Acta Mechanica 45, 163— 176 (1982) ACTA MECHANICA
© by Springer-Verlag 1982

Kinematics of a Multi-Dimensional Shoek of Arbitrary Strength
in an Ideal Gas

By
P. Prasad, Karlsrube, Federal Republic of Germany
With 4 Figures

(Received August 25, 1981)

Summary

It has been shown that the kinematics of a shock front in an ideal gas with constant
specific heat can be completely described by a first order nonlinear partial differential
equation, (called here — shock manifold equation or SME) which reduces to the charac-
teristic partial differential equation as the shock strength tends to zero. The condition for
the existence of a nontrivial solution of the jump relations across the shock turns out to be
the Prandtl relation. Continuing the functions representing the state on the either side of
the shock to the other side as infinitely differentiable functions and embedding the shock
in a one parameter family of surfaces, it has been shown that the Prandtl relation can be
treated, as a required shock manifold equation for a fanction @, where @ = 0 is the shock
surface. We also show that there are other forms of the SME and prove an important result
that they are equivalent. Shock rays are defined to be the characteristic curves of a SME
and it has been shown that when the flow on either side of the shock is at rest, the shock
rays are orthogonal to the successive positions of the shock surface. Certain results have
been derived for a weak shock, in which case the complete history of the curved shock can
be determined for a class of problems.

1. Introduction

Kinematies of a wave front when it is not a shock front is clear and well under-
stood, both in the case of hyperbolic and dispersive waves (Hayes, 1970). For a
hyperbolic wave, the kinematics of a wave front reduces to the theory of char-
acteristic surfaces of the corresponding hyperbolic system of equations. The
rays are related to the bicharacteristic curves. Given the initial position and
shape of a wave front, the same can be determined at any time by solving the
bicharacteristic (or ray) equations, which are ordinary differential equations.
No such theory exists for a shock front in gasdynamics except for a recent work
of Maslov (1980). That, there is a need for such a theory is evident from the
following consideration taken from Whitham (1956). Consider a shock front
which is initially curved and concave to the gas at rest ahead of it (on the right)
as shown in the Fig. 1. The normals to the initial surface (or the rays of the
linear theory) form an envelop, called a ‘‘caustic” at which the ray tube area
tends to zero. At such points, the linear theory and also the weakly nonlinear
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theory of Whitham (1956) using linear rays fail. The actual flow pattern at the
“nonlinear caustic” is very complex (Sturtevant and Kulkarny, 1976), however,
one can hope that in certain situations the rays (now shock rays) deviate so much
due to the increase in the intensity of the sheck at the centre that the caustic
may not be formed as shown in the Fig. 2. But what are these shock rays? In
the absence of any mathematical theory, Whitham (1957) defines the ‘‘shock-
rays” also as curves orthogonal to the successive positions of the shock surface,
when the gas ahead of the shock is at rest.

shock-rays
shock-
front
—
Fig. 1. Linear rays envelop a caustic Fig. 2. But actually the rays may deviate
surface due to increase in the intensity of the shock
at the centre and the caustic may not be
formed

In this paper, we develop a mathematical theory on the kinematics of a
shock front in an ideal gas by deriving a shock manifold partial differential equa-
tion and give a mathematical definition of shock rays. This has been possible
due to an embedding theorem, which is extremely important in the deduction
of the characteristic partial differential equation (Courant and Hilbert, 1962,
pp. 557—558). Initially the condition that a surface y(zy, ..., %n, ) =0 is a
characteristic surface reduces to

Qen(@1y - - Tmy &3 Xop o Xy s xp) = 0 on gy, ..y, t) =0 (1.1)

where @y is the characteristic determinant of a hyperbolic system. The theorem
says that the surface y = 0 can be embedded in a one parameter family of charac-
teristic surfaces

D@y, ooy Ty £) = ¢ (1.2)

such that y = 0 coincides with a characteristic surface obtained by putting a
particular value of ¢ in (1.2) and the function ¢(z, ...., T, t) satisfies the char-
acteristic partial differential equation

Qch(xls coes Xy £} d)xl’ L] (i)zm’ d)l) = 0. (1-3)

There is a little problem in embedding a propagating shock surface in a family
of surfaces because the condition for the shock surface (i.e. Eq. (3.18) or (3.19))
contains two sets of functions — one defined only ahead of the shock and other
only behind the shock. However, this difficulty is easily removed by continuing
these on the other side of the shock as infinitely differentiable functions. In the
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section 2, we explain the whole procedure of embedding with the help of an ex-
ample in two independent variables.

Using the theory of generalised functions, Maslov (1980) has developed a
successive method of computation of the position of the shock front and also
contains some of the ideas of this paper. Maslov treats only an isentropic gas
motion without consideration of the energy equation and hence his method
of computation, aimed not for an arbitrary shock strength, is correct for weak
shocks as long as the entropy changes across the shock can be neglected. But
it is also clear that his method is not valid for the caustic problem as the linear
wave front has a singularity. Moreover, if one stops at the first approximation
in Maslov’s method, as generally is the case for most of such problems, one can
take into account of the effect of only a linear variation of the quantities in the
flow behind the shock. On any account, Maslov’s work presents a clear under-
standing of the problem mathematically and can be regarded as a major break
through in an approximate determination, at least in theory, of the shock position.
A similar method has been developed by Grinfeld (1978).

The aim of the paper is to give only a simple mathematical theory of the
shock-kinematics. We do not attempt here to develop a method of solution,
this we do in a subsequent paper (Prasad et al.) as mentioned in the last section
of this paper.

2. An Example of Shock Embedding

Consider a quasi-linear partial differential equation in the conservation form

gu L 9 [L ] =
%—F%[zu]_ﬂ. 2.1)
Across a shock discontinuity of (2.1), the following jump condition must be

satisfied

[ﬂ%+{%mym:o, 2.2)
where the symbol [f] represents the jump in the quantity f across the shock
from left to right and ¥(x, t) = 0 represents the curve of discontinuity in (x, £)-

plane. If suffixes [ and r attach to f represent the values of the quantity f just
on the left and just on the right of the discontinuity, then

l=rt-—r. (2.3)

A discontinuous solution of the Egq. (2.1) valid for ¢ > —1 and containing a
shock is

0 for —xo<z=0
u(z, t) = T%;fm 0< < (14 t)z (2.4)
0 for (142 <2< oo,

The equation of the curve of discontinuity can be written in the form

Y=g —(1+t02=0. (2.5)
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Fig. 3. Graph of the solution (2.4) at a given time ¢

The solution (2.4) has been graphically shown in the Fig. 3. Along the curve of
discontinuity in u, v, — u; == 0 and we can divide (2.3) by », — u; to get

W, + 3‘%@! ¥Y,=0 on WYt =0. (2.6)

The function «,; appearing in (2.6) is the limiting value of the function x/(1 + £)
from left and w, is that of 0 from right. We extend the definition of 4, and u; in
such o manner that when embedding is completed, the members of the family of
shocks for @ < (1 -+ Y2 have the state x/(1 + t) on the left and the members of
the family of shocks for x > (1 4+ £)2 have the state 0 on the right. Therefore,
we extend the definition of these functions in a neighbourhood of the curve
(2.5) by (for t > —1) ‘

u, =0, “’:1:t' (2.7)

The functions w; and u, defined here satisfy the partial differential Eq. (2.1) as
infinitely differentiable functions separately. We note that we have simply ex-
tended the solution u = z/(1 + ) on the left of the discontinuity to the right
by the same expression in z and ¢, and similarly the solution % == 0 on the right
to the left. We now define a function [u] of two independent variables by

[u];;ur—~u,=~1it. (2.8)

With these extended definitions, the Xq. (2.6) i.e.

Y b, = y =0 2.9
¢+2(1+t)% 0 on Y1 (2.9)
is still satisfied.
Now. we can use the embedding theorem mentioned in the introduction.
We find that there exists a function @ defined by

z
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such that @ satisfies the partial differential equation

D, + ——o X +t) @, =0. (2.11)
The shock curve ¥ = 0 is embedded in a one parameter family of shocks: @ = ¢,
where ¢ is the parameter. The equations ¥ = 0 and @ == 1 represent the same
curve — the curve of discontinuity of our solution (2.4) as shown in the Fig. 4.
We note another important point in this particular example of a single con-
servation law. Since (2.11) is satisfied along each one of the shock curves @ = ¢,
the jump relation (2.2) is also satisfied by every omne of these one parameter
shocks i.e.

[v] D: + [—;— uz] s =0 (2.12)

identically in x and ¢ provided [«] = u, — u, and [ ut| = —;— (u,* —u,?) are defined

with the help of the extended functions «; and =, as in (2.7). Since u, satisfies
the partial differential Eq. (2.1) even in its domain of extension, we can solve
u; from @; 4 % (w + u,) D, = 0 in terms of u,, D, and @, and substitute in the
Eg. (2.1). We get

¢x2¢tt —_ Qx(?’@t + ur@m) ta -+ ®t(2¢t +u ¢z) dszx (2 13)
+Llo, {cbx% + (20, — u,® )5"'} =0
2 ot ox

which takes a particularly simple form when %, = 0. Therefore, the set of all
functions @, giving one parameter family of shocks for which the state on the
right is u,, satisfy a quasilinear second order partial differential Eq. (2.13), which

t
/ /’
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/oy
/oy
/
/
/
!/ /
/125 /15
/
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Fig. 4. The shock curve, ¥ = 0, of the solution (2.4) is embedded in a family of shock
curves @ = ¢
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is hyperbolic. Given an appropriate initial condition for (2.1) with a shock dis-
continuity, we can easily write the initial conditions for (2.13) i.e. the values
of @(x, 0) and D,{w, 0). Infact D(x, 0) can be prescribed arbitrarily and then we

can set @;(x, 0) = ——;— {w,(z, 0) 4 u,(z, 0)} D,. Thus the Kq. (2.13) can be solved

in theory, though the solution of this problem is not simpler than the original
one. However, what is important here to note is that, unlike the original problem,
we need to find only a continuously differentiable (i.e. shock free) solution of
(2.13).

Before we pass on to the consideration of gasdynamic shocks we mention
that the continuation of the state on the left (or right) of ¥ = 0 to the right
(or left) of ¥ = 0 as infinitely differentiable solution is not unique. Therefore,
the embedding described here is also not unique.

3. Derivation of the Shock Manifold Equation for an Ideal Gas

For simplicity we consider the unsteady motion of an ideal gas with constant
specific heat in two space dimensions, (z, y)-plane, only. The arguments and the
ideas can be easily extended to three dimensional flows. Consider a solution of
the equations of motion sufficiently smooth (say for simplicity, infinitely differen:
tiable) in a domain in (=, ¥, ¢)-space except for a sufficiently smooth shock surface
Y(x,y,t) = 0 in the flow. The limiting values of the functions representing the
state of the flow of the gas and their partial derivatives, as we approach the
shock surface from the domains on the two sides of it, exist i.e. all these quantities
suffer finite jumps across the surface ¥ =0, Our discussion is based on the
existence.of such -a solution, which we assume to be known. From the .conser-
vation form of equations of motion (Zierep, 1976) we can derive the followmg
jump relations across the shock:

o] Wi + [ou] ¥, + [ov] ¥, =0 (3.1)
loul ¥, + [ow? + p] ¥, + [ouv] Y, =0 (3.2)
lov] ¥y + [ouv] ¥p + [0v* +p] ¥, =0 (3.3)

and

1 1
[—_1‘10+§qu] ¥ +[

" up+—9u9]&7

(3.4)

+ [y —op + @qu] W, =0

where %, v are the components‘ of the fluid velocity, ¢ ‘the density, p pressure,
v the ratio of specific heats, ¢ = u? 4 ¢? and the symbol [ ] for the jump of a -
quantity is defined in terms of the quantities on left and right of the shock by
(2.3). We can easily show that these are equivalent to the usual form of oblique
shock relations normally used in gasdynamics, when we note that the normal and
the tangential components of the fluid velocity relative to the shock surface are
respectively

- ¥, +v¥,+ ¥ 7= —u¥y + v¥, (3.5)

(P2 + P2pe (W2 + WE°



Kinematies of a Multi-Dimensional Shock of Arbitrary Strength 169

The oblique shock relations are

Q[L[ = QTLT (3.6)
QlLlTl = QTLTTT (37)
Qlle -+ p12 - QTer + pr (38)
and
. 1
ol (A B 3 1) = o (Ep B 4 S 1) (39)
y—la Wl

Using the following formula for the jump of the product of two quantities f.and ¢
[f9] = f:lg] + aulf] (3.10)

we write the jump relations (3.1)—(3.4) in the form

o ¥oful + o, Pfv] 4 Kifo] = 0 (3.11)
0w, ¥, + Ky) [u] + gou, Wyfv] + Pl p] + wKifo] = 0 (3.12,
0w, Wil + 0,0, ¥y + K;) [v] + ¥, [p] + v,K ][] = 0 (3.13)
and
’V . . 1 - 5 1 D . 5
{( pr + = Qrgr ) Wx“‘_ = o.(U, + ul)iKl} [’LL]
Yy — 2 *
+ {(y—— Pty ead) ¥y F g ol o) KLl @)
+ (2 Et W+ 0¥, ) B1 + 0Kl =
where

K=u¥,+ 0¥, + ¥ =(P2+¥H2L (3.15)

These. equauonb can be treated as four linear homogeneous relations in the quanti-
ties [u], [v], [p] and [o]- For a dlscontlnuous solution at least one of these four is
noenzero. ThlS leads to the condltlon that the determinant A of the matrix of the
coefficients must, be zero. After some long algebrale operatlons we can show that

A= 25 egp {KIKT — 2

2y — 1) v+
where a is the local velocity of sound given by a? = yp/o. Vanishing of the factor
K, = uﬁ[’ + 0¥V, + ¥, corresponds to a contact discontinuity. Hence we can
assume that K, &= 0. For K, == 0, from the relations (3.6}, (3.7) and (3.9) we
deduce

w2 ey Pl el &)
1ar(¥a+%> = } (3.16)

2 v — — 2 gt lre BT B2 19
S TR B = e S B = T ey 61D

Therefore, vanishing of 4 on the shock surface implies the following condition
(uly,fx + ?)lTy + ':Pt) (urwz + vrl*py + g’t) - 0112”,2!(?/172 + SUyz) = 0 (3 18)
on: ¥z, y,t) =0 .

12%
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or using (3.6) again
¥y + 0, ¥, + V) — AP+ P2 =0 on ¥y t)=0 (3.19)

where

Ar=%g2 =8P P (3.20)
or er Cr— &

We note that (3.21) is the well known Prandtl relation for the shocks and the
quantity 4, is the normal velocity of a shock front relative to the state on the
right.
From (3.6) and (3.7) we get
ulT.z' + vlgjy "I’" ‘I,t = %T— (ur)—’P‘z‘ + vrgly -+ glt)
(
and
- ¥, + 0¥, = —u, ¥, + v, ¥,.

Solving these two for «; and v; we get the vector equation

v —v) = T ) g (9—7 - 1) 3.21
(ul Ury Uy ’01) (gsz + g’yz) T o ° ( . )

From the relations (3.6)—(3.9) with K; 4= 0, we can also derive the well known
pressure, density relation across a shock

r+rla
po_y—le (3.22)
p ytl &

y—1 Or

As in the example in § 2, we continue the state on the left (right) of the shock
into the subdomain on the right (left) as infinitely differentiable solution of the
gasdynamic equations as far as possible. However, we shall notice that con-
tinuation as solufion is not necessary for our analysis, they can be continued
simply as O™ functions. Now we get a three dimensional neighbourhood D of the
surface ¥(z, y, t) = 0 where all quantities with suffix ! or  and also af, and 4,
are known C* functions of three independent variables #, y and t. Therefore, we
can use the embedding theorem to get a one parameter family of surfaces

Dz, y, t) =c, (3.23)

where ¢ is the parameter. Then the function @ satisfies the first order partial
differential equation

Qsh = (ulq)x + 7)léy + d)t) (ur¢x + vr@y + Qt) - 12',l(¢z2 + gDyz) = 0 (324)
or

Qsh = (ur@m -+ Ur(py + cDt)z - A12(¢12 + ¢y2) =0 (325)

in the subdomain D. We call a partial differential equation for @, such as (3.24) or
(3.25), a shock manifold equation (SME).

Unlike the case of a single conservation law in the section 2, the condition
(3.24) or (3.25) is only a necessary condition for the jump relations (3.1)—(3.4) to
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be satisfied with the extended functions in D i.e. the conditions (3.1)—(3.4) with
¥ replaced by @ need not be satisfied when (3.24) or (3.25) are satisfied. Infact, if
they were satisfied, the functions would also satisfy (3.22) and we can easily see
that this is a too strong condition on arbitrarily extended functions. Therefore,
the shock surface ¥ = 0 is embedded in a one parameters family or surfaces
@ = ¢, which in general do not form a family of shock surfaces.

Now that we get two shock manifold equations (3.24) and (3.25) or many
others obtained from (3.18) or (3.19) and the relations (3.1)—(3.4), we can ask:
““are these partial differential equations equivalent and if so in what sense?”. We
shall show in the next section that for the given solution of the gasdynamic
equations, (3.24) and (3.25) are indeed equivalent for the construction of the shock
surface at any time from its position at any other time, say ¢ = 0.

Shock manifold equation can also be derived for a general system of hyper-
bolic equations in the conservation form, provided we assume that the shock
strength is small [see Prasad ef al. (1981)].

4. The Shoek Rays

We define a shock ray as the projection on (x, y)-plane of a characteristic
curve of a shock manifold partial differential equation in (x, y, {) space, starting
from a point of a given position of the shock at a given time.

Here we derive the ordinary differential equations of the shock rays only for
a shock which is crossed by fluid particles from right to left. For such a shock the
shock manifold equation equivalent to (3.25) is

&; + u, P, + 0,9, + 4,(P2 + D212 = 0. (4.1)

The characteristic equations of (4.1) or the shock ray equations are

'd_x' = U, + NlAr’ (42)
dt
d
-CZ_:Z = U + NzAr: (43)
ad, _ 3_“_5 37’7 2 2y1/2
2e - {(bx - R ICER (4.4)
and
9y ouy 6v, 94y (2 2\1/2
e {du = 0,2 00 40y } (4.5)

where ¥, and N, are the components of the unit normal to the shock front and
satisfy
(s> Dy)

(Ve 7y)
(@ 2 + [0 2)1/2 = 3

N, N — ey
( 1 2) —0 (TZZ‘F l_[ij)l/Z g

(4.6)

The variation of the x component of the unit normal along a shock ray can be
derived with the help of (4.4)—(4.6)
ax,

2= N, (Nl Ge g N+ Bx), (4.7)
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where

%:Nz-a% “Nla_ay (4.8)
represents an interior differentiation on ¥ = 0 i.e. the rate of change in a direction
of a tangent to the shock surface.

Equations (4.2), (4.3), (4.7) (with N2 + N,2 = 1) are the final form of the
shock-ray equations from the SME (4.1). From the theory of first order partial
differential equations it follows that a shock manifold in (#, ¥, t)-space is generated
by the shock rays in (z, y, {)-space. Moreover, the appearance of only the interior
derivative /87 in (4.7) shows that the shock rays are determined completely from
the distribution of u,, v, and 4, on the surface ¥(x, y, t) = 0 alone.

Similarly the shock ray equations from the SME (3.24) are

de _ w Dy + wl, — 2N}, (4.9)
di L4 L, ’ ’
dy  v.Ly+ wL, — 2N,a,
= = : 4.
dt I+ L, (4.10)
and
Wy Ny [[ylw )
R A RS
ou, ov oa} G (4-11)
N, — 4 N, = —'—l} = ——, say,
+ { ' + : W} o Ly+ L, y
where L defined by (3.5) can also be expressed in the form
L= Ny + Ny — 8, (4.12)

8 being the normal velocity of the shock surface.

As in the case of Eqgs. (4.2), (4.3) and (4.7) the second set of shock ray Egs. (4.9)
to (4.11) also involve the values of the functions %,, v, and @,,; and their interior
derivatives only on the shock surface ¥Y(x, y, t) = 0, where the jump relations
(3.1)—(3.4) and hence

L=%r, (4.13)
&
and (3.21) or
ul_ur—JrLNl(——— ) and v, =v, + LN, (—-—~1) (4.14)
@ (]

are identically satisfied. ;
Substituting the expressions for K;, u, and v, from (4.13) and (4.14) we get

Li+L,— (1 + ‘-’f) , (4.15)
Ly 4wl — 2N, — (1 + 97) . (u L3, L) (4.16)

v, Ly + oL, —2N2a”_(1+—’-)L,(v1-—alNzL) (4.17)
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and
G = _Nz'(Nl@i +sz’-”-f) (1 + @f) L, — N[22 ( )
on on o \g
(4.18)

—Na(% 1) L () + Nag

(“2,l>
o o

where we have used the result th.at

8N
=0,
—L + N, L
since N,2 4 No2 = 1 and
0 oN. oN. o8
frL =% N &y __»®
anr anu+anv+ 1n+27] o’
Differentiating the relation
L2 = 's_: arl

with respect to n and eliminating L L from this result and (4.18) we get after
some simplification

¢ — (1 i 97) LN, {Nl ou 4y an _ 5%5% (91 ,)} (4.19)
Using the relation L, = —4, in (4.16), (4.17) and (4.19) we get the required forms
for the expressions on the left hand sides of (4.16) and (4.17), and G. When we
substitute these and (4.15) in (4.9)—(4.11) we find that the shock ray equations
of the SME (3.25) are exactly the same as the shock ray equations (4.2), (4.3) and
(4.7) of the SME (4.1).

Thus we have proved that the shock rays of the two SME (3.24) and (3.25) are
the same and either of the two can be used for the construction of the shock surface
starting from a given initial shock position. -

We have mentioned earlier that the embedding of the shock ¥ = 0 in a one
parameter family is not unique due to nonuniqueness in continuations of the
functions on the two sides. We may then ask “does it mean that’ the shock rays
aré also not unique?”’

The values of the functions u;, v;; p; and g, and their partial derivatives are
nonunique only in the interior of the subdomain on the right of the original shock.
Similarly the valdes of u,, v,, p, and o, and their derivatives are uniquely pre-
scribed on the right subdomain including the boundary points up to the shock.
Therefore, all the functions, appearing on the right hand sides of the shock ray
Egs. (4.2)—(4.5) are uniquely determined for the original shock ¥ = 0 in which
we are interested in. The shock rays, for the embedded original shock, are unique
and are determined completely from the given solution of the gasdynamic equa-
tions.

‘We derive here an important geometrical property of the shock rays from
Eqgs. (4.2) and (4.8). When the state ahead of the shock is at rest i.e. when u, = 0,
v, = 0 the shock rays form a family of orthogonal curves to the successive posi-
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tions of the shock surface. From the symmetry of the Eq. (3.24) in suffixes / and » ~
it follows that the same result remains true if the flow behind the shock is at rest.
This important relation between the shock rays and the shock surface is in no way
evident from the similar property of rays and wave fronts of the linear theory. In
his geometrical theory of shock front propagation, Whitham (1957) assumed this
property ‘‘based on the experience with geometrical optics for linear problems”
and defined the shock rays with its help.

Since ; represents spatial rate of change of a quantity in a direction along the
¢

shock curve, it follows from (4.7) that as the shock propagates the normal to the
shock front rotates due to a gradient of the state of the gas and a gradient of the
shock strength along the shock curve. If these variations are zero, the normal to
the shock has parallel propagation.

5. Kinematics of a Weak Shock and a Methed of Solution
of Weakly Nonlinear Wave Problems

We define the shock strength § to be the jump in the pressure

é=1p —p,. (51)
Then from (3.22) it follows that for small , the jump in the density satisfies

1
o =0 = 3 0+ O(). (5.2)

The fluid velocity components, from (3.21) become

L N+ 0%, o —uv,——-1 N6 +0. (53)

Oy Qr%r

Uy — Up = —

As in the case of g;, #; and v,, we can also approximate 4, up to first order
terms in 0 and use an approximate form of the shock manifold equation (3.25).
However, it is more interesting theoretically to start with the equation (3.24),
which for forward facing shock is equivalent to

¢t+‘;‘(ur+ul)¢x+%‘(vr+vl)¢y )

(5.4)
1 1/2
e [ (@2 9+ o (0 — ) By 0y — ) 2| =0,
T,
It is simple to show that for a weak shock, we get
1
Ir1 =3 (@ + @) + O(8%). (5.5)

Therefore, for a weak shock if we wish to retain terms only upto the order 4, the
approximate shock manifold equation from (5.4) becomes

dit + %' (ur + ul) @x + % (U, “{“ 1)1) @y +% (ar ‘*‘ (1»1) (¢z2 + ¢y2)1/2 = 0 (56)

This equation also follows as a particular case of the weak shock manifold equation
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for an arbitrary hyperbolic system of quasilinear partial differential equations
(see Prasad et al. (1982)) and was also obtained by Kluwick (1971).

The Eq. (5.6) is exactly the same as the equation of the forward facing charac-
teristic surface except that the fluid velocity components and the local sound
velocity are replaced respectively by the mean of their values ahead of and behind
the shock. The equations for the shock rays can be easily written from which we
deduce the following result:

“For a weak shock, the shock ray velocity components are equal to the mean
bicharacteristic velocity components just ahead and just behind the shock
provided we take the wave fronts generating the characteristic surfaces to be
instantaneously coincident with the shock surface. Similarly the rate of turning
of the shock front is also equal to the mean of the rates of turning of such wave
fronts just ahead and just behind the shock.”

Solution of an initial or boundary value problem involving a shock wave is still
very difficult. The state behind the shock and the motion of the shock influence
one another and can not be treated independently. However, in the case of a weak
shock propagation there are well known methods of solution by Oswatitsch (1965)
and Whitham (1956). The second method hasg been extensively used in caleulating
the sonic boom signature but it is valid only when the shock rays do not deviate
significantly from the linear rays. Whitham’s geometrical shock dynamics (1957)
intended to take into account of the deviation of the shock rays from the linear
rays, completely decouples the shock motion from the flow behind it. In the intro-
duction we have already remarked on a recent method of Maslov (1980). The
kinematics of the shock front developed here can also be used provided the
solution behind the shock is known. In a companion paper, we have shown
(Prasad et al. (1981)) that in a certain class of weakly nonlinear waves, we can use
an earlier method by us (Prasad (1975)) to determine the solution behind the
shock. This class consists of those problems in which the waves are produced by
the motion of rigid boundaries and the shock wave produced in the flow remains
close to the nonlinear wave front initially sent by the boundary. Once the non-
linear solution behind the shock has been determined, it becomes a simple matter
to fit in the shock according to the partial differential equation (5.6). Details of
this method with application to the flow field produced by sudden introduction of
a circular cylinder in otherwise uniform flow of a compressible fluid is available in
the companion paper.

6. Remarks

The theory develgped here gives a clear picture of the kinematics of a shock
front. At present we can not say definitely whether this theory will also be useful
in the solution of the problems containing strong shocks. However, there is one
example of a transonic flow where the flow behind the moving shock can be
approximately predicted due to the freezing property of the sonic flow. Zierep
(1968) has calculated the standoff distance of the shock (and its shape) using the
freezing property and using the one dimensional theory of shock wave propagation
along the axis of symmetric bodies when the flow at infinity is also parallel to the
axis. We hope, we can use this theory to find the shape of the shock (see many
papers on this topic in Theoretical and Experimental Fluid Mechanics edited by
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Miiller, Roesner and Schmidt (1“97 9)). We also believe that this theory will make
some contribution towards the understanding of the nonlinear caustic problem
mentioned in the introduction.

There is one definite possibility of the use of the theory. It can be used to
check the accuracy of solutions obtained by other methods such as finite difference
schemes. We can use the computed solution behind the shock and verify to what
extent the shock shape by the other method and the present theory agree.
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