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I. Eigenvalue Formulation and Simple Applications 

P. Anthony Cox and Melvyn H. Wood 
Institut de Chimie, Universit6 Louis Pasteur, Strasbourg, France 

Received June 18, 1975/December 3, 1975 

A SCF method based on the solution of two eigenvalue problems, in the same manner as for the 
normal U H F  procedure, is formulated for determining the half-projected Hartree-Fock (HPHF) 
function for singlet ground states of molecules, the HPHF function being defined as a linear combination 
of two Slater determinants containing only spin eigenfunctions with even quantum number. A com- 
puter program has been written and is described, and results are presented for two simple linear 
molecules. An important part of the correlation energy is obtained for these molecules. 
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1. Introduction 

There are many methods currently available for obtaining at least a part of the 
correlation energy for molecules [1-8]. However, all of these methods lose the 
simplicity of the restricted Hartree-Fock (RHF) formalism, and for none of them 
is general application straightforward. 

One way of retaining this simplicity is by using the unrestricted Hartree-Fock 
(UHF) function which is also a single Slater determinant but the electrons of 
opposite spins are assigned to different spatial orbitals (DODS) [9, 10]. Such a 
function is not a spin eigenfunction and although it might be expected to yield an 
energy lower than that of the RHF function, when taken as an approximation to 
a singlet ground state, it generally does not do so due to the spin contamination 
of the function. L6wdin [11] has, therefore, suggested the projected Hartree-Fock 
method (PHF) in order to circumvent this problem. In this method the wave- 
function, which is a spin eigenfunction, takes the form of a fixed linear combination 
of Slater determinants for which the coefficients depend upon the multiplicity and 
the number of pairs of electrons. The best orbitals are obtained, as in the RHF 
and UHF methods, by the variational procedure. Although some calculations 
have been performed with this method for small systems [12 17] it becomes 
intractable for larger ones owing to the large number of determinants involved. 

It has recently been suggested by Smeyers and Doreste-Suarez [17] that the 
simpler two-determinant unrestricted function given by 

7 j = 2-1/2(]alb la2b2. . .aNb N [~ - Ib l a lb2a2 . . . bNCl  N l) (1) 
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when used as an approximation to singlet ground states, should be capable of 
recovering a part of the correlation energy similarly to the PHF function. The 
function may be shown [-17] to contain only states with even spin quantum 
number and can be expressed as the one-determinant UHF function projected on 
the subspace with even spin quantum number. It is therefore referred to as the 
half-projected Hartree-Fock (HPHF) function. 

It may also be noted [17] that changing the sign of the second Slater deter- 
minant in (1) gives a triplet, which is similarly half-projected, in that it contains 
only states of odd spin quantum number. 

In this paper we show how the orbitals may be optimised for the function 
given by (1), we describe the computer program which has been written, and 
present the results of interest for H z and BH in order to illustrate the method. 

2. Theory 

2.1. Derivation of an Eigenvalue Formulation 
In this section we give an expression for the energy of the HPHF function of 

Eq.(1), and show how the condition for this energy to be stationary with respect 
to variations in the {a} and {b} orbitals can be expressed as two eigenvalue equa- 
tions. We assume, without loss of generality, that all the orbitals are real, and that 
the {a} and {b} each form an orthonormal set. The formulae we give are greatly 
simplified by assuming the orbitals to be in "corresponding" form: i.e. that they 
satisfy 

(ai I b j ) =  61j21 (2) 

The possibility of choosing orbitals to satisfy (2), in the context of normal 
UHF theory, was noted by Amos and Hall [10], and since the HPHF function, 
like the UHF, is invariant to unitary transformations among each of the orbital 
sets {a} and {b}, the proof of Amos and Hall may be applied without modification, 
as also noted by Smeyers and Doreste-Suarez [-17]. 

With the orbitals {a} and {b} chosen to satisfy Eq.(2), the norm of the wave- 
function of Eq.(1) is 

( qJ ] 7/) = 1 ÷ D (3) 

where 

N 
D = l-[ 22 (4) 

i = l  

is the simplified expression for the determinant of the overlap matrix between 
the {a} and {b} orbitals. 

We now define 

Et=i=l ~ { (ailhlai)+(bilhlbi)+½j=l ~ [ (aiaj[glaiaj)-(aiajlglajai)+ 
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which is the "unprojected" UHF energy of each Slater determinant of Eq.(1), and 

E2=D i~=]/')~i 2(a~lhlbi .= /,{j 2(a~ajlg[bzbj>-(aza;lglb;b~) (6) 

which is the cross Hamiltonian element between the two Slater determinants. For 
the total energy of the wave-function, we then have 

((PI ~ )  I + D  

We now calculate the variation in the energy with respect to variations of the 
orbitals {a} and {b}. Like Smeyers and Doreste-Suarez [17], we use the "general- 
ised Brillouin's theorem", which we may derive as follows: 

Owing to the invariance of ~ to a unitary transformation among the orbitals 
{a}, it is sufficiently general to consider variations of the form 

b> ~ b > +  E &~lak) (8) 
k>N 

where the summation runs over all "virtual" orbitals ak, orthogonal to every filled 
{a} orbital. Under the variation (8), the change in the wave-function, to first order 
in the elk, is: 

N 

71-+ ~P + E Y aikT"ik (9) 
i = 1  k>N 

where 

q'ik = 2 1/2(lalbl .akbi...aNF)NI + ]blal...biak...bNClN l) (10) 

It is then easy to show (see McWeeny and Sutcliffe [18], pp. 33-34) that the 
variation in the energy is given by: 

?E 
o~,k- < ~I~I ~ >  - E< ~ I ~,~> (I l) 

Smeyers and Doreste-Suarez [17] appear to have solved a configuration inter- 
action problem in the functions q~gk in order to optimise the orbitals, but we shall 
show here how to express the condition for energy minimum in terms of a relatively 
simple eigenvalue equation. 

We first define the following operators: 

N 

R °= F, la;><a,I (12a) 
i = 1  

N 

R b= E Ib,><b,I (12b) 
i = 1  

which are operator forms of the usual (spin-less) density matrices for the {a} and 
{b} orbitals, and 

N 

Rab= E [al)t/2i(b;[ ( 1 3 )  
i-1 
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which arises in considering cross-terms between the two determinants. R ab is not 
symmetric, but we may define R ba as the transpose of R "b. 

Introducing an arbitrary basis of one-electron functions (e.g. atomic orbitals 
(AO)), denoted by p,q,r,s, we define 

Fpq = hpq -}- Z [(R~ + Rb~)(,pr[glqs) -- R~@r] glsq)] (14a) 
r , s  

Fpqb _-- hv q + ~, [(R~ + Rbs)@r[glqs) -- Rbrs(,pr[glsq)] (14b) 
r,s 

as the Hartree-Fock matrix elements arising in normal UHF theory, and the 
"cross-term" 

ab __ ab Fvq - hpq + ~, [2R:b@r[g]qs) -- Rr~ <prlglsq) ] (15) 
r98 

Owing to the exchange term in (15), F "b is not symmetric, but, again, we may define 
F b" as its transpose. 

Using the definitions of F" and F "b above, and the methods described by 
McWeeny and Sutcliffe [18], the variation in the energy (Eq.(11)) can be written 
as follows: 

aE 
Oe~k = (ai [F~lak) + D/2,(b, ]gb"[ak) + (E 2 - -  DE)/2~(b~ lak) -- 

N 

- D / 2 i  ~', 1/,~i(bgiak)(bilFb"laj) (16) 
j = l  

The condition for the energy to be stationary with respect to variations in the {a} 
orbitals, is then that the above expression should be zero for all filled orbitals i, 
and all virtual orbitals k. To reduce this condition to an eigenvalue equation, we 
introduce the Hermitian operator: 

H a = F a + (R"b + Rb,)(Ez _ DE)  + V{RaVFb"(1 - R ab) q- (1 -- Rb")FabR ha} (17) 

Now 

OE 
&,~ - (a~ [Halak) (18) 

To prove (18), it is only necessary to make use of the following properties of R ~b, 
which follow immediately from the definition, Eq.(13): 

N 

Rab l ak)= ~ 1/2j(b.i l ak) [aj) (19a) 
j = l  

Rba[ak)  =0  (19b) 

Rba I a i )=  1/2, I b,) (19c) 

Variations of the {b} orbitals can be treated by an exactly analogous argument. 
Thus, letting 

[b,)--, Ibm)+ ~ rhk [ bk) (20) 
k > N  
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we have 
0E 
Oqik = ( bi IHb[bk) (21) 

where 

H b = F b + (R"b + R b,)(E2 -- D E )  + D { R  b"F"b(1 7 R b,) + (1 -- R"b)Fba R ab} (22) 

The condition for the energy to be stationary is thus that H a and H b should have 
no matrix elements between filled and empty {a} and {b} orbitals respectively. 
Owing to invariance of kv under unitary transformations among the sets {a} and 
{b}, we may choose "canonical" sets which completely diagonalise the operators. 
Thus the HPHF orbitals are found.from the two eigenvalue equations: 

g° [ a,>=e~' l ai> 
Hb l b,)=e~ l b,) (23) 

Clearly the operators H a and H b depend, in an even more complex way than 
in normal UHF theory, on the orbitals {a} and {b} themselves. Thus, starting 
from an initial guess to the orbitals, the problem must be solved in an iterative 
way to reach a self-consistent solution. 

As with ordinary HF theory, it is not obvious that such a procedure will con- 
verge unaided. However, it is very easy to incorporate the "level-shift" method 
described by Hillier and Saunders [19]: this involves adding a constant to the 
virtual diagonal elements of the HF matrix before diagonalisation. It is easy to 
transfer the arguments of Ref. [19], and show that, as in HF theory, a sufficiently 
large level shift will guarantee convergence of the HPHF procedure described here. 

Although we have used "corresponding orbitals", satisfying Eq.(2), to cal- 
culate the form of the operators in Eqs.(17) and (18), the orbitals' resulting from 
diagonalising these operators will almost certainly not satisfy this condition. It 
would be possible, after each SCF iteration, to calculate the transformation re- 
quired from canonical to corresponding forms, but this is unnecessary, since, in 
the final formulae for H" and H b, the corresponding orbitals only enter through 
the definition of R ab. This operator may be calculated directly from a general 
basis of {a} and {b} orbitals: 

Let 
a b  Sij -(ailb~) 

be the overlap matrix of {a} and {b} orbitals in such a general basis, and T ab be 
its inverse. Then 

N 
R ab= F, la~>TT~(bjl (24) 

i , j -  1 

Throughout this section we have assumed the singlet form of the wave-function, 
Eq.(1). In the triplet form the second Slater determinant has the opposite sign, 
and it is easy to see that all the formulae given here are still valid, provided we 
simply change the sign of D, defined in Eq.(3). Thus the method described here 
should be equally capable of calculating the lowest triplet state of a molecule. 
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Evidently the formulae given here only apply if none of the 2~ of Eq.(2) are 
zero, that is, if the overlap matrix between {a} and {b} orbitals is non-singular. If 
one of the 2~ is zero, the energy is given by the simpler expression 

E =  E1 + D' (apbplg[bpa~,) (25) 

where 2p = 0. E 1 is still given by Eq.(5), and 

D ' =  H 2 2 

The most likely situation in which this will happen is if ap and bp are localised 
on different atoms in a dissociated molecule, and this case the exchange integral 
between these orbitals will vanish. E~ is now equal to the sum of the UHF energies 
of the different atoms. Thus the H P H F  function for the dissociation limit of a 
molecule should have the same energy as the sum of the UHF energies of the 
separated fragments. This is an important improvement over the RHF theory 
(see McWeeny and Sutcliffe [18] pp. 121). 

2.2. Some Properties o f  the Wave-Function 

Of interest for calculating one-electron properties of the HPHF wave-function 
is the total one-electron spinless density matrix. In terms of the operators defined 
in Eqs.(12) and (13), this may be written 

RT=(1 + D ) - i { R " + R b + D ( R a b + R b " ) }  (26) 

Natural orbitals (NO) are defined as the eigenfunctions of the spinless density 
matrix, and are useful for comparing the results of different methods of calculating 
electron correlation [20]. Using Eq. (26)and the definitions of Eqs.(12) and (13), 
it is easy to show that the NO's are linear combinations of the {a} and {b} corres- 
ponding orbitals: thus 

Rr@~)+[b , ) )=( l+D)- l ( l+2 ,+D+D/2 i ) ( [a~)+lb~) )  (27a) 

R T(la~) --Ibm)) = (1 + D)-  1(1 - 2, + D - D/2,)([a,) - Ib,)) (27b) 

The NO occupations are thus a function of the "splitting" between the {a} and 
{b} orbitals, measured by the overlap 2,. In the limit where 2~ = 1, these occupations 
become 2 and 0. 

The formula for the occupations offer an interesting comparison between the 
H P H F  and the unprojected UHF wave-functions. Amos and Hall [10] derived 
identical expressions for the NO's of a UHF function, to those given in Eqs.(27); 
however, the occupations are 1 + 2~ and 1 - 2j respectively. In order to give appre- 
ciable correlation between electrons in a~ and b~, we must have 2~ appreciably less 
than one. However, with 2=0.9 we have NO occupations of 1.9 and 0.1 for 
simple UHF. The figure of 0.1 for the orbital of small occupation is rather too 
high. This may be an important reason, quite separate from the problem of spin 
contamination, why UHF for closed-shell systems often gives the same result as 
RHF.  For the HPHF function the occupations depend, through D, on the splittings 
of all the orbitals. If  we assume that only one orbital is appreciably split, with 
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2=0.9,  so that D = 0.81, we derive an occupation number of 0.0055 for the weakly 
occupied NO, which is more reasonable. However, the situation is less satisfactory 
if several orbitals are appreciably split: for example, if five orbitals in the H P H F  
function each have 2 = 0.9, the corresponding NO occupation numbers are 0.045, 
which is rather high, although still not as high as the single UHF.  These con- 
siderations lead us to anticipate that the H P H F  wave-function may give a satis- 
factory description of correlation in one, or at most very few orbitals, but will not 
be capable of describing simultaneous correlation in many orbitals. A similar 
conclusion follows from considering spin contamination. 

It is easy to show that the expectation value of  5 p 2 for the H P H F  wave-function 
is given by 

= N - ( 1  +V)  -1 ~. (22+D/22) (28) 

The corresponding value for simple U H F  is 

N 

N -  ~ 22 (29) 
i ~ l  

Since 22 ~< 1 for all i, it can be seen that the value of (28) is always less than (29), 
but by an amount  which depends on the relative values of the 2. Returning to the 
two illustrative examples which we used in the previous paragraph, we can see 
that if only one 2 is different from unity, 5 P 2 for the H P H F  function is zero: i.e. 
in this case the function describes a pure singlet. With five orbitals having 2 = 0.9, 
however, we obtain a value of 5 P 2 of about 0.55, indicating strong spin contamina- 
tion (about 10% of  quintet); the unprojected U H F  value in this case is 0.95. This 
strongly reinforces our conclusion of the previous paragraph, since it appears that 
the H P H F  wave function cannot describe correlation between many pairs of 
electrons simultaneously, without introducing an unacceptable degree of spin 
contamination. 

3. Computational Procedure and Testing 

The H P H F  method described here has been programmed in F O R T R A N  for 
the Univac 1108 computer. The steps of the calculation are similar to those for a 
conventional U H F  method, except that the overlap matrix between {a} and {b} 
orbitals must be calculated and inverted, to obtain the matrices R ab and F ~b from 
Eqs.(24) and (15). To make use of the level-shift procedure [19] and to speed up 
the diagonalisation, the matrices H a and H b are calculated in the basis of trial 
{a} and {b} orbitals respectively. Both in storage requirements and in time per 
iteration, the calculation represents an approximately two-fold increase over 
simple UHF.  

As trial orbitals for the first iteration, it seems reasonable to take vectors close 
to the R H F  solution. Since the R H F  vectors are themselves a solution to the 
H P H F  equations, corresponding to a saddle-point on the energy surface, it is 
necessary to split the {a} and {b} orbitals before starting the calculation. This we 
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do by mixing selected filled and virtual orbitals, with coefficients which have 
opposite signs for {a} and {b} sets. 

The case of H z offers a very convenient test of the method and the programme, 
since for a two-electron system the HPHF function is not only a pure singlet, but 
is also equivalent to a two-configuration MC-SCF function [12]. Using a basis- 
set described previously [8], and with an initial mixing of some la u virtual orbital 
into the RHF la0, the energy converged steadily towards the two-configuration 
MC-SCF value [8]. However, as well as this solution (which has the lowest 
energy), we found it possible to obtain three other solutions with energy lower 
than the RHF value, by initially mixing virtual orbitals of different symmetry into 
the RHF filled orbital. We shall discuss the problem of multiple solutions in a 
later paper. 

4. Results for Boron Hydride 

We shall now discuss the results obtained, at several levels of approximation 
including the HPHF method, for the ground state (1S+) of BH. The calculations 
described here have been performed using the uncontracted (9,5/4) Gaussian basis 
of Huzinaga [-22], for which the Hls  function was scaled by 1.2, augmented by 
single sets of d- and p- type polarization functions on the B and H atoms respec- 
tively, the exponents chosen for these functions being d=0.55 and p=0.9. This 
uncontracted basis was then contracted to (4,2,1/2,1) according to Dunning [23]. 
For the calculations described below all the SCF orbitals were restricted to be a 
symmetry orbitals, unless otherwise indicated. 

In Table 1 we compare the results of our HPHF calculations with those of 
other studies [24-30] and with experiment [31-32] for some spectroscopic 
properties of BH. It can be seen that the HPHF method compares very favourably 
with the more complex methods, and of course is in much better agreement with 
the experimental dissociation energy (De) than is the RHF method. Our calculated 
SCF error in De (compare near RHF limit calculation of Cade and Huo 1-24] is 

Table  1. To ta l  energies,  d i ssoc ia t ion  energies  and  equ i l ib r ium in te rnuc lear  
d is tances  ca lcu la ted  us ing several  m e t h o d s  for the X 12; + s ta te  of BH 

E(ha r t r ee )  De (eV) Re (A.) 

Har t r ee -Fock"  - 25.1315 
Valence b o n d  b - 25.1456 
Large  CI  c - 25.2621 
Separa ted  pa i r  d - 25.2054 
Spin-op t imized  S C F  - 25.1664 
Valence b o n d  I - 25.1454 
Opt imized  f i rs t -order  CI  o - 25.1798 
H P H F  - 25.1405 
Expe r imen t  h 

2.78 1.200 
2.45 1.342 

3.86 1.230 
3.28 1.250 
2.98 1.337 
3.27 1.276 
3.09 1.273 
3.54 +_ 0.04 1.236 

a See Ref. [24]. 
b See ReL [25].  

See Ref. [26].  
a See Ref. [27].  

e See Ref. [28].  

y See ReL [29].  
0 See Ref. [30].  
h S e c R e t .  [31] and  [32].  
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Table 2. Natural-orbital occupation numbers for various internuclear 
separations" calculated using the HPHF method for BH 

2a 3a 4a 5a 

R = 2.41 1.999 1.977 0.023 0.001 
R = 5.0 1.998 1.584 0.416 0.002 
R -  10.0 1.998 1.021 0.979 0.002 

" Internuclear separations are given in bohr. 

Table 3. Calculated total energies and expectation values of ,9 °2 for the RHF, UHF, HPUHF" and 
HPHF methods for three internuclear separations b for BH 

E(hartree) ( ~  2) 
RHF UHF HPUHF HPHF UHF HPUHF HPHF 

R=2.41 -25.1243 -25.1243 -25.1243 -25.1404 0.0 0.0 0.0026 
R = 5.0 - 24.9698 - 25.0304 - 25.0432 25 .0440 0 .8948  0 . 0 0 6 7  0.0077 
R= 10 .0  -24.8373 -25.0270 -25.0271 -25.0271 1 .0043 0 .0088  0.0088 

a This is a function of the HPHF type with the orbitals as determined in the UHF calculation. 
h Internuclear separations are given in bohr. 

abou t  0.13 eV and  since this e r ror  can  also p r o b a b l y  be ca r r i ed  over  to the H P H F  
ca lcula t ion ,  our  ag reemen t  with exper iment  wou ld  p r o b a b l y  be even bet ter  with 
an i m p r o v e d  basis  set. The  N O  occupa t i on  numbers ,  given by  Eq.(27), are  shown,  
as a funct ion  of  three  in te rnuc lea r  separa t ions  (R),  in Tab le  2. They  m a y  be com- 
pa red  wi th  the resul ts  ob t a ined  f rom an op t imised  f i r s t -order  wave- func t ion  (see 
Table  5 o f  Ref. [-30]), the  3o-, 4a and  5a occupa t ion  number s  be ing  very s imilar  in 
bo th  cases. Table  3 gives an in teres t ing  c o m p a r i s o n  o f  the ca lcu la ted  values for 
the to ta l  energy and  ( ~  2) for several  me thods  as a func t ion  o f  R. 

As  has  been m e n t i o n e d  in a p rev ious  section, it has been  f o u n d  tha t  on remov-  
ing the  s y m m e t r y  res t r ic t ion,  o ther  so lu t ions  m a y  be ob ta ined .  Over  a wide range  
o f  R for  BH it is poss ib le  to ob ta in  at  least  one n o n - s y m m e t r y  solut ion,  in which 
the N O ' s  are not  all  a orbi ta ls .  This  has  been found  t rue  no t  only  for the H P H F  
m e t h o d  bu t  also for  the U H F  me thod .  The na tu re  of  these so lu t ions  appea r s  to 
change  as a func t ion  o f  R, "o-- type" co r re la t ion  being p re fe r red  at  large dis tances  
( > 3 . 5  bohr )  and  " n - t y p e "  co r re la t ion  being pre fe r red  at  shor te r  d is tances  
( <  2.8 bohr) .  F o r  all  R it has  been found  poss ible  to o b t a i n  b o t h  U H F  and  H P H F  
solu t ions  lower in energy than  the co r r e spond ing  R H F  solut ions ,  a l though  the 
U H F  wave- func t ion  a lways  has an apprec iab le  spin c o n t a m i n a t i o n .  One  such 
add i t i ona l  so lu t ion  occurs  for the H P H F  m e t h o d  at  R o f  2.4 b o h r  with an energy 
o f  - 25.1451 H a r t r e e  and  ( J  2)  = 0.0005. The  N O ' s  wi th  occupa t ion  number s  
app rec i ab ly  different  f rom ei ther  2 or  0 are a o- N O  wi th  oc c upa t i on  n u m b e r  o f  
1.910 and  a n N O  wi th  occupa t i on  n u m b e r  o f  0.090. 

5. Conclusions 

In the  present  work ,  we have given a s imple  and p rac t i cab le  m e t h o d  for  the 
ca lcu la t ion  o f  H P H F  wave-funct ions .  The  c o m p u t a t i o n a l  effort  requi red  is only  
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a f a c t o r  o f  two  g r ea t e r  t h a n  the  s imp le  U H F  m e t h o d .  T h i s  s impl ic i ty  m a y  be  con-  

t r a s t ed  w i t h  the  e x t r e m e l y  c o m p l i c a t e d  e q u a t i o n s  a r i s ing  in f u l l y - p r o j e c t e d  m e t h o d s  

[33] .  Resu l t s  h a v e  been  p r e s e n t e d  fo r  the  s i m p l e  m o l e c u l e  B H ,  a n d  a l t h o u g h  the  

m e t h o d  does  n o t  a p p e a r  to  r e c o v e r  a l a rge  p r o p o r t i o n  o f  the  t o t a l  c o r r e l a t i o n  

ene rgy ,  there  is a suff ic ient ly  la rge  i m p r o v e m e n t  o v e r  R H F  tha t  t he  m e t h o d  de-  

se rves  to  be i nves t i ga t ed  fu r the r .  T h e s e  i nves t i ga t i ons ,  a n d  a d i scuss ion  o f  the  

p r o b l e m  o f  m u l t i p l e  so lu t ions ,  will  be  p r e s e n t e d  in a s u b s e q u e n t  pape r .  
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