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Summary 

t t  has been shown that the kinematics of a shock front in an ideal gas with constant 
specific heat can be completely described by a first order nonlinear partial differential 
equation (called here -- shock manifold equation or SME) which reduces to the charac- 
teristic partial differential equation as the shock strength tends to zero. The condition for 
the existence of a nontrivial solution of the jump relations across the shock turns out to be 
the Prandtl relation. Continuing the functions representing the state on the either side of 
the shock to the other side as irffinitely differentiable functions and embedding the shock 
in a one parameter family of surfaces, it has been shown that the Prandtl relation ckn be 
treated as a required shock manifold equation for a f/ruction r where ~ = 0 is the shock 
sttrface, We also show that there are other forms of the SME and prove an important result 
that they are equivalent. Shock rays are defined to ba the  characteristic curves of a SME 
and it  has been shown that when the flow on either side of the shock is at rest, the shock 
rays are orthogonal to the successive positions of the shock surface. Certain results have 
been derived for a weak shock, in which case the complete history of the curved shock can 
be determined for a class of problems. 

1. Introduction 

Kinemat ics  of a wave f ront  when it  is not  a shock front  is clear and  well under-  
stood, both  in  the case of hyperbolic and  dispersive waves (Hayes, 1970). For  a 
hyperbolic wave, the kinematics  of a wave f ront  reduces to the theory  of char- 
acteristic surfaces of the corresponding hyperbolic system of equations.  The 
rays are related to the  bicharacterist ie curves. Given the ini t ia l  posi t ion and  
shape of a wave front,  the same can be d e t e r m i n e d  at  any  t ime b y  solving the 
bicharacterist ic (or ray) equations,  which are ord inary  differential  equations.  
No such theory  exists for a shock front  in  gasdynamics  except for a recent  work 
of Maslov (1980). That ,  there is a need for such a theory is evident  from the 
following cons idera t ion  t aken  from W h i t h a m  (1956). Consider a shock f r o n t  
which is in i t ia l ly  curved and  concave to the gas a t  rest ahead of it  (on the right) 
as shown in  the F ig .  1. The normals  to the ini t ia l  surface (or the rays of the 
l inear  theory) form a n  envelop, called a "caus t ic"  a t  which the ray tube  area 
tends  to zero. At  such points ,  the l inear  theory and  also the weakly nonl inear  
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theory of Whitham (1956) using linear rays fail. The actual flow pattern at the 
"nonlinear caustic" is very complex (Sturtevant and Kulkarny, 1976), however, 
one can hope that  in certain situations the rays (now shock rays) deviate so much 
due to the increase in the intensity of the shock at the centre that the caustic 
may not be formed as shown in the Fig. 2. But what are these shock rays? In  
the absence of any mathematical theory, Whitham (1957) defines the "shock- 
rays" also as curves orthogonal to the successive positions of the shock surface, 
when the gas ahead of the shock is at rest. 

wave- ~ caustic f r o n t ~ ~  

; G K 
Fig. 1. Linear rays envelop a caustic 

surface 

shock- front 
ock-mys 

Fig. 2. But actually the rays may deviate 
due to increase in the intensity of the shock 
at the centre and the caustic may not be 

formed 

In  this paper, we develop a mathematical theory on the kinematics of a 
shock front in an ideal gas by dcriving a shock manifold partial differential equa- 
tion and give a mathematical definition of shock rays. This has been possible 
due to an embedding theorem, which is extremely important in the deduction 
of the characteristic partial differential equation (Courant and Hilbert, 1962, 
pp. 557--558). Initially the condition that a surface X(xl . . . . .  xm, t)----0 is a 
characteristic surface reduces to 

Qch(Xl . . . . .  xm, t; Z~, .... X~, Zt) ---- 0 on Z(xl . . . . .  xm, t) ---- 0 (1.1) 

where Qch is the characteristic determinant of a hyperbolic system. The theorem 
says that the surface Z = 0 can be embedded in a one parameter family of charac- 
teristic surfaces 

~(Xm . . . . .  xm, t) ---- c (1.2) 

such that  % = 0 coincides with a characteristic surface obtained by putting a 
particular value of c in (1.2) and the function r . . . . . .  xm, t) satisfies the char- 
acteristic partial differential equation 

Qch(xl . . . . .  x,~, t; qb . . . . .  ., r  qbt) = 0. (1.3) 

There is a little problem in embedding a propagating shock surface in a family 
of surfaces because the condition for the shock surface (i.e. Eq. (3.18) or (3.19)) 
contains two sets of functions --  one defined only ahead of the shock and other 
only behind the shock. However, this difficulty is easily removed by continuing 
these on the other side of the shock as infinitely differentiable functions. In  the 
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section 2, we explain the whole procedure of embedding with the help of an ex- 
ample in two independent variables. 

Using the theory of generalised functions, Maslov (1980) has developed a 
successive method of computation of the position of the shock front and also 
contains some of the ideas of this paper. Maslov treats only an isentropic gas 
motion without consideration of the energy equation and hence his method 
of computation, aimed not for an arbitrary shock strength, is correct for weak 
shocks as long as t he  entropy changes across the shock can be neglected. But  
it is also clear that  his method is not valid for the caustic problem as the linear 
wave front has a singularity. Moreover, if one stops at the first approximation 
in Maslov's method, as generally is the case for most of such problems, one can 
take into account of the effect of only a linear variation of the quantities in the 
flow behind the shock. On any account, Maslov's work presents a clear under- 
standing of the problem mathematically and can be regarded as a major break 
through in an approximate determination, at least in theory, of the shock position. 
A similar method has been developed by Grinfeld (1978). 

The aim of the paper is to give only a simple mathematical theory of the 
shock-kinematics. We do not a t tempt  here to develop a method of solution, 
this we do in a subsequent paper (Prasad et al.) as mentioned in the last section 
of this paper. 

2. An Example of Shock Embedding 

Consider a quasi-linear partial differential equation in the conservation form 

0-7 + ~ uS = 0. (2.1) 

Across a shock discontinuity of (2.1), the following jump condition must be 
satisfied 

[u] ~t + [ l u 2 ]  ~ x ~ O ,  (2.2) 

where the symbol [/] represents the jump in the quanti ty / across the shock 
from left to right and ~(x, t) ~- 0 represents the curve of discontinuity in (x, t)- 
plane. If  suffixes l and r at tach to / represent the values of the quanti ty ] just 
on the left and just on the right of the discontinuity, then 

[/] = / r  - - / , .  (2.3) 

A discontinuous solution of the Eq. (2.1) valid for t > --1 and containing a 

u ( x ,  t)  = 

shock is 

0 for --cr < x < 0 

x for 0 < x < (1 -{- t) 1/2 
l + t  

0 for (1 + t) 112 < x < oo. 

The equation of the curve of discontinuity can be written in the form 

--= x - -  (1  -4- t)  112 = O.  

(2.4) 

( 2 . 5 )  
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u--0 

u I 
(t )2 

(1.t)'~ -I 

u : 0  

Fig. 3. Graph of the solution (2.4) at a given time t 

The solution (2.4) has been graphically shown in the Fig. 3. Along the. curve of 
discontinuity in u, u~ - -  ut # 0 and  we can divide (2.3) by  u~ - -  u~ to get 

Tt  + u~ + ur g/x = 0 on qJ(x, t) =- O. (2.6) 
2 

The funct ion ul appearing in (2.6) is the limiting value of the funct ion x/(1 + t) 
f rom left and ur is t ha t  of 0 f rom right. We extend the deJinition o] ur and ul in  
such a manner that when embedding is completed, the members o] the ]amily o] 
shocks ]or x" < (1 + t) 1/~ have the state x/(1 + t) on the left and the members o/ 
the [amily o] shocks/or  x > (1 + t) 1l~ have the state 0 on the right. Therefore, 
we extend the definition of these functions in a neighbourhood of the curve 
(2.5) by  (for t > --1) 

(2.7) u r ~ 0 ,  ul ~- 1 + t" 

The functions ul and ur defined here satisfy the  part ial  differential Eq.  (2.1) as 
infinitely differentiable functions separately. We note  t ha t  we have simply ex- 
tended the solution u ~ x/(1 -~ t) on the left of  the discontinui ty to the r ight 
by  the same expression in x and t, and similarly the solution u -= 0 on the r ight  
to the left. We now define a funct ion [u] of two independent  variables by  

x (2.8) 
[ u ] - ~ u r - u l -  l + t "  

With  these extended definitions, the Eq. (2.6) i.e. 

Wt + x kP~ : 0 on  T ( x ,  t) = 0 (2.9) 
2(1 + t) 

is still satisfied. 
N o w  we can use the embedding theorem ment ioned in the introduction.  

We find tha t  there exists a funct ion q} defined by 

(1 + t)l/~ (2.10) 
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such that  q~ satisfies the partial  differential equation 

~t + ~ ~x = 0. (2.11) 
2(I + t) 

The shock curve T ~ 0 is embedded in a one parameter  family of shocks: �9 = c, 
where c is the parameter.  The equations T = 0 and q~ ---- 1 represent the same 
curve - -  the curve of discontinuity of our solution (2.4) as shown in the Fig. 4. 

We note another important  point in this particular example of a single con- 
servation law. Since (2.11) is satisfied along each one of the shock curves �9 ~-- c, 
the jump relation (2.2) is also satisfied by  every one of these one parameter  
shocks i.e. 

[u]q~t q-[21--u 2] q ~ x : 0  (2.12) 

identically in x and t provided [u] = ur --  ul and u 2 = ~ (ur ~ --  Ul ~) are defined 

with the help of the extended functions ul and ur as in (2.7). Since ut satisfies 
the partial  differential Eq. (2.1) even in its domain of extension, we can solve 

1 
ul from ~t -t- -'~ (u~ + %) ~x = 0 in terms of %, ~t  and ~x and substi tute in the 

Eq. (2.1). We get 

(2.13) 
+ ~- Cx 2 q'~ ~ + (2~t - n ~ )  = 0 

which takes a particularly simple form when u~ ~ 0. Therefore, the set of all 
functions ~,  giving one parameter  family of shocks for which the state on the 
right is ur, satisfy a quasilinear second order partial  differential Eq. (2.13), which 
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F i g .  4. T h e  s h o c k  c u r v e ,  ~P = 0, o f  t h e  s o l u t i o n  (2.4) i s  e m b e d d e d  i n  a f a m i l y  of s h o c k  
c u r v e s  q~ ~ e 

12 A c t a  Mech.  45/3--4 
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is hyperbolic. Given an appropriate initial condition for (2.!) with a shock dis- 
continuity, we can easily write the initial conditions for (2.13) i.e. the values 
of ~b(x, 0) and qSt(x, 0). Infaet  ~b(x, 0) can be prescribed arbitrarily and then we 

1 
can set qPt(x, 0) ~- - - ~ -  {ul(x, 0) ~- u~(x, 0)} Ox. Thus the Eq. (2.13) can be solved 

in theory, though the  solution of this problem is not simpler than t h e  original 
one. However, what is important  here to note is that ,  unlike the original problem, 
we need to find o n l y  a continuously differentiable (i,e. shock free) solution of 
(2.13). 

Before we pass on to the consideration of gasdynamic shocks we men t ion  
that  the continuation of the state on the left (or right) of T ~-- 0 to the right 
(or left) of T ~ 0 as infinitely differentiable solution is not unique. Therefore, 
the embedding described here is also not unique. 

3. Derivation of the Shock Manifold Equation for an Ideal Gas 

For simplicity we consider the unsteady motion of an ideal gas with constant 
specific heat in two space dimensions , (x, y)-plane, only. The arguments and the 
ideas can be' easily extended to three dimensional flows. Consider a solution of 
the equations of motion sufficiently smooth (say for simplicity, infinitely different 
tiable) in a domain in (x, y, t)-space except .for a sufficiently smooth shock surface 
~(x, y, t) = 0 in the flow. The limiting values of the functions representing the 
state of the flow of the gas and their partial, derivatives, as we approach the 
shock surface from the domains on the two Sides of it, exist i.e. all these quantities 
suffer finite jumps across the surface ~ = 0, Our discussion is based on ill e 
existence of auch. a solution, which we assume to be known. From the;conser- 
vation form of equations of motion (Zierep, 1976) we can derive the following 
jump relations across the shock: 

[el ~,  + [~'~] ~.~ + [~v] ~% = o (3.t) 

[eu] ~ ,  + :[eu 2 § p] ~/~x + [e~v] ~ = 0 (3.2) 

[ev] ~v, § [euv] •x + [ev ~ + p] % = 0 (3.3) 
and 

(3.4) 

+ vp + -~ ~vq~ % =. o 

where u, v are the components of the fluid velocity, ~ the density, p pressure, 
7 the ratio of specific heats, q2 ~ u2 § v 2 and the symbol [ ] for the jump of a 
quant i ty  is defined in terms of the quantities on left and right of the shock by 
(2.3). We can easily show that  these are equivalent to the usual form of oblique 
shock relations normally used in gasdynamics, when we note that  the normal and 
the tangential components of the fluid velocity relative to the shock surface are 
respectively 

= uT~ + v ~  + ~t T = --u~# + vTx (3.5) 
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The oblique shock relations are 

e~L~ = qrL~ (3.6) 

~o~L~T~ -~ ~L~T~ (3,7) 

~lLl ~ @ pt 2 ~- ~rLr 2 -~- Pr (3.8) 
and 

(3.9) 

Using the following formula for the jump of the product of two quantities ],and g 

[/g] = it[g] ~- gt[/] (3.10) 

we write the jump relations (3.1)--(3.4) in the form 

O~T~[u] + O~Ty[v] + K~[O] = 0 (3.tl) 

~r(UrgZx + K~) [u] @ ~ru;T~[v] @ T~[p] + utKd~ ] = 0 (3.12; 

~VrWx[U] -'[- ~r(V~T~ + g~) [v] ~- T~[io] -~ vLK~[~] = 0 (3.13) 

and 

where 

.1- 1 KI -- Ui Tx  vt [p] .-~ ql2Kl[Q] -- O, 
i 

(3.14) 

K -- u T x  4- vTy -r- Tt  --  ,iTx 2 ~- kay2) 112 L (3.15). 

These equations can be treated as four linear homogeneous relations in the quanti- 
ties [u], [v l, [Pl and [if]. For a discontinuous solution at least one of these four is 
nonzero. This leads to the condition that the determinant A of the matrix of the 
coefficients must  be zero. After some long algebraic operations, we can show that  

y-I- 1 { 2 ar2(~2~ - ~u2) ~,--1Kr~} (3.16) 
A 2(7-1)~2Kz~ KtK~ ~ §  1 �9 ~ , §  ' 

where a is the local velocity of sgund given by a 2 - -  ~/p/q. Vanishing of the factor 
Kl -- ulgYx ~- vtTy @ gzt corresponds to a contact discontinuity. Hence we  can 
assume that Kz 4 0. For Kl ~ 0, from the relations (3.6), (3.7) and (3.9)we 
deduce 

2 ~ y - - l r 2  2 7 - - 1 L  ~ P~--Pl__ar~3, say. (3.17) 

Therefore, vanishing ofA on the shock Surface implies the ,fo]lowing condition 

(~v,~ :~ v,% + ~ , ) ( ~ .  + v,.% 4 ~,)  - a~,i(~x ~ § %~) = 0 ~a.18> 
on �9 gZ(x~ y, t) --  0 

12" 
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or using (3.6) again 

(urTx § v tTy  + T~)2 - -  A~2(Tx ~ § ~ )  = 0 

where 

on T(x ,  y, t) -~ 0 (3.19) 

A J  = ~ a~.t = e~ p t  - p~ (3.20) 

We note tha t  (3.21) is the well known Prand t l  relation for the shocks and the 
quan t i ty  At  is the normal  veloci ty of a shock front  relative to the s tate  on the 
right. 

F rom (3.6) and (3.7) we get 

U~Tx + v~y + T~ = ~ (utTx + vtTy + Tt) 
~t 

and 
- u ~ y  + v ~ x  = - u r ~  + v r ~ .  

Solving these two for ut and vl we get  the vector  equat ion 

( u l - - u t ,  v ~ - - v t ) =  ( ~ 2 + % 2 )  Kt  - - 1  . (3.21) 

F rom the  relations (3.6)--(3.9) with K~ ~ 0, we can also derive the well known 
pressure, densi ty  relation across a shock 

y + l  ~i 1 

Pl _ ~ - 1 ~t ( 3 . 2 2 )  

y -- 1 ~r 

As in the example in w 2, we continue the  s tate  on the left (right) of the shock 
into the subdomain  on the r ight (left) as infinitely differentiable solution of the 
gasdynamic  equations as far as possible. However ,  we shall notice tha t  con- 
t inuat ion as solution is not  necessary for our analysis, they  can be continued 
simply as C ~ functions. Now we get a three dimensional neighbourhood D of the 

2 and At  surface T(x, y, t) ~ 0 where all quanti t ies with suffix 1 or r and also at. t 
are known C ~ functions of three independent  variables x, y and t. Therefore, we 
can use the embedding theorem to get a one parameter  family  of surfaces 

O(x, y, t) -~ c, (3.23) 

where c is the parameter .  Then  the funct ion ~b satisfies the first order partial  
differential equat ion 

Q~h ~ ( u t ~  § vz~y § Ct) ( u ~  + v~% § Ce) - -  a~,~(~ 2 + ~b2) _ 0 (3.24) 

o r  

Qsh =-- (u~O~ § vtqb~, § Ct) 2 - -  A~2((b~ 2 § ~5y2) : 0 (3.25) 

in the subdomain D. We call a partial  differential equat ion for ~,  such as (3.24) or 
(3.25), a shock mani/old equation (SME). 

Unlike the case of a single conservation law in the  section 2, the condit ion 
(3.24) or (3.25) is only a necessary condit ion for the  jump relations (3.1)--(3.4) to 
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be satisfied with the extended functions in D i.e. the conditions (3.1)--(3.4) with 
replaced by  4 need not be satisfied when (3.24) or (3.25) are satisfied. Infact,  if 

they were satisfied, the functions would also satisfy (3.22) and we can easily see 
that  this is a too strong condition on arbitrari ly extended functions. Therefore, 
the shock surface }P----- 0 is embedded in a one parameters  family or surfaces 
4 = c, which in general do hot form a family of shock surfaces. 

Now tha t  we get two shock manifold equations (3.24) and (3.25) or many  
others obtained from (3.18) or (3.19) and the relations (3.1)--(3.4), we can ask: 
"are these partial  differential equations equivalent and if so in what sense?". We 
shall show in the next  section that  for the given solution of the, gasdynamic 
equations, (3.24) and (3.25) are indeed equivalent for the construction of the shock 
surface at any time from its position at any other time, say t = O. 

Shock manifold equation can also be derived for a general system of hyper- 
bolic equations in the conservation form, provided we assume that the shock 
strength is small [see Prasad et al. (1981)]. 

4. The Shock Rays 

We deJine a shock ray as the projection on (x, y)-plane of a characteristic 
curve of a shock manifold partial  differential equation in (x, y, t) space, starting 
from a point of a given position of the shock at  a given time. 

Here we derive the ordinary differential equations of the shock rays only for 
a shock which is crossed by  fluid particles from right to left. For such a shock the 
shock manifold equation equivalent to (3.25) is 

4t + U~4x + v/b v + A~(@~ 2 + (j~y2)i[2 = O. (4.1) 

The characteristic equations of (4.1) or the shock 

dx 
d--[ = u~ + N~A~,  

ray equations are 

d_y= 
dt v~ + N2A~, 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

d ~  _ 4x + + (4x 2 + 4~)  1/2 
dt ~ ~ ~x -~  

and 

~u {4x ~Ur ~vr ~Ar } 
~-W - G + 4. ~ + W (4 3 + %~)~. 

where s 1 and ~V~ are the components of the unit normal to the shock front and 
satisfy 

- (~=%) - (~"'%) I (N1, N~) (@x ~ + @y2)l/Z ~=0 (Tx 2 @ g~v~) 1/2 .~'=0" (4.6) 

The variat ion of the x component  of the unit normal along a shock ray can be 
derived with the help of (4.4)--(4.6) 

d~71 .s 2 (~T 1 ~2cr ~vr ~Ar~ (4.7) 
dt - W + N . ~ +  ~ j ,  
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where 

= - ( 4 . 8 )  

represents an interior differentiation on T ~  0 i.e. the rate of change in a direction 
of a tangent to the shock surface. 

Equations (4.2), (4.3), (4.7) (with N12 + N22 ~ 1) are the final form of the 
shock-ray equations from the SME (4.1). :From the theory  of first order partial 
differential equations it follows that  a shock manifold in (x, y, t)-spaee is generated 
by the shock rays in (x, y, t)-spaee. Moreover, the appearance of only the interior 
derivative ~/&] in (4.7) shows that  the shock rays are determined completely from 
the distribution of u~, v r and A r on the surface T(x, y, t) ~ 0 alone. 

Similarly the shock ray equations from the SME (3.24) are 

dx  = Uri  I ~- a l l  r --  2Nla2r,l (4.9) 
dt  L t + L r ' 

d y  __ v rL  t -F v lLr  - -  2N~a~r,t (4.10) 
dt  L l + L r 

and 

{ aul avl~ dN1 _ N2 NI + N2 Lr 
+ L, 

G (4.11) a,*~ . av~t ~,~] + say~ 

where L defined by (3.5) can also be expressed in the form 

L = N l U  -~ N 2 v  - -  S ,  (4.12) 

S being the normal velocity of the shock surface. 
As in the case of Eqs. (4.2), (4.3) and (4.7) the second set of shock ray Eqs. (4.9) 

to (4.11) also involve the values of the functions ur, v~ and ard and their interior 
derivatives only on the shock surface T(x, y, t) = 0, where the jmnp relations 
(3.1)--(3.4) and hence 

Lz • q___r L~ (4.13) 
~t 

and (3.21) or 

are identically satisfied. 
Substituting the expressions for K~, u~ and vl from (4.13) and (4.14) we get 

~rLt  47 a,~lL r - -  2Nla2r, l = (1 -~ Q~-/) L r (~l, r --~r~'~l a2,#~rl ~rrl) (4.16) 

. . . .  a r / N  2 (4.17) 
qr 
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and 

~ = --Xu ( ~19~rW -4- ~2 ~ v v l ( 1 - ~ l ) i r - - ~ 2 i r 2 ~ ( ~ l  ) 9 7  ] 

- -  XY~ Qr __ 1 L r - ~  (Lr) -~ N 2-~ (ar2d) 

where we have used the result that  

(4.~8) 

~N 1 ~N~ r 

N I ~ + N 2  a7 = 0 ,  

since N~ 2 d- N~ 2 = 1 and 

a .L r 9N 1 9N 2 9u ~v 9S 
- -  = u d- v -4- 5 / 1 - -  d- N 2 - - - - - - .  
97 9~ - ~  o 7 07 97 

Differentiating the relation 

Lr 2 qt z = ~ Gr, l 
er 

with respect to ~ and eliminating Lr-g-s from this result and (4.18)we get after 
some simplification 

G = - -  1 -4- Or LrN2 N1 - ~  d- N2 97 2L r 07 

Using the relation Lr = - -Ar  in (4.16), (4.17) and (4.19) we get the required forms 
for the expressions on the left hand sides of (4.16) and (4.17), and G. When we 
substitute these and (4,1g) in (4.9)--(4.11) we find that  the shock ray equations 
of ~he SME (3,25) are exactly the same as the shock ray equations (4.2), (4.3) and 
(4.7) of the SME (4.1). 

Thus we have proved tha t  the shock rays of the two SME (3.24) and (3.25) are 
the s~me and either of the two can be used for the construction of the shock surface 
starting from u given initial shock position. 

We have mentioned earlier that  the embedding of the  shock T = 0 in a one 
p~rameter family is not unique due to nonuniqueness in continuations of the 
functions on the two sides. We may  then ask "does it mean t h a t  the shock rays 
are also not unique?" 

The values of the functions ul, vr Pl and r and their partial  derivatives are 
nonunique only ~n the interior of the subdomain on the right of the original s~oek. 
Similarly the vahtes of Ur, Vr, Pr and ~r and  their derivatives are uniquely pre- 
scribed on the right subdomain including the boundary points up to the shock. 
Therefore, all the functions, appearing on the right hand sides of the shock ray 
Eqs. (4.2)--(4.5) are uniquely determined for the original shock T = 0 in which 
we are interested in. The shock rays, for the embedded original shock, are unique 
and are determined completely from the given solution of the gasdynamic equa- 
tions. 

W e  derive here an important  geometrical proper ty  of the shock rays from 
Eqs. (4.2) and (4.3). When the state ahead of the shock is at  rest i.e. when Ur = O, 
vr = 0 the shock rays form a family of orthogonal curves to the successive posi- 
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tions of the shock surface. From the symmet ry  of the Eq. (3.24) in suffixes I and r 
it follows that  the same result remains true if the flow behind the shock is at rest. 
This important  relation between the shock rays and the shock surface is in no way 
evident from the similar proper ty  of rays and wave fronts of the linear theory. In  
his geometrical theory of shock front propagation, Whi tham (1957) assumed this 
property "based on the experience with geometrical optics for linear problems" 
a n d  defined the shock rays with its help. 

Since represents spatial rate of change of a quanti ty in a direction along the 

shock curve, it follows from (4.7) tha t  as the shock propagates the normal to the 
shock front rotates due to a gradient of the state of the gas and a gradient of the 
shock strength along the shock curve. If  these variations are zero, the normal to 
the shock has parallel propagation. 

5. Kinematics of a Weak Shock and a Method of S o l u t i o n  
o f  Weakly Nonlinear Wave Problems 

We define the shock strength 8 to be the jump in the pressure 

8 ~- p~ - -  p r .  (5.1) 

Then from (3.22) it follows that  for small 8, the jump in the density satisfies 

1 
~)t - -  Or ~--- - -  8 -~- O( (~2 ) .  ( 5 . 2 )  

ar 2 

The fluid velocity components, from (3.21) become 

1 1 
uz - -  ur - -  - -  N18 + O(82), vt - -  v~ ~ - - - -  N28 + 0(82). (5.3) 

~rar Qrar 

As in the case of ~t, ut and vt, we can also approximate  Ar up to first order 
terms in e$ and use an al0proximate form of the shock manifold equation (3.25). 
However, it is more interesting theoretically to s tar t  with the equation (3.24), 
which for forward facing shock is equivalent to 

1 1 
~t § -2 (ur § ul) ~x + T (vr § vl) ~y 

(5.4) [ § 1 7 7  + ar, z (~x 2 + ~u 2) 4a~,z{(u~ - ut) Cx + (v~ - v~) O~}~j 1/~ = O. 1 
I t  is simple to show that  for a weak shock, we get 

1 
ar,  t = ~ -  ( ~  + at) + 0(85).  (5.5) 

Therefore, for a weak shock if we wish to retain terms only upto the order 8, the 
approximate  shock manifold equation from (5.4) becomes 

1 1 1 
~ § -~ (ur § u~) ~x § T (v~ § v~) ~u § ~- (a~ § at) (~x2 § ~ 2)1/~ - -  0. (5.6) 

This equation also follows as a particular case of the weak shock manifold equation 
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for an arbi t rary hyperbolic system of quasilinear partial  differential equations 
(see Prasad et a]. (1982)) and was also obtained by  Kluwick (1971). 

The Eq. (5.6) is exactly the same a s the equation of the forward facing charac. 
teristie surface except tha t  the fluid velocity components and the local sound 
velocity are replaced respectively by  the mean of their values ahead of and behind 
the shock. The equations for the shock rays can be easily writ ten from which we 
deduce the following result: 

"For  a weak shock, the shock ray velocity components are equal to the mean 
bicharacteristic velocity components just ahead and just behind the shock 
provided we take the wave fronts generating the characteristic surfaces to be 
instantaneously coincident with the shock surface. Similarly the rate of turning 
of the shock front is also equal to the mean of the rates of turning of such wave 
fronts just ahead and just behind the shock." 

Solution of an initial or boundary value problem involving a shock wave is still 
very difficult. The state behind the shock and the motion of the shock influence 
one another and can not be t reated independently. However, in the case of a weak 
shock propagation there are well known methods of solution by  Oswatitsch (1965) 
and Whi tham (1956). The second method has been extensively used in calculating 
the sonic boom signature but  it is valid only when the shock rays do not deviate 
significantly from the linear rays. Whi tham's  geometrical shock dynamics (1957) 
intended to take into account of the deviation of the shock rays from the linear 
rays, completely decouples the shock motion from the flow behind it, In  the intro- 
duction we have already remarked on a recent method of Maslov (1980). The 
kinematics of the shock front developed here can also be used provided the 
solution behind the shock is known. In  a companion paper, we have shown 
(Prasad et al. (1981)) tha t  in a certain class of weakly nonlinear waves, we can use 
an earlier method by  us (Prasad (1975)) to determine the solution behind the 
shock. This class consists of those problems in which the waves are produced by  
the motion of rigid boundaries and the shock wave produced in the flow remains 
close to the nonlinear wave front initially sent by  the boundary. Once the non- 
linear solution behind the shock has been determined, it becomes a simple mat te r  
to fit  in the shock according to the partial  differential equation (5.6). Details of 
this method with application to the flow field produced by  sudden introduction of 
a circular cylinder in otherwise uniform flow of a compressible fluid is available in 
the companion paper. 

6. Remarks 

The theory develgped here gives a clear picture of the kinematics of a shock 
front. At present we can not say definitely whether this theory will also be useful 
in the solution of the problems cSntaining strong shocks. However, there is one 
example of a transonic flow where the flow behind the moving shock can be 
approximately  predicted due to the freezing proper ty  of the sonic flow. Zierep 
(1968) has calculated the standoff distance of the shock (and its shape) using the 
freezing proper ty  and using the one dimensional theory of shock wave propagation 
along the axis of symmetric  bodies when the flow at  infinity is also parallel to the 
axis. We hope, we can use this theory to find the shape of the shock (see many  
papers on this topic in Theoretical and Experimental  Fluid Mechanics edited by  
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Miiller, l~oesner and  Schmid t  (~979)). W e  also bel ieve t h a t  this  t h e o r y  will  m a k e  
some con t r ibu t ion  towards  the  unde r s t and ing  of the  non l inear  caust ic  p rob lem 
men t ioned  in  the  in t roduc t ion .  

There  is one def in i te  poss ib i l i ty  of the  use of the  theory .  I t  can  be  used to 
check the  accu racy  of solut ions  ob t a ined  b y  o ther  me thods  such as f ini te  difference 
schemes.  W e  can  use t he  c o m p u t e d  so lu t ion  beh ind  the  shock and  ver i fy  to  wha t  
e x t e n t  the  shock shape b y  the  o the r  m e t h o d  a n d  the  p resen t  t h e o r y  agree.  
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