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Summary-  Zusammenfassung 

Large Axisymmetric Delormation of a Non-Linear Viscoelastic Circular )Iembrane. 
The problem of a viscoelastic circular membrane deforming under its own weight is con- 
sidered. The membrane, clamped in a horizontal plane at its boundary, is formed from a 
non-linear viscoelastic material whose behaviour is modelled by a non-linear single integral 
constitutive equation. The sag of the membrane is considered quasi-static and provision 
is made in the model for making the relaxation time stretch-dependent. The analysis leads 
to a system of three equations, two of which are first-order non-linear partial-differential 
integral equations while the third is an algebraic relation. Time deseretization enables the 
differential equations to be solved as ordinary differential equations which may be dealt 
with by a familiar step-wise integration process. 

Numerical solutions are obtained for membranes with both stretch-dependent and 
stretch-independent relaxation times. 

Groll% axialsymmetrisehe Durchbiegung einer nichtlinearen, viskoelastischen Kreis- 
membran. Das Deformationsproblem einer viscoelastischen Kreismembran unter Eigen- 
gewichtsbelastung wird untersucht. Die in ihrer horizontalen Mittelfliiche am l~and ein- 
gespannte Membran ist aus nichtlinearem, viskoclastischem Material, dessen Verhalten 
durch nichtlineare, konstitutive Einfachintegrale beschrieben wird. Die Absenkung der 
Membran wird quasistatisch angeommen, die Relaxationszeit wurde in das Modell deh- 
nungsabh~ngig eingefiihrt. Die mathematisehe Beschreibung fiihrt auf ein System yon 
drei Gleichungen, von denen zwei niehtlineare, partielle Differentialgleichungen erster 
Ordnung sind, w~hrend die dritte eine algebraische Beziehung darstellt. Diskretisierung 
in der Zeit erm6glicht eine L6sung der Differentialgleiehungen, die mit einem bekannten, 
sehrittweisen tntegrationsverfahren gel6st werden k6nnen. 

Numerische Ergebnisse werden sowohl fiir dehnungsabh~ngige als auch fiir dehnungs- 
unabhgngige Relaxationszeiten erhalten. 

1. Introduction 

The s t re tch ing  of viscoelast ic  membranes  m a y  l ead  to  considerable  d i s to r t ion  
f rom the i r  or iginal  conf igurat ion.  I t  is the  i n t en t ion  of this  p a p e r  to  s t u d y  t h e  
de fo rma t ion  of. a non- l inea r ly  viscoelast ic  c ircular  m e m b r a n e  which sags f rom 
suppor t s  a t  i ts  b o u n d a r y  under  i ts own weight.  

Elas t ic  membranes  have  been  t r e a t e d  ex tens ive ly  in the  l i te ra ture .  Green  and  
Adkins  [1], for example  cover  t he  t h e o r y  of non- l inear ly  elast ic  membranes  corn- 
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prehensively, including axiallysymmetric membranes as a particular case of the 
more general theory of thin elastic membranes. The t reatment  of viscoelastic 
membrane problems is comparatively rare. A number of non-linear viscoelastic 
membrane problems have been solved by Wineman [2], [3], [4] and Feng [5] has 
adopted a similar approach to Wineman's in his consideration of a bonded visco- 
elastic toroidal membrane. Finally, there is a recent paper by Buekley and 
Green [6] which studies small deformations of a non-linear viscoelastic tube due to 
combinations of axial force, axial couple and excess pressure. 

The papers of Wineman have particular relevance to the present work. The 
constitutive equations for the membrane material in [2] and [3], as here, are 
based on the single-integral representation developed by  Pipkin and Rogers [7], 
and the actuat material used here is that  chosen by Wineman in the same two 
papers. Furthermore, Wineman's formulation of the membrane problem in [4] in 
terms of radial and circumferential stretch ratios as dependent variables has been 
used in large measure in the following analysis. 

2. Formulation of the Theory 

A cylindrical polar co-ordinate system O = o(r, t), O, z = z(r, t) is chosen for 
convenience, where (r, 0, 0) are co-ordinates in the membrane mid-surface for 
t ~ 0. By the symmetry of the deformation the particle at the central point for 
t <~ 0 remains at the deformed central point for all time. The distance of the 
point P(~o, 0, z) from the deformed central point measured along the membrane 
mid-surface in the meridional direction is .s; for t ~ 0, s = r. At P the tangent in 
the meridional direction makes the angle ~ with the horizontal plane and the 
extension ratios in the meridional, circumferential and normal directions are, 
respectively, 

~ (r, t) ,  (~) 

;~ = ~ (r, t) ,  (2) 
7' 

and 
~3 = (;h)-~) -1 .  (3) 

Eq. (3) expresses the assumption that  the l nembrane material is incompressible. 
Let  w0 be the weight per unit area of unstretched membrane and T = T(r ,  t) 

and N = IV(r, t) be the meridional and hoop forces per unit length of membrane 
mid-surface respectively at time t > 0. 

Two independent force balance equations may be derived by considering the 
equilibrium of an element in the deformed surface. 

The equation for vertical force components is 

(To sin ~b) = wor, 
c% 

which, when integrated, gives 

1 
T e sin ? ---- T w~ (4) 
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Similarly, force equilibrium in the meridional direction at P gives 

~r (T~) = two sin r + N ~r~S cos ~. 

The elimination of qJ is achieved by using the familiar relation 

cos r = ~O/~s = 9/2~, 
where 

together with 

(5)  

(6) 

9 = - - ,  (7)  
3r 

s i n  ~b ( 2 ~  _ V-~)l/~ - -  ( 8 )  

Eqs. (7) and (8), with Eq. (2), transform Eqs. (4) and (5) to 

1 W0r21(212 __ 92)_1/2 22T = -~- 

and 

(9) 

21 ~ (r22T) : -  rwo(21 ~ - -  92) 1/2 if- N921 (10) 

respectively. 
As has already been noted by Wineman [4] the most natural dependent  

variables in ~xisymmetric membrane problems are 2~, 42 and 9- The third equation 
to accompany Eqs. (9) and (10) is found through a compatibility condition formed 
by eliminating ~ between 42 and 9. From Eq. (2) 

e2_~ = ~ -- 2_______A~" (11) 
0r r 

The non-zero components of stress per unit deformed area are in the meridional 
and circumferential directions, being denoted by ~1 and ~e respective]y. The 
meridional and hoop forces may be obtained in terms of the current membrane 
thickness h = h023, where h 0 is the thickness of the unstretched membrane, and the 
stress components through 

T : h023(h and N = ]~0}~3(~2. (12) 

Substituting Eqs. (12) in Eqs. (9) and (10) leads to 

w~ (13) 
23(h = 2ho2~(212 _ ~)1/2' 

and 
WO~3 ~2)1/2 ~1~32 

8-7 (2~1) = -~0 ( 2 d  - + ~ 9(~2 - ~,) (14) 

where 2s may be expressed in terms of 41 and 22 by Eq. (3). 
Now ~1 and ~2 may be written as functions of 41 and 22 through a constitutive 

relation, and when this is clone Eqs. (11), (13) and (14) provide a system of partial 
differential equations for the dependent variables 21(r, t), 22(r, t) and 9(r, t). The 
boundary conditions for the system are obtained by considering the stretch ratios 
at the centre of the membrane and the fixed hoop stretch ratio of the membrane 
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boundary .  For  part icles a t  PQo, 0, z) near  the  centre  of the  membrane ,  

lira e _ e o and  lira-2_ = 1. 
r-->0 r ~?' r-->0 8 

Thus, b y  Eqs. (1), (2) and (6) respect ively,  

21(0, t) = 22(0, t) = ~(0, t). (15) 

Also, since part icles a t  P ( R ,  0, 0) are c lamped in their  original horizontal  position 
the  other  bounda ry  condition is 

22(R, t) = 1. (16) 

The  ins tantaneous  posit ion of a par t ic le  a t  P(~o, 0, z) on the  deformed  membrane  
mid-surface can be found once 2~, 22 and ~7 are known across the  membrane .  

B y  Eq. (2), 
o = ).2 r .  (17) 

Also, since ~z/~r = (~z/~s), (~s/~r) = sin ~O �9 21, 

o 

by  Eq. (8). 

3. Constitutive Equation and Specific Material 

The single integral  const i tu t ive  equat ion developed b y  Pipkin  and  Rogers  [7] 
will be used to model  the  behavionr  of an isotropic non-l inearly viscoelastic solid. 
I f  XA and x~(XA, t) are the  eoordinates  of a part icle  in its initial or reference s ta te  
and a t  t ime  t respeet ively,  the  three-dimensional  relat ion for an incompressible 
mater ia l  takes  the  form 

t 

R ' - -  (19) [IAB(t) = j do A B [ G ( ~ ) ,  t - -  ~] pXa,kX~,k. 

Here,  HAB is given in te rms  of the  Cauchy stress components  a~j by  

NAB : -  XA,~XB, ja~ i, 

which m a y  be inver ted  to give q j  = X~,AXi, BIIAB. 
JR is the  one-step re laxat ion function, and  

the right Cauehy-Green 
tensor  def ined b y  

G : FTF,  

strain measure,  where f is 

~ c~xi 
~-  ~ X  A ~ 2gLA. 

the deformat ion  gradient  

The  quan t i ty  p is an a rb i t r a ry  scalar arising as a react ion to mater ia l  incom- 
pressibili ty.  
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The operator da  is defined by  

, ~/~.z G~0(r) dr dG]ABiG) : OapQ 

so after inversion and an integration by parts  Eq. (19) becomes 

o(t) = - - p l  -~ F(t) [G(t), 0 +] + f etR[G(r), t -- ~] dr fe( t )  (20) 
0+ 

where 0t ~ ~/~(t -- r). 
l~ivlin [8] has shown that  for isotropic materials R may  be expressed in the 

form 
RIG,  t] = 40I @ r  -t- CeG z (21) 

where r 41 and 42 are scalar functions of t and the invariants of G defined by  

11 ~- tr  G,  

I2 = ~-1 [(tr G) 2 - -  tr G2], (22) 

/3 = det G,  

and det G denotes the de te rminant .  The specific non-linear viscoelastic material 
which will be used to illustrate the numerical method of solution of Eqs. (11), (13) 
and (14) was introduced by  Wineman [3] and subsequently by  Feng [5]. The forms 
chosen for 40, 41 and 4~ lead to analytical brevity whilst indicating some of the 
problems arising in investigations of this complexity. 

The Mooney [9] material of elasticity theory is combined with the standard 
linear solid of viscoelasticity theory to give 

and 40 = (1 + ~I1) _R[I~, t], 

41 = - ~ & [ I .  t], (23) 

42 = 0, 

where ~ is a dimensionless constant and 

R[L,  t] = o0[(1 - y) e-~m~ + ~,1 = CoO[L, t] (24) 

with 7 = UJCo,  the ratio of the Iong-term elastic modulus to the instantaneous 
modulus at t = 0 § Here, {~9[!1]} -1  represents a strain-dependent relaxation t ime 
and 

~[I1] = 1 [1 + fl(I1 --  3)] (25) 
~R 

where/~ is a positive dimensionless constant and rR is the relaxation t ime in the 
linear case. 

Since the membrane  deformation is axisymmetric for all t ~ 0 + the principal 
directions of the stresses and stretch ratios at  each point on the membrane mid- 
surface are known to be in the meridional, circumferential and normal directions 
at  each t ime t. The deformation gradient is, therefore, 

F - -  d~j)~, i, ] = 1, 2, 3 (no summation over i). 

3* 
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o~(t) 
Co 

and 

The condition aaa ( ~  a a ) =  0 enables the pressure p to be determined from 
Eqs. (20), (21), (25) and (26). The non-zero stresses (r~ ( ~  at) and ae2 ( ~  a~) are 
then given by 

t 

-- F~[).(t)] + f F~[2(t), R(r)] ( '~ tC[ I i ( r ) ,  t - -  r] dr, (26) 
0 + 

(~2(t) Fa[2(t)] + f F412(t), ).(3)] ~tO[tl(T), t - -  "g] dr. (27) 
Co o+ 

Here, ~(t) denotes the triplet (~l(t), ,~2(t), 2.a(t)) and 

Fl[)~(t)] = 0,12(t) - -  ),32(t)) (1 + a22~(t)), 
(2s) 

F2[)~(t), ,~(z)] ---- ()~,2(t) -- 232(t)) (1 + a),22(r)) + a(2~2(t) ),a2(r) -- ),a2(t) ~2(r)). 

The functions Fa and F4 are obtained from Eqs. (28) by  

Fa[&( t ) ,  ,i2(t). ,~3(t)] = F~[).2(t), ~(t). ;~3(t)], 
(29) 

F4[)~l(t), ),2(t), ),a(t), .~l(r), 22(r), ),3(r)] = F2[)~2(t), ),l(t), )~3(t), ),2(r), hi(T ), ~3(r)]. 

The dependence of all stresses and stretch ratios on position has been omitted for 
the sake of clarity in presentation. 

The constitutive Eqs. (26) and (27) are now substituted into the membrane 
equilibrium Eqs. (13) and (14) which, together with the compatibility condition 
(11), form a system of non-linear partial differential equations for ;~l(r, t), 22(r, t) 
and ~(r, t). Some simplification of these equations is achieved by defining a new 
quantity 

# ~ ~3ff1, (30) 

~nd using a rearrangement of Eq. (13) for ~ in terms of ~1, ,~2 and # to rewrite 
Eqs. (11) and (14) as 

and 

~r -- 2ho%~g + r . 1  - -  \2ho)*2,u] J ((72 -- a~) (32) 

respectively. 
Dimensionless variables are defined as follows: 

r* = r /R,  ho* - ~  ho/R, ~* - ~  o~lR, z* = z /R,  

t* = t/vR, v* = r/vR, #* = y/Wo, ~*  = (r/Wo, i = 1, 2, 3. 

Eq. (30) remains unchanged when it is transformed to dimensionless form and 
the asterisks are omitted, as they are in the following equations. Eqs. (31) and (32) 
take the nondimensional forms 

~ ~1 I X _  [ r ~11/~~ ~2 (33) 
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and 
O #  r 1 { 1 _ _ (  r ~1'12 

where )~a has been eliminated using Eq. (3). Similarly, the stress Eqs. (26) and (27) 
become 

t 
0" 1 
C"7 = F~[~t(t)] q- f F2D.(t), Z(~)] OtC[I~(v), t - -  ~] d r ,  (35) 

0 + 

and 
t 

2z-~" = Fa[;~(t)] 4- f F4[)~(t), ~(r)] ~tC[I~(v), t - -  ~] dv  (36) 
C 1  0 + 

where C1 = Co/wo, the functions F1, F2, Fa and F4 are given by Eqs. (28) and (29) 
and 

C[II(T), t -- ~] = (1-- y) exp [--{1 + fl(I~(v) - -  3)}. (t -- T)] + y. (37) 

For completeness at this stage the first-boundary condition, Eqs. (15), although 
unchanged in form, is 

;~(0, t) ---- ,t2(0, t) = ~(0, t) (38) 

and the second, Eq. (16), becomes 

~2(1, t) = 1. (39) 

4. The Development of the Solution 

The numerical method used for solving the system of Eqs. (30), (33) and (34) 
subject to the boundary conditions (38) and (39) is similar to the method used in 
papers to which reference has already been made [2], [4], [5]. The integrals in the 
expressions (35) and (36) for the stresses at t ime t are approximated by applying 
the trapezoidal rule with (n -- 1) unequal intervals, (t~, tk+l), k = 1, 2, ..., n --  1 
where tl = 0 and tn = t. If the solution is known up to and including time t,_1 
Eqs. (30), (33) and (34) then constitute a system of one algebraic equation and 
two ordinary differential equations for A1, ~2 and # as functions of r at t ime t ,  = t. 

The differential equations are solved for ;t2 and # using a fourth order •unge- 
Kut ta  routine whilst the algebraic equation is solved for ~1 at each step by an 
iterative method. Since the problem involves boundary values at  the two end 
points it is necessary to employ a "shooting" method. Thus, an estimate is made 
of the values of A2 ( =  21) at r = 0 and this allows an estimated value of # to be 
obtained from Eq. (30). The integration then proceeds up to the end point r ---- 1 
and if the boundary condition (39) is not satisfied it is necessary to repeat the 
process with new estimates at r = 0. 

Full details of the numerical procedures are given in Roberts [10]. 

5. Results and Discussion 

The Mooney model parameter ~ is chosen as 0.1 and the viscoelastic properties 
of the membrane material are determined by the values of y and ft. Attention 
here is concentrated on materials which become softer as time progresses, so that  
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y < 1. The effects of a strain-dependent relaxation time as defined by Eq. (25) 
are assessed by varying fi from zero. 

The results for the sag of a circular membrane under its own weight are 
presented in Figs. 1--8.  The membrane profile history shown in Fig. 1 is for the 
material C1 = 288, X = 1/3, fi = o. Thi~ shows an initial sag at the centre of 30% 
of the membrane radius, increasing to almost 50~ as t -+ o0. The stretch ratios 
and stresses as they vary with respect to r are shown in Figs. 2 and 3 respectively 
for the same membrane. Fig. 4 demonstrates the "overshoot" phenomenon found 
by both Wineman [3] and Feng [5] with similar materials. Here the history of z 

Fig .  1. Membrane profile history. C 1 = 288, y = 1/3 , /J  = 0. 
Dashed lines denote particle paths 
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Fig.  2. Histories of stretch ra t ios .  C 1 ~ 288, Y ~ 113, ,~ ~ 0 



Large  A x i s y m m e t r i c  D e f o r m a t i o n  of a Circular 5~embr~ne 3 9  

IOO 

9o 

lz 

6u 

~5 

3# 
o 

\ 
. . . . .  ~z ~ -.~.~.. x \ 

-% 

r , 

T ~ - -  

Fig.  3. Stress  h is tor ies .  C 1 ~ 288,  y = 1 /3 , /~  = 0 

0 / Z 2 # $- 6 

I \ , ~ \  \ j /  

! 
061 -~ 1..- 

- - p - O  
. . . . . .  p ~ 5  

o6L 

Fig. 4. Deformation history. C 1 ~ 2 8 8 ,  V ~ 1 / 3 , / 7  ~ 0 . 5  



40  D . H .  R o b e r t s  a n d  W. A. Green :  
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for particles at  r = 0 (0.2) 1.0 for fi ~ 0 is compared  with the highly non-linear 
viscoelastic case when fl ~ 5. The value of fi does not  affect initial or final values 
of the  variables (see also Figs. 5- -8)  but  takes them towards  their residual values 
at  different rates depending on the size of ft. For  relat ively large/3 the variables 
overshoot  their residual values, a phenomenon  which m a y  be explained in the ease 
of the  sagging membrane  by  considering the  re-distribution of weight as the 
membrane  stretches. A n y  initial s t retch at  the  centre puts  more weight on the 
particles nearer  the  boundary.  The amount  of creep which follows is amplified by/~ 
th rough  the form of ~[I~], (Eq. (25)), and  the  viscoelastic effects at  the  outer  
particles of the  membrane  work themselves'  out  rapidly, leaving only an  elastic 
component  to affect the  final deformat ion which, for fl = 5, is a contract ion 
across the entire membrane.  

:For the  membrane  problem considered here the overshoot phenomenon 
presents no instabili ty problems since all stresses are decreasing for most  of the 
time. I n  Wineman ' s  spinning membrane  problem [3] and  :Feng's toroidM mem- 
brane problem [5], however, the  principal stress resultants increase and  therefore 
could give rise to instability. 
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