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Summary — Zusammenfassung

Large Axisymmetric Deformation of a Non-Linear Viscoelastic Circular Membrane.
The problem of a viscoelastic circular membrane deforming under its own weight is con-
sidered. The membrane, clamped in a horizontal plane at its boundary, is formed from a
non-linear viscoelastic material whose behaviour is modelled by a non-linear single integral
constitutive equation. The sag of the membrane is considered quasi-static and provision
is made in the mode] for making the relaxation time stretch-dependent. The analysis leads
to a system of three equations, two of which are first-order non-linear partial-differential
integral equations while the third is an algebraic relation. Time descretization enables the
differential equations to be solved as ordinary differential equations which may be dealt
with by a familiar step-wise integration process.

Numerical solutions are obtained for membranes with both stretch-dependent and
stretch-independent relaxation times.

Grofie, axialsymmetrische Durchbiegung einer nichtlinearen, viskoelastischen Kreis-
membran. Das Deformationsproblem einer viscoelastischen Kreismembran unter Eigen-
gewichtshelastung wird untersucht. Die in ihrer horizontalen Mittelfliche am Rand ein-
gespannte Membran ist aus nichtlinearem, viskoelastischem Material, dessen Verhalten
durch nichtlineare, konstitutive Einfachintegrale beschrieben wird. Die Absenkung der
Membran wird quasistatisch angeommen, die Relaxationszeit wurde in das Modell deh-
nungsabhingig eingefithrt. Die mathematische Beschreibung fithrt auf ein System wvon
drei Gleichungen, von denen zwei nichtlineare, partielle Differentialgleichungen erster
Ordnung sind, wahrend die dritte eine algebraische Beziehung darstellt. Diskretisierung
in der Zeit erméglicht eine Losung der Differentialgleichungen, die mit einem bekannten,
schrittweisen Integrationsverfahren geldst werden kénnen.

Numerische Ergebnisse werden sowohl fir dehnungsabhéngige als auch fiir dehnungs-
unabhingige Relaxationszeiten erhalten.

1. Intreduction

The stretching of viscoelastic membranes may lead to considerable distortion
from their original configuration. It is the intention of this paper to study the
deformation of-a non-linearly viscoelastic circular membrane which sags from
supports at its boundary under its own weight.

Hlastic membranes have been treated extensively in the literature. Green and
Adkins [1], for example cover the theory of non-linearly elastic membranes com-
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prehengively, including axiallysymmetric membranes as a particular case of the
more general theory of thin elastic membranes. The treatment of viscoelastic
membrane problems is comparatively rare. A number of non-linear viscoelastic
membrane problems have been solved by Wineman [2], [3], {4] and Feng [5] has
adopted a similar approach to Wineman’s in his consideration of a bonded visco-
elastic toroidal membrane. Finally, there is a recent paper by Buckley and
Green [6] which studies small deformations of & non-linear viscoelastic tube due to
combinations of axial force, axial couple and excess pressure.

The papers of Wineman have particular relevance to the present work. The
constitutive equations for the membrane material in [2] and [3], as here, are
based on the single-integral representation developed by Pipkin and Rogers [7],
and the actual material used here is that chosen by Wineman in the same two
papers. Furthermore, Wineman’s formulation of the membrane problem in [4] in
terms of radial and circumferential stretch ratios as dependent variables has been
used in large measure in the following analysis.

2. Formulation of the Theory

A cylindrical polar co-ordinate system o == o(r, {), 0, z = z(r, 1) is chosen for
convenience, where (r, 8, 0) are co-ordinates in the membrane mid-surface for
t < 0. By the symmetry of the deformation the particle at the central point for
{ = 0 remains at the deformed central point for all time. The distance of the
point P(p, 0, 2) from the deformed central point measured along the membrane
mid-surface in the meridional direction is s; for £ =< 0, s = r. At P the tangent in
the meridional direction makes the angle ¢ with the horizontal plane and the
extension ratios in the meridional, circumferential and normal directions are,
respectively,

h=200, e

Ze = (1), 2)
and

/‘tz = (;‘1)~2)_1- (3)

Eq. (3) expresses the assumption that the membrane material is incompressible.

Let w, be the weight per unit area of unstretched membrane and 7 = 7'(r, t)
and N = N(r, t) be the meridional and hoop forces per unit length of membrane
mid-surface respectively at time ¢ > 0.

Two independent force balance equations may be derived by considering the
equilibrium of an element in the deformed surface.

The equation for vertical force components is

Z (To sin ) = wgr,
or
which, when integrated, gives

_—
To sin ¢y =



Large Axisymmetric Deformation of a Circular Membrane 33

Similarly, force equilibrium in the meridional direction at P gives

2 (To) = rwy sin ¢ + N cos P. (5)
or or
The elimination of ¢ is achieved by using the familiar relation
cos ¢ = 0o/0s = y/ly, (6)
where
4
e’ ™
together with
sin ¢ = M (8)
Z
Eqgs. (7) and (8), with Eq. (2), transform Egs. (4) and (5) to
1T = — wgrha(® — ) 9)
and
Iy = (1) = rog(ia?® = 7P 4 Ny (10)
respectively.

As has already been noted by Wineman [4] the most natural dependent
variables in axisymmetric membrane problems are 4,, 1, and #. The third equation
to accompany Eqs. (9) and (10) is found through a compatibility condition formed
by eliminating ¢ between 4, and #. From Eg. (2)

9y :Q‘_ZZ_ (11)

or 7

The non-zero components of stress per unit deformed area are in the meridional
and circumferential directions, being denoted by o, and o, respectively. The
meridional and hoop forces may be obtained in terms of the current membrane
thickness b = hyl;, where A, is the thickness of the unstretched membrane, and the
stress components through

T = holgo; and N = hyly0,. (12)
Substituting Eqs. (12) in Eqgs. (9) and (10) leads to

worAy

b0 = Gt — T 1)
and
0 ok AAs?
— (hyoy) = =2 (14® — )2 (o, — 0 (14)
0

where 1, may be expressed in terms of 4, and i, by Eq. (3).

Now o7 and ¢, may be written as functions of 1, and 2, through a constitutive
relation, and when this is done Eqs. (11), (13) and (14) provide a system of partial
differential equations for the dependent variables 2,(r, #), As(r, £) and #{r, t). The
boundary conditions for the system are obtained by considering the stretch ratios
at the centre of the membrane and the fixed hoop stretch ratio of the membrane
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boundary. For particles at P(g, 8, z) near the centre of the membrane,

lim £ = 2 and lim £ — 1.

r—0 ¥ ar r—0 S
Thus, by Eqs. (1), (2) and (6) respectively,
(0, 1) = 25(0, £) = 5(0, ©). (15)

Also, since particles at P(R, 8, 0) are clamped in their original horizontal position
the other boundary condition is

Jo(By 1) = 1. (16)

The instantaneous position of a particle at P(g, 8, z) on the deformed membrane
mid-surface ean be found once 4;, 1; and 5 are known across the membrane.

By Eq. (2),
0 = Jor. (17)

Also, since 8z/0r = (02/8s), (€s/or) = sinty - A,

:j 2 g2 gy (18)
6

3. Constitutive Equation and Specific Material

The single integral constitutive equation developed by Pipkin and Rogers {7]
will be used to model the behaviour of an isotropic non-linearly viscoelastic solid.
If X, and 2;(X, t) are the coordinates of a particle in its initial or reference state
and at time ¢ respectively, the three-dimensional relation for an incompressible
material takes the form

15t ] dalid G(v), ¢ — 7] — pX 1 X gy (19)

— 00

Here, 11,5 is given in terms of the Cauchy stress components g;; by
Hyp= XA,iXB,jGij’

which may be inverted to give o;; = @; 2;, 50145
R is the one-step relaxation function, and

G = FTF,

the right Cauchy-Green strain measure, where ¥ is the deformation gradient
tensor defined by

axi
Fi:l:: 5Y = X4
g& 4

The quantity p is an arbitrary scalar arising as a reaction to material incom-
pressibility.
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The operator dg is defined by

Aol s G) = 2 Gl de

so after inversion and an integration by par‘cs Eg. (19) becomes
oty = —pI + F(t) {R[G f ORI G(v), t — 1] dr} F7(t) (20)
where &, = 9/8(t — 7).

Rivlin [8] has shown that for isotropic materials R may be expressed in the
form

R[G, t] = ¢ol -+ ¢1G + ¢%G2 (21)
where ¢,, ¢, and ¢, are scalar functions of ¢ and the invariants of G defined by
I, =tr G,
I, — —;- [(br G2 — tr G2], 22)
I, =det G,

and det G denotes the determinant. The specific non-linear viscoelastic material
which will be used to illustrate the numerical method of solution of Eqgs. (11), (13)
and {14) was introduced by Wineman [3] and subsequently by Feng [5]. The forms
chosen for ¢, ¢, and ¢, lead to analytical brevity whilst indicating some of the
problems arising in investigations of this complexity.

The Mooney [9] material of elasticity theory is combined with the standard
linear solid of viscoelasticity theory to give

and $o = (1 -+ &fy) BRI}, 1],
¢ = —aR(I}, 1], (23)
¢, =0,
where « is a dimensionless constant and
BT, ] = Cf(1 — y) e P 4 3] = O 011, 1] (24)

with y = O, /04, the ratio of the long-term elastic modulus to the instantaneous
modulus at { = 0*. Here, {p[1,]}7* represents a strain-dependent relaxation time
and

pL] = iR (1 + B, — 3)] (25)

where § is a positive dimensionless constant and 7 is the relaxation time in the
linear case.

Since the membrane deformation is axisymmetric for all £ = 0* the principal
directions of the stresses and stretch ratios at each point on the membrane mid-
surface are known to be in the meridional, circumferential and normal directions
at each time ¢. The deformation gradient is, therefore,

F = §;4;, 1, §=1,2,3 (nosummation over 7).



36 D. H. Roberts and W. A. Green:

The condition o33 (= 63) = 0 enables the pressure p to be determined from
Eqgs. (20), (21), (25) and (26). The non-zero stresses ay; (= 0,) and o, (= 0,) are
then given by

% cﬁ> = Fy[A)] + f P8, A2)] 0L (), ¢ — ] dr, (26)
and
(,50 — F,[A0) f P, M0)] 80U (), t — 7] de. 27)

Here, A(t) denotes the triplet (4;(t), 25(8), 43(¢)) and
FA20) = (222(0) — 2%()) (1 + a2:2(0)),

(28)
Fo[a(t), A(7)] = (12%(0) — 25%(1)) (1 + ad?(x)) -+ x(2,2¢) 253(7) — 253(t) 2X(2))-
The functions F; and F, are obtained from Egs. (28) by '
F3[/11(t)s 9(8), A5(t)] = Fl[}‘2(t), A4(8), 25(8)], (29)

Fy[24(8), 22(0), 2a(); 4a(7)s a(T), 25(7)] = Fol25(8), 41(2), A5(0), (7)), 44(T)s A5(7)]-

The dependence of all stresses and stretch ratios on position has been omitted for
the sake of clarity in presentation.

The constitutive Eqgs. (26) and (27) are now substituted into the membrane
equilibrium Eqgs. (13) and (14) which, together with the compatibility condition
(11), form a system of non-linear partial differential equations for A,(r, £), A4(r, ©)
and #(r, t). Some simplification of these equations is achieved by defining a new
quantity

u= J30y, (30)

and using a rearrangement of Eq. (13) for % in terms of A;, 1, and u to rewrite
Egs. (11) and (14) as

oA 1 i wor \211/2
2 = — 1— 2 — s, 31
or r [/’Ll { (2h02.2,u)} )"] (1)
and
ou welrddy | A2ARR wer 2] 12
o ot T - i) | (2T 00 (32)
respectively.

Dimensionless variables are defined as follows:
* — /R, ho* = hy/R, o* = o/R, 2* = 2/R,
* = t/rg, ™ = 1/1p, w¥ = glwy, ;% = o;/w,, 1=1,2,3.

Eq. (30) remains unchanged when it is transformed to dimensionless form and
the asterisks are omitted, as they are in the following equations. Egs. (31) and (32)
take the nondimensional forms

ohy A ro\RM2 A,
e L WS I _
S U o | B @
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and

o r i r o \2)1/2
o = heain T A { (2hoazﬂ) J[ (02 = o1l (34)

where 13 has been eliminated using Eq. (3). Similarly, the stress Eqgs. (26) and (27)
become

[4
= =Fil0] + [ Folae), 2o)] 801 (0), t — <) dr, (35)
1 o+
and
t
= = Fli0)] + [ F2t), i) 20 (0), t — <] de (36)
i o+

where C; = Cy/w,, the functions Fy, Fy, F; and F, are given by Egs. (28) and (29)
and

C[Ly(v), t — 7} = (1—p) exp [~{1 + B{Li(x) = 3)} - (¢ — ©)] +».  (37)

For completeness at this stage the first-boundary condition, Egs. (15), although
unchanged in form, is
22(05 ) = 25(0, 1) = 7{0, ¢) (38)

and the second, Eq. (16), becomes
L, ) = 1. 39)

4. The Development of the Solution

The numerical method used for solving the system of Egs. (30), (33) and (34)
subject to the boundary conditions (38) and (39) is similar to the method used in
papers to which reference has already been made [2], [4], [5]. The integrals in the
expressions (35) and (36) for the stresses at time ¢ are approximated by applying
the trapezoidal rule with (n — 1) unequal intervals, (4, t43), k= 1,2, ...,n — 1
where £, = 0 and ¢, = i. If the solution is known up to and including time ¢, ;
Eqgs. (30), (33) and (34) then constitute a system of one algebraic equation and
two ordinary differential equations for 4, 1, and u as functions of r at time ¢, = ¢.

The differential equations are solved for 4, and p using a fourth order Runge-
Kutta routine whilst the algebraic equation is solved for 1, at each step by an
iterative method. Since the problem involves boundary values at the two end
points it is necessary to employ a “‘shooting” method. Thus, an estimate is made
of the values of 4, (= ;) at » = 0 and this allows an estimated value of u to be
obtained from Eq. (30). The integration then proceeds up to the end point » = 1
and if the boundary condition (39) is not satisfied it is necessary to repeat the
process with new estimates at r = 0.

Full details of the numerical procedures are given in Roberts {10].

5. Results and Discussion

The Mooney model parameter « is chosen as 0.1 and the viscoelastic properties
of the membrane material are determined by the values of y and §. Attention
here is concentrated on materials which become softer as time progresses, so that
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y << 1. The effects of a strain-dependent relaxation time as defined by Eq. (25)
are assessed by varying g from zero.

The results for the sag of a circular membrane under its own weight are
presented in Figs. 1—8. The membrane profile history shown in Fig. 1 is for the
material ¢ = 288, y = 1/3, § = 0. Thas shows an initial sag at the centre of 309,
of the membrane radius, increasing to almost 509, as ¢ — co. The stretch ratios
and stresses as they vary with respect to r are shown in Figs. 2 and 3 respectively
for the same membrane. Fig. 4 demonstrates the “overshoot” phenomenon found
by both Wineman [3] and Feng [5] with similar materials. Here the history of z
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Fig. 1. Membrane profile history. C; = 288, y = 1/3, § = 0.
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Fig. 2. Histories of stretch ratios. C; = 288,y = 1/3, § = 0
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Fig. 4. Deformation history. €, = 288, y = 1/3, f = 0.5
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5. History of 2,. C; = 288,y = 1/3, 8 = 0.5
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Fig. 7. History of a,*. C, = 288,y =1/3, 8 = 0.5
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Fig. 8. History of o,*. C; = 288, » = 1/3, § = 0.5
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for particles at r = 0 (0.2) 1.0 for § = 0 is compared with the highly non-linear
viscoelastic case when § = 5. The value of § does not affect initial or final values
of the variables (see also Figs. 5—8) but takes them towards their residual values
at different rates depending on the size of 3. For relatively large § the variables
overshoot their residual values, a phenomenon which may be explained in the case
of the sagging membrane by considering the re-distribution of weight as the
membrane stretches. Any initial stretch at the centre puts more weight on the
particles nearer the boundary. The amount of creep which follows is amplified by 8
through the form of H[I,], (Eq. (25)), and the viscoelastic effects at the outer
particles of the membrane work themselves out rapidly, leaving only an elastic
component to affect the final deformation which, for § = 5, is a contraction
across the entire membrane.

For the membrane problem considered here the overshoot phenomenon
presents no instability problems since all stresses are decreasing for most of the
time. In Wineman’s spinning membrane problem [3] and Feng’s toroidal mem-
brane problem [5], however, the principal stress resultants increase and therefore
could give rise to instability.
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