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Summary. In the paper discrete systems with a variable mass and unilateral constraints are considered. The 
assumed physical and mathematical model enables analysis of large displacements of bodies and also 
a change of the load mass on the behaviour of the whole structure. Nonlinear equations of motion are 
solved using numerical integration. The paper contains the testing of equation of motion and computer 
programmes that generate and solve equations of motion. A special checking function for systems with time 
varying mass based on energy power balance is introduced. The results of calculations are the proof of 
correctness of the algorithms that have been used. 

I Introduction 

The aim of the work is to present methodology of the solution of dynamical mechanical models 
that concern a procedure of testing of correctness of a numerical solution. The method proposed 
has been used in order to solve problems of dynamical systems with time-varying mass. Systems 
for which the influence of such effects should be considered are machines like cranes or 
excavators that carry loose loads or fluids (i.e. sand, concrete). The model assumed is analyzed by 
means of dynamic methods convenient for the nonholonomic systems of variable configuration 
and mass. To our knowledge multibody programmes, recently quite popular [1], are not ap- 
plicable to systems with time varying masses. 

To derive basic equations, we use Nielsen's equations [2] in the matrix form: 

t3i" c3T OV 

in which T and V are kinetic and potential energy of the system, f denotes nonconservative 
applied forces (internal and external), and q is a set of independent generalized coordinates. 

Nielsen's equations are a special case of Mangeron-Deleanu equations applied to investigate 
the motion of a system with nonholonomic nonlinear constraints (due to load motions control). 
Mangeron-Deleanu equations [3], [4] include a more general class of nonlinear constraints than 
that which are considered in the methods based on Lagrange's equations. 

In order to test results of numerical integration a checking function C(q, q, ~, t) has been 
introduced - a derivation of which is presented in Appendix A. A constant value of the check- 
ing function testifies the correctness of the numerical solution. The derivative of C is defined 

a s  

d(q, q, #, t) - ~ + 2 ~  + 2 = o,  (2) 
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where E is the total mechanical energy (E = T +  V). Z and Z r  are functions of kinetic and 
potential energies as well as the power of non-conservative applied forces: 

3V t?T 
2~ = _ q r f _  0---t- - 20T 0--q' (3) 

Z r  = --To' + T2' + 2T3'. (4) 

To', T2', T3' denote components of the derivative i" of the kinetic energy: To' is the term in- 
dependent of the generalized velocities q, Tz' is dependent on the square of velocities and T3' is 
dependent on the generalized velocities in the third power. 

2 Derivation of equations of motion 

2.1 Kinetic energy and its derivatives 

As has been mentioned, to formulate the equations of motion, Nielsen's approach [2] was used. 
Thus, it is necessary to determine kinetic and potential energy of the systems analyzed. It is 
assumed that the relative velocity of the mass flow is equal to zero and the reaction force 
depending on the relative motion of the discharged masses is neglected. 

The energy of a particular body can be expressed as 

1 
= ~ (vkrmkvk + co~TAcok) (5) 

where mk, jk a r e  matrices of the mass and moment of inertia, vk is the mass center velocity, and 
cok the angular velocity of the body k. 

The kinetic energy of the system is the sum of the energies of all bodies and - expressed in 
terms of generalized coordinates - is expressed as follows: 

1 
T =  ~- (m + mq + qrMq) (6) 

in which the scalar function m, the row matrix m and the square matrix M are defined as 

m = vtTMoVt + cotTJocot, 

m = 2(vtTM1U + cotrJ 1 W), (7) 

M =  UTM2 U + WTJ2W. 

The vectors vt, cot and also the matrices U, Ware defined by Eqs. (A.3), (A.4). Block mass matrices 
M~ and moment of inertia matrices J~ are symmetric. The terms of M~ and J~ depend on the 
generalized coordinates q and time t. 

1 
Taking into account (A.8) one finds the particular terms of the energy T as: To = ~ m, 

1 1 .TM. T~ = -~ m(I, T2= ~ q q. 
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After differentiation of T with respect to q we obtain 

OT 
- -  = L 0  + t .  (8)  
0q 

The matrix L is as follows: 

L -  2 a q m +  ~ ql + . . . + 0 ,  , (9) 

where qj( j  = 1 . . . .  , n) are the particular generalized coordinates of the model analyzed. The 
second term in (8) is defined as 

1 
1 = ~- ~qq m. (10) 

Differentiating the kinetic energy with respect to time, we get 

d T  1 
=_ 7"= -- (rh + th O + m 4 + 20TMo + qTNq), (11) 

dt 2 

in which the matrix Ndenotes the derivative of the mass matrix Mwith  respect to time (N - N/). 
Differentiating T with respect to q, we have 

a~ 
- -  = f o  + f l  + f 2  + M~ + N 0 + Pq. (12) aq 

The vectors f ( i  = 0, 1, 2) are obtained as follows: 

f l = c o l  m ~ + o  r ~ m  r , j = l , . . . n  (13) 

[1 
f2  = col q 7-7-. , j = 1 . . . .  n. 

Oq~ J 

The matrix P is a product of the generalized velocities 0 and the derivative of the matrix N with 

respect to q, i.e. P = ~ , and can be expressed as 

l ( ( 1 1 T [ ~ - ~ l N l + d 1 2 T [ ~ 2 N l + ' " q - q n r [ ~ @ n ~ )  (14) P=2 

2.2 Potential energy o f  the system 

The total potential energy of the system V is a sum of the gravity potential Vo( q, t) and the energy 
of elastic deformation of the constraints V~(q), 

V(q, t) = Vo(q, t) + V,(q). (15) 
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It has been assumed that the systems analyzed (Figs. 1, 2) have a set of unilateral elastic 
constraints. The potential energy of the constraints (having bilinear characteristics) can be 
written in the form 

1 T V~(q) = ~ u CJu, (16) 

where: 
u - the vector of the springs deformation, 
J - the matrix indicating the state of constraints, 
C - the diagonal springs stiffness matrix. 

An expression of the potential gravity energy is: 

Vg(q, t) = Grr,  (17) 

in which: 

G - the vector containing the gravitational forces, 
r - the vector determining positions of mass centers of particular bodies. 

The potential forces can be expressed as follows: 

0q ffq G r r +  ~ u r C J u  = - ~ q G -  -2 \ Oq C J u + u r C J ~ q  = - K ( q ' t ) q "  (18) 

The partial derivative of the potential energy that will be used in an expression for Z is 

av a ( 1 ) aa T aT a, 
& = at GTr + - 2 u r C J u  : ~ r +  ~ .  (19) 

Putting (19) and (8) into (3) one obtains 

aG T GT ar 2 = - -4Tf - -  ~ r -- -ff~ -- 2qrL4 - h(q, 4, t). (20) 

3 Equation of model motion and sample problems 

Introducing expressions (5)-(18) into (1) for the model analyzed, one obtains equations 
governing the system. In the symbolic form the equation can be written as follows: 

M(q, t) 4 + (P(q, 4, t) + N(q, 4, t) -- 2L(q, 4, t)) 4 + K(q, t) q = f(q, q, t). (21) 

The differential equations of model motions in a general case cannot be solved in a closed 
form. Matrices in the nonlinear equations (21) are time, displacement and velocity dependent. 
Practically, the numerical integration is the only possible method to obtain a solution. 

The equation used in order to test numerical integration results is as follows: 

2 -- h(q, q, t) = 0. (22) 

3.1 Excavator model 

The sample planar model of an excavator (Fig. 1) consists of five rigid bodies: 

- the body (1) with three degrees of freedom elastically connected to the ground 
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Fig. 1. Excavator model 
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by means of springs; 

- the body (2) Mounted on (1); 
-- the body (3) connected with (2) by means of hinge, the position of which determined 

the angle fl; 
- the body (4) connected with (3) by means of hinge - modelling an excavator arm; 
- the body (5) which is a model of the excavator scoop and can rotate around the body (4). 

The mot ion of the system (planar model of an excavator) has been described by means of the 
coordinates: 
y, z - displacements of the mass center point of the body (1), 
r - rotat ion angle of the body (1), 

fl - angle of jib tilt (3) (fl ~ (ill ,  f12 ))1, 
7 - angle of the body deflection (4) with respect to the body (3) (7 e (71, 72 )), 
q - angle of the scoop (5) rotat ion 0/~ (r/l, ~2 ))" 

The operat ion movements  can be realized by means of the jib (3), the arm (4), or the scoop (5) 
movements.  It  means that  the equations of constraints are known and are as follows: 

fl - -A(t)  = O, y - f2(t) = O, r / -  f3(t) = O. (23) 

The vector of generalized coordinates of the system is defined by 

q = [ y  z l ~]T = [ql q2] T. (24) 

3.2 Model of planar crane 

The sample planar  model of a crane (Fig. 2) consists of four rigid bodies [5]: 

- the body (1) with three degrees of freedom, elastically connected to the ground by means of 
springs; 

- the body (2) mounted  on (1); 
- the body (3) connected with (2) by means of hinge, and a prescribed position angle fl; 
- the particle (4) with two degrees of freedom, connected to the body (3) with a flexible 

cord. 

1 Angle limitations result from the length of servo motors and geometrical dimensions of particular 
elements. 
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Fig. 2. Planar crane model 

The motion of the system has been described by means of coordinates: 

y, z - displacements of the mass center point of the body (1), 
cp - rotation angle of the body (1), 

/~ - angle of jib tilt (3) (/? e (/81, ]~2 )), 
- angle of rotation of the cord relative to the global coordinate system (7 e ( 71, ~2 )). 

The equation of constraints is known and has the form 

/~ - f~( t )  = 0. (25) 

The vector of generalized coordinates of the system is defined by 

q = [y z Icp [ y ]r=  [ql q2 q3] r" (26) 

4 Numerical simulation of motion 

Numerical evaluation of the matrices, forces and the solution of the problem, as well as the 

graphical presentation of results has been carried out by means of PC-MATLAB system. The 

programs elaborated allow analyzing the system motions in the case of kinematic excitation. The 

analysis concerns large displacements of the system, a change in the magnitude of the mass and 

the moment of inertia of the load as well as in the mass center position. 

During numerical simulation it is always advisable to test the correctness of numerical results 
because: 

- the equations may be incorrect, 
- the equations may be coded improperly, 

- the integration procedure may be flawed. 

Numerical integration is carried out in such a way that the equations of motion of the analyzed 
system are completed with a differential equation (20) defining Z(t). Through simultaneous 

integration of these equations in each time step, the values of the functions Z(t) and C(t) are 
evaluated. On  the basis of time history of C(t) we come to the conclusion about the correctness of 
the results. The function C(t) should remain constant 2. 

Practically, because of finite accuracy of numerical algorithms, various values of C(t) are 

2 In a particular case, in which E = const = 0, the system is conservative and the principle of energy 
conservation can be used to test the numerical solution. 
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obtained. We define the correct solution as the solution in which the maximum value of the 

control function C(t) is several times less than the maximum value of the total mechanical energy 

E or function Z r  or Z. 
Defining the energetic measure of the numerical solution error ~SE as 

sup ICl 

6/~ = sup (max (IEI, IZTI, IZl))' (27) 
t 

integrations can be carried out with given (assumed) accuracy. It means that the time step is 

reduced as soon as fie > e, where e is the assumed accuracy. 

4.1 Numer ica l  results f o r  the excavator  model  

The method presented has been used for the time step optimization in the numerical solution 

of the motion of the plane excavator model. Numerical simulation has been performed for the 

kinematic excitation (fl(t) = 0.2 t [rad], f2(t) = O, f3(t) = 0). 
Figure 3 shows the time history of the functions C, E and Z for two different time step values 

h = 0.03 and h = 0.005. The time step h = 0.005 is correct (C remains constant, Fig. 3 a) but 
numerical integration with the time step h = 0.03 leads to incorrect results (Fig. 3 b). It  is 

important  to point out that  the high frequency oscillations in E are due to the kinematic 

excitationfl(t). Assumed constant value of the jib velocity/~ and simultaneous vibration of the 

base means that the energy is transferred in both directions: to and from the system. 

A comparison of the results - response curves of y - for the correct (fie = 0.004) and 

incorrect solution (fie = 0.124) is shown in Fig. 4. The effect of algorithmic (numerical) dumping 
has been observed for the second case (Fig. 4b). 

The next example shows the response of the excavator model with a time varying mass ms: 

500 0 < t < 1 

m s =  5 0 0 - 1 0 0 ( t - 1 )  1_< t_<5 ,  

100 t > 5 
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Fig. 4. Displacement z(t) of the 
excavator model: correct (a) and 
incorrect (b) numerical results 

4 6 8 

Time [s] 
Fig. 5. Time history: a energy E, functions 
Z and C; b zoom of function C 

to the kinematic excitation determined by velocity/~: 

rc/16 t t < 2 

J~(t) = /~  = z~/8 2 _ < t < 3 ,  

~/8 - ~/16(t - 3) t > 5 

f2(t) = O, f3 ( t )  = O. 

The results obtained - energy E, functions Z and C - are presented in Fig. 5. The plot  of the 

function C shows that  the solut ion error  is quite small  (hE = 0.006). The variat ions of  C in Fig. 5 b 

(note that  Fig. 5 b shows the values of  C in a different scale) indicate that  disturbances appear  for 

the time steps in which the acceleration/~" or the mass change velocity m5 are step-varying 

functions. Thus, an analysis of variat ion of the control  function C allows to point  out  the causes 

of the solution errors. 
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4.2 Numerical results for the crane model 

Figures 6 - 8  show the results of the crane model movement simulation for the data: 

e = 14 [m], h = 7 [m], m4o = 3 500 [kg], 70 = - 20 ~ /3 = 40 ~ 

and the linear mass varying function: m 4 = m 4 o  - -  350 t. 

Time history of general coordinates for this system are plotted in Fig. 6. Additionally, in 

Fig. 7 changes of the rope force (S) are compared with the gravitational component  of the rope 

force (S o = m4g cos 7)- 

Figure 8 shows the reactions in outrigger pads ( R L -  left support in Fig. 2; R R -  right 
support) and the total horizontal outrigger force (Q). 

The ground bearing pressures generated by the crane on the left outrigger (RL) are close to 

zero; it means the loss of the stability of the crane (it is seen that in small time intervals the support 
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Fig. 9. Results of numerical correctness 
test. a stable motion; b unstable motion 

looses the contact with the ground.) The correctness of the results is proved, and the control 
function for this case is shown in Fig. 9 a. It should be pointed out that, although the number of 
active supports changes many times during the analysed time interval, the results are correct (in 
these regions the integration has been carried out with a varying time step). 

The crane movement, as shown in Figs. 6 and 8, is stable for the case of a continuous change of 
the load mass. The same model of the crane is unstable when the load mass remains constant. 
Illustrations of such a case are Figs. 10 and 11 where the time histories of the crane coordinates 
and the trajectories of characteristic points of the crane (base, end of boom, load center of gravity) 
are plotted. The function C for the unstable tipping motion is shown in Fig. 9 b (and suggests 

correctness of the results). 
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5 Concluding remarks 

The theoretical considerations presented above - concerning the method of testing numerical 
solutions of equations of motion for machine models containing bodies with time varying mass 
- and the computer simulation results lead to the conclusion that the dynamic analysis 
methodology proposed is very efficient. 

The method of testing is a global method - it means that the whole process, from proving 
the correctness of equations of motion through checking the algorithm and computer code, up to 
the selection of integration time step, is controlled. Using the control function C in numerical 
simulation yields a number of practical advantages. At the stage of the program design it allows 
to verify equations of motion and solving procedures, making it possible to diagnose and identify 



184 J. Strzatko and J. Grabski 

errors. During computer  simulation it permits to choose the integration time step and allows 
to carry out integration with presumed accuracy. The introduced energetic measure of the 
errors 6~ is a global measure of calculation accuracy. For  a researcher it is a factor of great 
significance. 

Appendix A 

Testing o f  correctness o f  numerical solutions 

To test numerical integration results, an idea presented by Kane and Levinson [6], [7] has been 
adapted. The authors mentioned have applied Kane 's  equation to formulate the control function 
for holonomic and unholonomic systems. 

Here the derivation of the control function C for systems carrying time varying mass is 
presented. 

A.1 Assumptions 

A holonomic system with time varying mass in formulation proposed by Nielsen is analyzed. The 

potential energy Vis assumed as a time and generalized coordinate dependent function, and the 
generalized force vector f is a function of time, displacement and velocity, i.e.: 

V = V(q, t), (A.1) 

f = f(q,  (I, t). (A.2) 

Velocities of points of the system under consideration are linear functions of generalized 
velocities. Velocity vectors of the system points can be presented as 

v = Uq + v,, (A.3) 

where 

U = U(q, t), v, = vt(q, t). (a.4) 

Angular velocities of the bodies have the form 

co = Wq + ah, (A.5) 

where W and ~ot are - like U and vt - functions independent of the generalized velocities q. 
Global  vectors of the velocity of the system point and angular velocities of the rigid bodies 

can be written in the form: 

v = [v(1)v(2)... v(~ (h.6) 

co = [~o(1)co(z)... a)(J)], (h.7) 

where i is a number  of material  points and rigid bodies of the system analyzed, and j is a number  
of bodies that  rotate. 
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A.2 Energy and power balance 

The total  energy of the mechanical system E is a sum of potential  and kinetic energies. Changes in 
the total energy can be estimated by investigation of the energy function or its derivative with 

respect to t ime /~ = ~ (T + V) = T + . Taking into account the above-mentioned assump- 

tions, the kinetic energy T = T(q, q, t) can be written as the sum of: To - generalized velocity (q) 
independent term, 7", - in first power velocity dependent term and T2 - square of velocity 
dependent term, i.e.: 

r = To + Tt + T2. (A.8) 

The time derivative of the kinetic energy ~r = Tp(q, q, q, t) of the system analyzed is presented 
as a four-term sum: To', T,', T2' - defined in an analogous manner  as in the case of the energy T, 
and T3' - third power of the generalized velocity dependent term 

T= To'+ T,' + Tz' + T3'. (A.9) 

It  is obvious that  

OTo #T 0T1 
To'= 7;-+ 

~T1 aT ~To #T ~T2 
T ( = - ~ - +  --~-q + Oq'  

(AAO) 
~T 2 qT c~T, T; =--~- + ~q, 

T3 , = qT ~T2 
Oq 

and hence 

T =  ~ T+ -~q T +  ~ (7"1 + 7"2). (A.11) 

Premultiplication of Nielsen's equat ion by 4 T, 

c~T ~T T ~V 
O r ~q - 2q T ~q = i l r f -  O ~q (A.12) 

gives a power balance equation of the system during the movements  (qTfis the power of all 
nonpotential  forces J3- 

Taking into account Euler's theorem, Eq. (A.12) can be written as follows: 

�9 r OT qT OV (A.13) T(  + 2T2' + 3T3' -- 2q ~q = qrf  - aq" 

Putt ing in 

TI' + 2T2' + 3T3' = T--  To' + T2' + 2T3' (A.14) 



186 J. Strzatko and J. Grabski: Dynamic analysis of a machine model 

and the derivative of the potential energy into (A.12), we obtain 

~ +  r / _  To' + T~' + 2 T j - O T f  _ - -  _ 
OV r OT 
cgt 24 ~q = 0, (A.15) 

A.3 Control function C(t) for  systems with time varying mass 

Introducing the following notation: 

ZT ------ --To' + T2' + 2T3', 

~V T OT 
2 0  2 = _ 0 T  f _  _ _  _ 

and 

d ~ E + 2 r + 2 = 0 ,  

(A.16) 

(A.17) 

(A.18) 

one can state the function C thus defined preserves its value in time. 

The function C(q, 4, ~], t) is not  known in an analytical form. It can be computed in each time 
step during the numerical integration process, as 

C = E + Z r  + Z .  (A.19) 
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