determination of the unknown coefficients by means of 
a quadratic programming algorithm. The method is stable and its accuracy can be improved as 

much as one wants, but in the limits of the measurement accuracy. 
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Further, we discuss the influence of the SDE on the form of the EPFS by giving, for a series of 
experiments, the variations of the corresponding curves-intersections of the EPFS by certain 
planes of the principal stress space. In order to have a picture of the failure surface changes for 
loading paths between the given or beyond the given ones, we propose a method based on 
a neural-network supervised learning algorithm, which permits the interpolation and the 
extrapolation of the given failure surfaces. The prediction of the material behaviour in the future 
loading combinations results from the network learning algorithm and is based on simple but 
long iterative calculations. In this respect we refer also to [3]-[7]. 

2 The elliptic paraboloid failure surface 

The elliptic paraboloid failure surface was introduced by the first author, first in order to describe 
the failure of isotropic materials for which the EPFS is reduced to a paraboloid of revolution. 
For anisotropic materials the EPFS depends mainly on the six strength parameters, three for 
tension and three for compression, along the principal strength axes of the material. It was 
shown that the three strength differential factors ac~/ar~, z = 1, 2, 3 (C means compression and 
T means tension) characterize mainly the variation of the EPFS with loading. The failure con- 
dition, expressed in terms of principal stress components, a~, has the general form of the quadric 

surface equation, that is: 

Hijaiaj + hia~ - 1 = 0 (i, j = 1, ..., 3) (2.1) 

where the tensor H~j and the vector h~ are appropriately defined in terms of the basic strength 
properties of the material. Such a formulation of the anisotropic failure criterion is restricted to 
a material symmetry up to orthotropy at most. 

Then, the quadric surface equation (2.1), if written in terms of the Cartesian components of 
the stress tensor, takes the following form: 

f(a) = a - H ' a  + h ' a -  1 = 0 (2.2) 

where / / and  h denote 4 th and 2"a-rank failure tensors respectively. Thus (2.2) shows the existence 
of a safe triaxial loading path, which means that the failure hypersurface must not be intersected 
by some stress-tensor direction. For isotropic materials it is generally accepted and experimen- 
tally proved that the hydrostatic loading constitutes safe triaxial loading path. For anisotropic 
materials this safe triaxial loading path is parallel displaced by a well defined distance taking into 
account the influence of anisotropy. 

The values of the failure functionf(a) for the initially anisotropic elastic solid with respect 
to the tensor cr must be path independent as long as the material does not fail under the 
loading mode ~. Since the stress tensor is considered symmetric, path independence of function 
f(~r) is guaranteed by the symmetric failure tensors 1t and h. The linear polynomial term, h.~r, 
accounts for the strength differential effect whereas the failure tensor / / a c c o u n t s  for the 

plasticity effect. 
The form of Eq. (2.2) does not impose any restriction on the symmetry class of the anisotropic 

medium and thus the 4 th rank failure t en so r / /may  possess at most 21 independent components. 
Symmetry properties of tensor/ /fol low those of elastic compliance 4th-rank failure tensor, S. The 
2"d-rank failure tensor, h, may have, in general, six independent components, whereas, for 
specially orthotropic media, or of increased symmetry, tensor h becomes axisymmetric 
degenerating to a spherical tensor for the isotropic medium. 
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It is shown, e.g. in [2], that the normal components of the failure tensor are expressed by: 

1 
H u -  (i < 3) (2.3) 

CrTiffCi 

whereas shear components are given by: 

(2.4) 

1 
Hu = - -  + crsl (i > 3) 

O'Si 
(2.5) 

hi= ~ - ~sl =(crY-crY) Hi'" 

In the above relations the repeated index convention does not apply and the tTTi and ~c~-stresses 
express the tension (T) and compression (C) failure stresses in the/-direction. Furthermore, the 

+ ~rs)-stresses express the shear strengths, positive or negative, in the/-plane (i > 3), and the {TSi 

usual contracted notation of Cartesian indices is used, meaning, that index 4 corresponds to 
natural indices 2, 3, index 5 to 1, 3 and index 6 to 1, 2. For the orthotropic materials, there is no 
shear-strength differential effect, if the coordinate system coincides with the material symmetry 
direction and thus ~ r+s~ = asi.- 

The requirement that the failure hypersurface is an open-end surface is assured by imposing 
the H-tensor to have a zero eigenvalue. The condition that any applied hydrostatic stress should 
constitute a safe loading path is satisfied by associating the zero eigenvalue of H-tensor to the 2nd 
rank spherical tensor 1, which is then an eigentensor of// .  Then, it should be valid that H- 1 = 0, 
a relation which yields, among others, the following three relationships: 

1 
H12 = ~ (H33 - Hll  - H22) ,  

1 
H23 = ~ (Hll  - H 22  --  H33), (2.6) 

1 
9 3 1  = ~ (Hz2  --  H33  --  Hll)- 

Relations (2.6) imply that the coefficients Ha 2, H23 and H31 of the EPFS are interrelated with the 
diagonal components, which are directly defined through the basic strength data. This is 
a significant advantage of the EPFS-criterion, which is not met with other similar criteria, which 
either are based on the experimental evaluation of these off-diagonal coefficients, or they are 
defined arbitrarily, based on some assumptions, [8]. 

For the complete study of the EPFS three intersections must be determined: 

i) The principal diagonal intersections, defined by planes containing one principal stress axis, 
preferably the strong era-axis, and the bisector of the right angle formed by the remaining 
principal axes. 

ii) The deviatoric ~-plane, which is normal to the hydrostatic axis. 
iii) The principal stress plane intersections, which are convenient for the study of the 

mechanical properties of the anisotropic body when thin plates of the material under plane-stress 
conditions have to be studied. 
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The EPFS for the orthotropic material is expressed in the (0-1, 0"2, a3)-principal stress space 
by a complete polynomial of the seond degree, where the a3-principal direction corresponds to 
the strongest direction [1], [2]: 

Hl10-12 + H220"22 + H330-32 + (Ha3 - H i 1  - H22) 0-10"2 ~- ( H l l  - H22 - H33) 0"20-3 

+ (H22 - H33 - Hl l )  ala3 + hlal  + h2a2 + haaa = 1. (2.7) 

This second-degree polynomial, referred to the Cartesian coordinate system Oxyz, where the 
0z-axis is parallel to the hydrostatic axis and the (0xy)-plane coincides with the deviatoric plane 
with the 0y-axis lying on the (a3612)-principal diagonal plane (612 being the bisector of the 
al0a2-angle), is expressed by: 

( 1) 2 1 
H l l  + H22 - g H33 + 3/2H~ay a + 1/5 (Hl l  - R a 2 / ~ y  + g (h~ - hit ~ 

1 1 
+ ~ (2h3-  hi - h2) y + ~ (hi + ha + ha) z = 1. (2.8) 

Moreover, the 
is given by [1]: 

equation of the intersection of the failure locus and the (aa, 612)-plane 

1 
(H11 + H22 + 2H12) a~2 + H330-32 q- ~-2 (H13 q- H23) a120"3 

+ ~ (hi + h2) 612 + h 3 o - 3  - I = 0. 
Z 

(2.9) 

Analogous expressions hold for the other intersections. 

3 Least square determination of the EPFS coefficients 

Let x ~ ~6  collect the unknown EPFS coefficients: 

x r = (xl, x2, x3, x~, xs, x6) r = (Hll, Hz2, H33, hi, h2, h3) r. (3.1) 

Let 0-1 (1), a2 (1), a3 (~) be the stresses at the i-th measurement point and let further: 

al i  : 0-i(i)0-1 (i) _ 0-1(i)0-2(i) ~- 0-2(i)0-3(i) _ 0-3(i)0-1(i) 

a21 = 0-2(i)0-2 (i) _ 0-i(i)0-2(i) _ 0-2(/)0-3(i) ~- 0-3(i)0-i(i) 

a3i ~ 0-3(i)0-3(i) ~- 0-i(i)0-2(i) _ 0-2(i)0-3(i) _ 0-3(i)0-i(i), 
(3.2) 

a4 i  = o-1 (0, 

a5 i  ~--- 0-2 (0, 

a6 i  = 0-3 (I), 

collected formally in ai e IR 6. If the measurement point satisfies the EPFS criterion exactly, then: 

aiTx -- 1 = 0. (3.3) 
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In general, the measurement error of the i-th point is: 

el : aiT"x - 1. (3.4) 

If we have m measurement points, the error vector e E ~ .  m will be: 

e = A r x  - b (3.5) 

with A ~ R 6xm, b ~ R m. The ith-column of A is al and each entry of b equals one. Minimizing the 
root mean square error corresponds to the minimization of the expression: 

1 r 1 m 
Era(x) = ~ e e = ~ xTA.~4Tx -- (Ab)Tx -~ 5"  (3.6) 

In classical (unconstrained) LST fitting, this yields the following system of equations for the 
determination of the EPFS coefficients x: 

A A r x  = A b  (3.7) 

resulting from the unconstrained optimality condition VE,.(x) = O. 

Depending on the uniform distribution of the measured stress points and on the use of the 
L2-norm in (3.6), the solution (3.7) of the unconstrained problem can yield physically meaningless 
results. The inherent physical characteristics of the failure surface must be fulfilled as additional 
constraints of the problem in equality or inequality form. Obviously, the stress space origin must 
lie within the EPFS surface. This is equivalent to the constraints: 

Hl l  > 0, H22 > 0, H33 > 0. (3.8) 

We assume also that the strongest uniaxial compression resistance is higher than the 
corresponding tensile resistance in the direction 3. Then, it is valid that: 

h3 > 0. (3.9) 

Relations (3.8) and (3.9) are written in the general linear inequality system form, as follows: 

C x  + d > 0 (3.10) 

with d = 0 and C = / .  
So far the determination of x amounts to the solution of the constrained minimization 

problem: 

1 
Find x minimizing Em(X ) = ~ xT  A A T x  -- (Ab)7"x 

subjected to C x  + d > O. 
(3.11) 

Relation (3.11) constitutes a classical Quadratic Programming Problem (QPP) and can be solved 
through one of the well-established solution techniques. One popular method is the transforma- 
tion of the QPP (3.11) to the equivalent Linear Complementarity Problem (LCP) and the 
application of a respective solution algorithm. Setting the inequality constraints as follows: 

w(x) = C x  + d, w(x) >= 0 (3.12) 
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the Lagrangian of the constrained optimization problem (3.11) takes the following form: 

L(x,  z) = Era(x) - zrw(x) (3.13) 

where z lists the Lagrangian multipliers for the inequality side conditions. 
The Kuhn-Tucker optimality conditions for the inequality constrained problem (3.11) now 

take the form: 

VxL(x, z) = 0, z >= O, w(x) >= O, zrw(x)  = O. 

The first one becomes: 

(3.14) 

A A r x  - b - Cr  z = 0 

and yields the desired estimation of x as function of the Lagrangian multipliers, i.e.: 

x = Xo + ( A A r ) - I C  r=, where Xo = ( A A r ) - l b .  (3.15) 

Xo is the so-called "bilateral estimation" corresponding to (3.7), i.e. the estimation obtained, if the 
inequality constraints are ignored. Relations (3.12) and (3.15) yield the inequal constraints as 
linear functions of the Lagrangian multipliers, i.e. 

w = M z  + q, w(z) >_ 0 (3.16) 

with 

M = C ( A A r )  - 1Cr,  q = d + Cxo.  (3.17) 

Using the rest of the Kuhn-Tucker conditions (3.14), (3.16) and (3.17) the equivalent LCP is 
obtained: 

z > O, w(z) > O, zrw(z) = 0, w(z) = M z  + q. (3.18) 

Now the parameter identification problem amounts to find a solution z of (3.18). Then, (3.15) 
yields the desired estimation x. The numerical solution is obtained by the Mangasarian 
algorithm [9] given in the Appendix. 

The following remarks are useful: 

i) The rank of A must be at least 6, to assure that (AA r) is invertible, i.e. at least 
6 measurement points, not lying on a plane, are required. Under this condition M is positive 
definite and the solution of (3.18) is unique. 

ii) The technique described is based on the linearity of the error, as function of the unknown 
failure criterion coefficients (Eq. (3.3)). The same method is in principle applicable with one basic 
difference to the Tsai-Wu criterion, but not applicable to the Tsai-Hahn one. The difference is 
that the ellipticity conditions must be included as a subsidiary condition. The condition is 
non-linear and thus additional numerical difficulties arise. Moreover, no uniqueness of the 
solution is assured. Furthermore, if the Hi~ (i r j) is not posed equal to zero to the Tsai-Wu 
criterion the unknowns become 9 and thus more measurement points are required than for the 
EPFS criterion, which in any case do not guarantee a uniqueness of the solution. On the other 
hand, the Tsai-Hahn criterion leads to non-linear error functions with unpredictable effects on 
the uniqueness and stability of the solution of the parameter identification problem. As a result in 
the parameter identification problem for failure surface, the EPFS criterion represents the most 
balanced choice. 
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These conceptual weaknesses of the popular Tsai-Wu and Tsai-Hahn criteria should be 
added to the inherent drawbacks of these criteria which either violate phenomenological 
principles of mechanics, or constitute crude approximations, which may give unacceptable 
results when applied to real materials [2]. 

iii) The final value of the error vector given in (3.4) is expressed by: 

e = eo + Ar (AAr )  -1 Crz ,  with eo = Arxo  - b (3.19) 

where eo is the bilateral error vector. 
iv) The mean square deviation, i.e. the cost functional of the constrained minimization 

problem (3.11) is given by: 

1 
E m =  Emo 4- -~ zrMz (3.20) 

where Emo is the bilateral mean square deviation. Due to the positive definiteness of M, the 
consideration of the inequality constraints increases the final mean square deviation. 

4 The neural network approach to the evolution of the failure surface 

By means of the method of Section 3 one can determine the coefficients of the failure surface if 
certain experimental results are given. We can construct some approximations on the previous, 
or further evolution of the failure surface by "teaching" the computer to "imitate" the 
experimental procedure. This is possible by embedding the problem in a neural network 
environment and by applying a supervised learning algorithm, [10], [11], [12]. 

Suppose that we have a set of failure measurements and we have constructed the failure 
surfaces which correspond to them. We would like to extrapolate or interpolate them, in the sense 
that we give certain failure stress states and we would like to determine the failure surface to 
which they belong. The failure surfaces sought may lie either "between" the obtained ones by 
experiments, by applying the method of the previous Section or "beyond" the obtained ones. 
This kind of prediction of the geometry of the failure surface is possible by using a supervised 
learning technique, [10], [11]. 

Neural network models are efficient in computational problems, where many assumptions 
have to be satisfied in parallel. This is achieved by using networks of neurons with nonlinear 
behaviour and with a high degree of interconnection. The neurons are connected with links of 
variable weights. A neural network is defined by the responses of its nodes, the learning rule and 
the network geometry. The learning rules improve the network total response through adaptive 
changes of the weights of the links. In the neural network each node (neuron), i, sums up the 
weighted inputs, say: 

V~ = e ,  + % TjIV i (4.1) 
j = t  

where Tji is the weight of each link or synapse between the i andj  neurons, V~ is the output of the 
j-neuron (j = 1 . . . . .  n), from all the n-nodes with which it is connected, and gives as an output the 
quantity: 

f ,  Tj ,~ + O, (4.2) 
J 
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Fig. 1. The principal diagonal plane (or3, 512)-intersections of the EPFS for three typical loading steps of the 
Naxian marble 

o~ 

Fig. 2. The (al, a3)-principal stress plane intersections of the EPFS for three typical loading steps of the 
Naxian marble 

where f(.) is generally a nonlinear response function. Quanti ty O~ is a real number  denoting the 
external threshold of the/-neuron. In Fig. 1 of [7] we give four common  types off :  the hard limiter 
(Fig. 1 a), the simple limiter (Fig. 1 b), the sigmoidal nonlinear limiter (Fig. 1 c), and the eomparator  
(Fig. 1 d). The output  of the / -neuron  in Fig. 2 in the same references [7] is transmitted to other 
neurons until a final state of the network is achieved. Here we "construct" a fictitious neural 
network, appropriate  for the treatment of the posed problem. The proposed neural network and 
the process of transmission from neuron to neuron is simulated in our problems on a digital 
computer,  since neural computers  are not yet available for the moment  in the commerce. 

Variations of the synaptic weights, according to an adaptive algorithm, endow the neural 
networks with "learning" capabilities, i.e. that  desired outputs may  be produced, or approxima- 
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ted, with any prescribed degree of accuracy. Here we present first an adaptive network called 
adaline and then a modification of it, called the pereeptron, which will be used for the numerical 
t reatment  of the EPFS determination problem. 

The adaline (adaptive linear neuron) consists of the neuron of Fig. 2 of [7] which has 
the possibility to change its weights Tii. More  precisely, it consists of an adaptive linear combiner 
(ALC), connected with a two-level quantizer (i.e. f2, in Fig. 2, is the hard limiter nonlinearity). 
We replace Oj by considering an additional neuron having Tjo = 0 and Vo = 1. The adaline 
has (n + 1) inputs Vo = 1, V~ . . . . .  V, and two outputs, that  is an analog output  uj and a binary 
output  yj. 

n 

Here uj = ~ TjgV~ and y~ = { + 1, ifuj > 0, while - 1, ifuj < 0}. The desired output  dj, which 
i = 0  

is given, is compared  with u j, and the square error ej 2 = (dj - u j) 2 is minimized by adjusting the 
weights Tji. Let us now minimize the square error at the "moment  t", given by: 

] a (dj - u j) ~. Ej  = ~ ej2(t) = (4.3) 

We apply the steepest descent minimization algorithm, and we may write the system of 
differential equations [10] as follows: 

dTj~= c3Ej cOEj ~3uj 
/~ = # - -  /~ > O. ( 4 . 4 )  

dt (3 T~i Ouj ~ T;i 

Then, from uj = ~ TjIV~ we obtain that: 
g ~ 0  

dt = I~ dj - Tj, V~ V~ (4.5) 
r = 0  

where # > 0 is called the learning parameter, or the adaptive gain. Through "t ime" discretization 
(4.5) yields: 

T(k.+l) T(~) + ~fk)(dj Uj ~k)) V~ ~k) k = 0, 1, 2, (4.6) 
f l  ~ -  ~ d t  - -  " " "  

which is the Widrow-Hoff  "Delta  Rule" for learning [13]. 
Here 0 < ~fk) < qm,x is the learning rate, which controls the convergence and stability of the 

weight adapt ion process. Concerning the choice of the constant, ~fk), and the logic functions 
which can be realized by a single adaline after training, see [10]. Figure 3 of [7] gives the adaline 
neural network. n 

The perceptron is analogous to the adaline with the only difference that uj = ~ Tj~V~ is sent 
~=o 

through a quantizer of the type of hard limiter, i.e. yj = sign uj. Thus, a binary output  yj = __+ 1 is 
obtained. This output  is compared  with the desired output  d j, which is given also in binary form, 
i.e. dj = __+ 1. Then, the quantized error ej = dj - yj is considered for the adjustment of the 
weights. For  the perceptron the learning rule reads: 

T~k. + ~) rle(~,)v~(k) j~ = T}~ ) + . (4.7) 

Here y (k)=  sign uj (k), gj(k)= ~j(k)_ yj(k) and uj(k)= ~ T}~)V~ (k). Index (k) denotes the time 
i = 1  

moment ,  as in (4.6). In many  problems it is better to replace the hard-limiter function by 
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Fig. 3. The(a1, a2)-principal stress plane inter- 
seefions of the EPFS for three typical loading 
steps of the Naxian marble 

a sigmoid function, i.e. yj = tanh (~uj), ~ > 0. Then, the steepest-descent algorithm yields that  

[101: 

T(k.+ 1) J~ = T}~) + rlTEj(k)[ l _ (yj(k))z] Vi{k) . (4.8) 

A generalization of the single-layer perceptron is the multilayer perceptron. 
The problem, which we have to solve is the following: Suppose that we dispose various 

loading paths through given stress states lying on a prescribed failure surface. The ends of the 
paths (in the case of extrapolation) or certain intermediate points of the paths (in the case of 
interpolation) are given and they belong to distinct failure surfaces, which must be determined. 
This is again a parameter  identification problem analogous to the one of ref. [7]. 

In a neural network environment the parameter  identification problem can be formulated as 
a " s u p e r v i s e d  l e a r n i n g "  problem. The learning is called supervised because it is guided by taking 
into account the desired result. Suppose now that the stresses, a, are prescribed. We want to 
determine the control vector z = {Hll ,  H22, Haa, h l ,  h2, h3} such as to minimize the differences 
in (4.3) (dj are the given stress states). For  the numerical solution we apply a scheme analogous to 
(4.6). The determination of the values of the EPFS coefficients is achieved by means of an adaline 
neural network N, in which the Hit ,  hi (i = 1, 2, 3) represent the synaptic weights. The network 
operates in the following way: The initial guess z (~ gives an initial estimation of the failure 
surface, which is intersected by the path  in the point a (~ 
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Then, we transmit z (~ to the adaline N and we adopt the following iterative scheme (cf. 
also (4.6)): 

-,,,=-,o +.,o,.r~ (~ ~ o,o,=,o,)~ o,3 L , = I  ,=1  (4 .9)  

3k 

Here g is a function (e.g. of the type of Fig. 1 c of [7]) indicating the correcting term influence, and 
k denotes the number of triads of stresses a l ,  az, a3 in the principle stress space, which are the 
prescribed stress states belonging (or at least lying very close) to the sought interpolated or 
extrapolated failure surface. 

The convergence theory for the perceptron [13] implies here that, if the learning problem 
which we study has a solution, the perceptron algorithm converges to this solution. 

5 Numerical applications 

Experimental studies on the subsequent yield surfaces of engineering materials have been 
reported by extremely numerous investigators. It may be stated that the experimental study of 
yield loci of ductile and semibrittle materials constitutes the experiment which occupied most the 
interest of research for many decades of years and various laboratories. Some important 
contributions to this subject are reviewed in the literature [14], [15]. However, all these important 
studies are restricted to the determination of only some of the elastic and plastic properties of the 
deformed material and they do not yield the complete number of stress limits for each loading 
step along the principal directions of anisotropy of the material. Thus, these tests, although very 
important, do not give all the necessary informations for the unambiguous definition of the 
successive yield loci of the deformed material, which as the loading is progressing are changing in 
anisotropy due to the evolution of plasticity and the strength differential effect. 

Therefore, in our studies here, in order to study the possibilities of the method we are utilizing 
data from experiments, which, due to their completeness, directness and accuracy, may assure the 
safe and accurate definition of the failure loci at each loading step. These experiments are with 
a coarse-grained dense crystalline marble of an excellent quality from the Greek island of Naxos, 
extensively used in engineering constructions, as well as in artistic applications. This kind of 
marble presents a cataciastic mode of deformation, since it is a rock derived from igneous parent 
rocks, in which the mineral grains have a highly oriented fabric of the schist type, and in which 
needle-like or platy minerals tend to lie with their long directions parallel, or their planar 
directions parallel, so that they present a pronounced mineralogical layering. This particular 
layering influences the mechanical properties of the rock and it will be also detected by the mode 
of anisotropy of the material, revealed during the applications of loads in triaxial tests. 

This kind of the material presents an early defined system of principal directions of 
anisotropy, where the direction normal to the platy and needle-like inclusions is always 
a principal stress direction, whereas the other two principal directions lie on the platy inclusions 
parallel and normal to the needle-like inclusions. Furthermore, the strength of this material is 
rather reduced, so that modern triaxial testing machines can satisfactorily load the specimens up 
to fracture. Therefore, it was decided to use this type of material for applying the method 
developed in the paper and take into consideration the existing accurate experimental results 
existing in the literature [16]. However, the elasto-plastic behaviour of this material does not 
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differ in principle with any mildly ductile material  (metal or other material), and therefore the 

results of appl icat ion of the method on such a material  should be considered as of a general 

validity. 

The specimens used in our tests have a prismatic  form of a length of 10 cm and a cross-section 

5 x 5 cm z, which are considered as el iminating most  of the end-effects in their central parts,  where 

measurements of strains were performed. Triaxial tests under constant  levels of the one lateral  

component  of the principal  stresses @r2) gave the following results contained in Table 1. 

Repeti t ion of identical tests has shown that  reproducibi l i ty was satisfactory in the loading- 

unloading cycles, employed to determine a recoverable strain behaviour  at different loading 

steps. These tests were used to define initial and subsequent yields of the material ,  which were, 

however, different for different loading paths, depending on the differences of the intermediate 

stresses. 

In engineering applications,  under arbi t rary  modes of external triaxial loading, it is sufficient 

to assume that  the material  is in principle a generally or thot ropic  material,  since materials  

utilized in engineering constructions do not  usually exceed this degree of anisotropy.  In  order  to 

Table 1. The values of the yield stresses under triaxial loading from parametric 
values of the a~-principal stress at three loading steps (initial yielding, conventional 
yielding at e = -0.002 and yielding at ultimate strength) of a Naxian marble 

~1 a2 ~r3y a3y(e = -0.2%) O'3u 

3.50 49.00 52.30 60.70 
10.34 62.00 68.00 76.90 
20.70 73.50 79.90 105.00 
34.45 78.10 96.00 105.30 

3.50 3.50 52.70 55.00 65.30 
5.20 53.80 71.50 75.10 
6.90 65.60 79.50 83.90 

10.35 70.20 116.20 94.10 
27.60 95.80 170.40 129.80 
69.00 116.70 143.30 192.20 
82.75 103.10 - 143.30 

6.90 6.90 75.30 - 83.80 
13.80 85.30 96.60 112.80 
27.60 101.40 - 134.10 
55.20 137.80 186.50 191.60 
82.75 135.10+ 188.10 188.10 

110.30 129.10+ 137.80+ 174.60 

13.80 13.80 80.00 115.50 115.90 
20.70 94.40 117.20 126.30 
27.60 112.10 141.70 147.70 
41.40 126.00 150.80 154.80 
55.20 145.90+ 189.20 196.40 
82.75 169.60+ 235.70 254.40 

110.30 225.90 267.50 278.10 

20.70 20.70 105.80 138.00 138.00 
27.60 118.70 145.00 150.20 
62.05 156.10 - 208.70 
82.75 205.30+ 259.40 260.20 

110.30 191.20 288.00 289.10 
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run a series of complicated triaxial tests a combination of two loading machines was used. The 
first was capable to apply an axial load of up to 2,000 KN, whereas the second could supplement 
the loading of the specimen by generating a confining pressure through a servocontrolled system, 
thus loading the piston of the pressure vessel. The latter machine was equipped by a precise and 

quick-responding servovalve, thus maintaining constant confining pressure inside the triaxial 
loading cell, when the specimen is either contracted or dilated. The loading unit, consisting of 

a pressure vessel and the triaxial cell, was designed to sustain pressures up to 250 MPa. The 
pressure vessel was connected with the triaxial cell, so that the pressure in the vessel was 

transmitted to triaxial cell with the servomechanism keeping a constant pressure during the test, 
while lateral volumetric changes in the specimen were transformed into linear movements of the 

piston. The main characteristics of the testing device are, therefore, a uniformly distributed and 

independently controlled device of application of a triaxial type of principal stresses, comple- 

mented by a system of accurate and rapidly measured strains in a large range of deformations, 
whereas the machine is a robust one, which disposes a high capacity of sustaining stresses of the 

order of 250 MPa. 
For  establishing the strength behaviour of this type of brittle rock under a triaxial mode 

of loading, a series of tests were conducted along loading paths following either the 

hydrostatic axis in the stress space, or paths with varying a2 = o.3 stresses, while the 
o.l-principal stress was kept constant, or path in which the o-1- and o.2-stresses are kept 

constant at various levels and increased the o.3-stress up-to-yielding and ultimate strength of 

the material. Tables 1 and 2 present the variation of the o'1, o'z, o.3, components of principal 

stresses, either at initial yielding, or at a conventional yielding creating a volumetric 
conventional strain e~o~ = - 0 . 2 % ,  or at peak strength [16]. Initial yielding is defined 

according to the ASTM standards as a minimum deviation from linearity of the stress-strain 

curve of the material in simple tension. 

Table 2. The values of the yield stresses under triaxial loading from 
parametric values of the ~r2-principal stress at three loading steps 
(initial yielding, conventional yielding at e = - 0.002 and yielding at 
ultimate strength) of a Naxian marble 

al a2 a3y a3y (e = -0.2%) cr3~lt 

0 20.70 73.5 79.9 105.0 
13.80 94.4 117.2 126.3 
20.70 105.8 138.0 138.0 

3.45 27.60 95.8 170.4 129.8 
6.90 101.4 - 134.3 

13.80 112.1 141.7 147.2 
20.70 118.7 145.0 150.2 
27.60 122.4 160.0 170.0 

6.90 55.20 137.8 186.5 191.6 
13.80 145.9 189.2 196.4 
27.60 165.6 188.9 222.0 
55.15 192.0 244.3 - 

3.45 82.75 103.1 128.4 143.3 
6.90 135.1 188.1 188.1 

13.80 169.6 235.7 254.4 
20.70 205.3 249.4 260.2 
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The results from triaxial tests included in Table 1 and 2 are obtained as follows: The one of the 
lateral principal stresses, either the 0-1-stress, for Table 1, or the az-stress, for Table 2, were kept 
constant at different loading steps. Then, combinations of the two remaining principal stresses 
0- 2 and 0-3 for Table 1 and 0-1 and 0-3 for Table 2 define the respective yield limits for the three 
different loading steps. 

By applying the method of Section 3, we identify the failure surfaces of EPFS corresponding 
to the data (a) of the initial yield column of Table 1 which we call the (first quadric), (b) the 
e P = - 0.2%0 yield strain column of the same Table where e P is the strain which corresponds to the 
initiation of the conventional plastic flow. This failure surface is called the second quadric and (c) 
the peak strength column of the same Table, which is called the third quadric. 

For the application of the method we consider as given the experimental yield points on the 
failure surfaces for subsequent loading steps inside the elastic-plastic region of loading and 
unloading of the specimens. On each given yield surface we take a finite number of points 
0-ij = (i = j  = 1, 2, 3) and we apply with respect to all given yield surfaces the numerical 
procedure of the previous Section. We assume that the elastic material is orthotropic, of changing 
anisotropy with loading, and we want to determine the sequence of the orthotropy coefficients 
(~(0~, 422,re(Q) ~'12 N(0) = t~21,N(0) t~33,~(0) within each element, which satisfy the identification problem for the 
stresses and constitute the elasticity tensor C (~ at the ~-step of the learning algorithm. As r ~ oe 
we theoretically obtain the solution tensor C = {ca1, e22, ~12 = 0~21, ~33}- We recall here that 
e~ = ella~h + a120-yh .. . . .  ?~y = ea30-~yh, where h -- 1 mm is the thickness of the plane structure. 
The yield point is defined by the limit stress, which corresponds to a plastic strain of 0.02 percent, 
[141, [15]. 

In order to get a more reliable approximation of the anisotropic elastoplastic problem with 
a sequence of anisotropic elastic problems, we also have considered intermediate yield points, 
through interpolation between two experimentally given failures in the 3D-stress space. The 
interpolation is guided by assuming that the stress point lies always on an elliptic paraboloid 
failure surface, for the general anisotropic hardening elastoplastic body presenting the strength 
differential effect [1], [2]. The failure surface in any principal stress plane is an ellipse, which can be 
defined from a series of points. The same property is valid for the deviatoric plane, as well as for 
any intersection parallel to this plane. The only exception to the general rule holding for the 
(EPFS)-criterion is for intersections of the failure paraboloid by planes containing the 
hydrostatic axis or the axis of symmetry of the paraboloid. These intersections are all parabolas 
[1], [2]. After the initial rough guess of a family of yield surfaces from a series of different 
experimentally determined triads of values of the principal stresses leading to different points of 
presumably the same yield surface, we obtain a family of slightly different failure loci 
corresponding to equivalent steps, but of different loading paths in the three dimensional 
principal stress space. 

The above procedure may be applied to obtain also subsequent yield surfaces for 
further loading and unloading steps from the experimental ones, for which the subsequent 
yield surfaces are known. Again, we determine a number of stress points, now by extra- 
polation, and we pass through these points an elliptic paraboloid failure surface in the 
respective (0-1, 0-2, 0-3) principal stress space, corresponding to this loading step. One should 
notice that the calculated orthotropic coefficients are fictitious and they are not uniquely 
determined. 

The three loading steps of the Naxian marble tested included in Tables 1 and 2 gave finally the 
following values for the terms of the respective tensors Hij and hi, contained in Table 3 a. Having 
at our disposition these values of stresses and of the coefficients Hij and h~, we can readily define 
the various intersections of the failure hyperspaces. 
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It  may  be readily shown [1], [2] that  the intersections of the failure hyperspaces by the 

three principal  d iagonal  planes (a3, 612), (trl, 823) and (a2, 813) are all parabolas ,  whose axes 

of symmetry are parallel  to the 0z-hydrostat ic  axis and lying at different distances from it, 

as the loading is progressing inside the plastici ty zone. Their equations are derived from 

relat ion (2.9) by a cyclic interchange of the respective indices. I t  has been proved that  the 

EPFSs  for the general or thot ropic  mater ia l  have their axes of symmetry  paral lely displaced, 

relatively to the hydrosta t ic  axis, but  moving outside the principal  d iagonal  planes. Indeed, 

for the or thot ropic  materials  the respective EPFSs  are angular ly  displaced, so that  the 

Table 3. The values of the terms of the elliptic paraboloid failure surface, (a) as well as the values of the 
characteristic quantities defining the (al, tr2), (cq, a3), and (a2, a3) principal stress intersections for the EPFSs 
(b, c, d) 

(a) 

Loading steps Hl l  H22 H33 hi h2 h3 Remarks 

Elastic limit (I) 0.19380 0.63794 0.21215 36.0586 0.12897 0.19375 All H u & hl 
must be multi- 

Initial yielding (II) 0.16969 0.42635 0.09545 27.743 0.11351 0.15328 plied by (xl0 -3) 

Ultimate strength (Ill) 0.34174 0.85537 0.15794 60.919 0.13114 0.14247 

(h) 
Principal stress plane (~rl, tr2) (*) 

Loading steps aim O'2M /~12 (*:~) ri2 a2M aim 012 (**) 

Elastic limit (I) --416.54 --202.38 --25.91 ~ 463.10 154 .09  202.38 --27.18 ~ 

Initial yielding (II) -611.12 -358.90 --30.42 ~ 708.72 128 .04  753 .11  -31.43 ~ 

Ultimate strength (IIl) --1167.38 -709.18 --31.28 ~ 1365.91 176.27 1389.72 -31.85 ~ 

(c) 
Principal stress plane (al, a3) (*) 

O'IM O'3M "~13 (:~) /'13 alM a2M 013 (**) 

Elastic limit (I) --74.93 -134.87 -47.26 ~ 156.92 184.36 55.48 --42.74 ~ 

Initial yielding (II) -135.85 -113.92 -39.98 ~ -177.30 256.14 114 .00  -57.36 ~ 

Ultimate strength (IIl) -241.31 -214.71 -24.36 ~ -323.00 412.14 81.86 -58.66 ~ 

(d) 
Principal stress plane (az, a3) <*) 

O'2M O'3M /~23 ('~*) r23 a2M a3M 023 (**) 

Elastic limit (l) --1.64 -3.00 -61.27 ~ -3.42 171 .81  3 5 . 0 1  --61.49 ~ 

Initial yielding (II) -1.95 -4.40 -66.10 ~ -4.81 227.65 44.62 -66.61 ~ 

Ultimate strength (III) -1.53 -3.71 -67.55 ~ -4.02 210.59 3 1 . 7 8  -68.04 ~ 

t,) All stresses in MPa's 
t**) Negative angles are measured from the negative principal axes with the lower index 
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Table 4. The values of the principal stresses in tension (arl) and compression (~rci) along the three principal 
axes for the EPFSs 

Loading steps O'T1 (g*) GC1 GT2 GC2 GT3 GC3 

Elastic (I) 24.54 -210.60 39.49 -39.69 68.20 -69.11 

Initial yielding (II) 30.39 - 193.88 48.30 - 48.56 101.55 - 103.16 

Ultimate strength (III) 15.10 -193.36 34.11 -34.78 79.12 -80.02 

(*) All components of stresses in MPa's 

centers of their transverse elliptic intersections lie outside the principal diagonal planes and 
their symmetry planes are intersecting the pricipal diagonal planes along lines parallel to 
the hydrostatic axis, whose traces on the deviatoric plane lie outside the origin of coordi- 
nates. 

Figure 1 presents the parabolas corresponding to the intersections of the failure loci by the 
(a3, 6i2)-principal diagonal planes. It is obvious from these plottings that, as the loading of the 
material increases up to its ultimate strength, the elliptic paraboloids become more and more 
shallow, and the distances of their symmetry axes from the hydrostatic axis increase 
progressively. It has been already shown that, when the anisotropy of the material is increasing, 
its representative failure locus becomes progressively shallower and the coordinates t/and ~ of 
the distances between the symmetry axis of the paraboloids and the hydrostatic axis are also 
increasing. These distances for the orthotropic material are given by complicated relationships 
for the general orthotropic material and they are not given here. These relationships for the 
transversely isotropic material are considerably simplified and they are given in [2]. 

The principal stress intersections of the elliptic paraboloid failure surfaces which are of most 
interest because they give the respective failure loci in the principal stress planes are elliptic curves 
whose centers are the following coordinates [2] and an angle 2i of inclination of the polar radii of 
their centers given by: 

I X (h3H3t -- hlH33) 

= : - -  ' 

l ( h l H 3 i  - -  h3Htl) t 
(5.1) 

arctan (hlH33 - haHll) 
21 = (5.2) 

h3H33 

The systems of Cartesian coordinates ( M -  ai, 0"3), to which these ellipses are central and 
symmetric, are defined by the angles 0i, expressed by: 

1 ( 
01 = ~ arctan k H33 _ H l l j  (5.3) 

whereas the semi-axes aim and a ,u  of the ellipses are given by: 

611M, a3M ~ - - - ~  
Hilh32 +H33hi  2 - 2hth3H3i 

( H t l  - -  H22) 2 -t- H33(4H12 - -  H33) 
(5.4) 
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Fig. 4. The (tr2, a3)-principal stress plane intersections of the 
EPFS for three typical loading steps of the Naxian marble 

where: 

1 
&/~ = ~- [(H~ + H33) - V(H33 - H~,) + 4H~I]. (5.5) 

Similar relationships are valid for the two other principal stress planes ((al, 0-2) and (0"2, 0"3)), 
where these equations are established by cyclic rotation of the indices. 

Table 3 (b, c, d) contains all the necessary dimensions for plotting these intersections. Thus, 
the tr~u, a ju  coordinates of the centers of the ellipses, as well as their polar distances for the origin 
0 are given complemented by the polar angles 2 u, of these polar distances. Similarly the principal 
semi-axes of the ellipses are given together with the orientation of their major axes relatively to 
the principal frames of the EPFS. Furthermore, Figs. 2 - 4  present these intersections for the 
Naxian marble tested. Table 4 gives the values of principal stresses in tension and compression 
along the principal directions of the simple substance when it is loaded at the three loading steps 
considered in this paper. 

6 Results 

The neural network learning approach developed in this paper to solve a parameter 
identification problem for the mode of failure of anisotropic materials was employed to solve the 
general elastoplastic problem under multiaxial loading. The procedure succeeded to solve 



54 P.S. Theocaris et al. 

completely the problem of the definition of the failure loci of a material deformed pro- 
gressively in the elastic, up to its ultimate strength, by using only experimental data 
concentrated in a small area of the yielding, conveniently selected to give reliable and 
accurate experimental data. In this paper three characteristic steps of loading of a granular 
rock were considered, that is, in its elastic range, in the initial yielding defined by an 
effective strain of 0.02%, and finally at its ultimate strength. The experimental data were 
all concentrated in the compression-compression-compression octant of the yield locus, 
where these tests could be effectively executed. The method succeeds to yield a full picture 
of the failure hypersurface of the material, based on data belonging in the underbelly 
of the respective yield loci. 

The parameter identification method, realized in an appropriate neural network environ- 
ment, through supervised and unsupervised learning algorithms presents certain definite 
advantages over the classical numerical analysis with adjoining constraints, since it is derived 
from applying optimization problems, based on a neural network approach, where the 
anisotropic hardening elastoplastic behaviour is approximated by an ideal convenient material, 
whose properties are adapted to the existing experimental data. This method will be the subject 
of a companion paper. 

It is clear from Figures 1 to 4 that the material is strongly anisotropic with variable 
anisotropy, if the material is loaded inside the plastic zone. Moreover, the compression strength 
of the material is very pronounced and increasing as the loading is progressing. Table 4 indicates 
the values of the yielding stresses in triaxial loading, as the loading is progressing. Examining 
the values of the terms hi, responsible exclusively for the strength differential effect, one observes 
the striking difference between the values of hi and, on the other hand, the respective values 
of h2 and h3, These values are a hundred times smaller than ht and almost equal. This 
phenomenon indicates that the strength differential effect at the plane (a2, tr3) of symmetry is 
insignificant. Figure 4 indicates the same phenomenon. The three elliptic intersections by the 
(a2, a3)-plane of the EPFSs at different steps of loading have their centers almost at the origin 0 of 
the coordinate system a20a3, thus resulting to almost equal tension and compression stresses 
along the principal axes of the ellipses. 

Appendix: The Mangasarian algorithm 

The Mangasarian successive relaxation technique is a simple and powerful technique for solving 
symmetric LCPs, consisting of a number of iteration circles in the sense of the well-known 
Gauss-Seidel method. Within each iteration, the side conditions are set sequentially equal to zero 
to yield an estimation of the respective Lagrangian multiplier. If this one is nonnegative, it is 
retained; otherwise, it is set to zero and the gap values are suitably updated. A computer-oriented 
implementation is described next. 

Let ~o denote the relaxation parameter (0 < co < 2). In the sequel, m e will always denote the 
Q-column of the matrix M. Let m0~ be the p-diagonal of M. Let us assume that k iterations have 
been completed and within the k + 1 iteration the values of j-1 Lagrangian multipliers so k+ 1, 
0 = 1, 2 . . . . .  j - 1 have been already computed; that is, we are ready to proceed with the 
computation of the next Lagrangian multiplier sj k+ t The current side condition estimates are: 

j - - I  

tV = ~ moso k+l d- mjsf l  -I- ~ mQsQ k -]- q. 
Q=I  o = j + l  
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Lagrangian multiplier correction: A s j  = - ~ o w / m j j  

Candidate Lagrangian multiplier: y = s j *  + A s j  

Final Lagrangian multiplier: If y < 0 set s j  k+ l = O, e = - s j  k 

else, set s j  *+1 = y ,  c = As~ 

Update side conditions: w = w + m j c .  
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