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Summary. The MCF model is used to study the nonclassical heat conduction effects in Stokes' second 
problem. The structure of the waves and the influence of the thermal relaxation time on the temperature and 
velocity fields are investigated. The displacement thickness, skin friction and the rate of the heat transfer at 
the plate are determined. 

1 Introduction 

In classical unsteady heat transfer problems, the basic equations are derived from Fourier's law 
of heat conduction, which results in a parabolic equation for the temperature field and an infinite 
speed of heat propagation, thus violating the principle of causality. Ackerman et al. [1] 
established the second sound in solid helium, which gave a finite speed of propagation of thermal 
waves. Chester [2], Kaliski [3], Lord and Shulman [4], Green and Lindsay [5], and others have 
developed equations of thermoelasticity, which permit finite speed of thermoelastic propagation. 
However, there has been very little corresponding development in fluid dynamics. Lindsay and 
Straughan [6] studied acceleration waves and second sound in a perfect fluid. McTaggart and 
Lindsay [7] used a non-Fourier heat flux law and analyzed the effect of modified heat conduction 
equations in the B6nard problem. A detailed history of the development of nonclassical 
generalizations of Fourier's law is given in Joseph and Preziosi [8]. They state that the Cattaneo 
equation is the most obvious and simple generalization of Fourier's law that gives rise to finite 
speeds of propagation. 

McTaggart and Lindsay [7] have shown that there is a major difference in the results of the 
B6nard problem when nonclassical effects are taken into account. This is due to the "major role 
played by the time constant of the Maxwell-Cattaneo theory". It is, therefore, of some interest to 
investigate the nonclassical heat conduction effects on simple unsteady flows. 

In this article we propose to study a simple unsteady flow problem which deals with the 
nonclassical heat conduction effects and structure of waves in Stokes' second problem which may 
be of some significance in astrophysical applications. We have used the so-called MCF 
(Maxwell-Cattaneo-Fox) model as developed in McTaggart and Lindsay [7]. In this model the 
nonclassical constitutive equation for the heat-flux vector q is given by the Maxwell-Cattaneo 
equation 

z ( 4 i  - -  c o i i q j )  = - - q i  - -  z O , i ,  (1) 

where ceij is the vorticity, z the thermal conductivity, 0 the temperature, and z the thermal 
relaxation time. If co/j = 0, Eq. (1) reduces to that of the Cattaneo model, and for z = 0 it becomes 
Fourier's law (see Joseph and Preziosi [8]). While there are other good models to choose from, 
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the Cattaneo law, as stated in Joseph and Preziosi [8], has many desirable properties, e.g., the 
steady heat flow may be induced by temperature gradients and gives rise to finite speeds of 

propagation. 
The dimensionless thermal relaxation time, defined as 2 = CP,  where C and P are the 

Cattaneo and the Prandtl numbers respectively, exhibits a definite influence on the structure of 
the waves. It significantly modifies their behavior. The number 2 also appears in generalized 
thermoelasticity (see Puri [9] where it is defined as m) and is shown to be of order l 0  -2.  Again as 

noted in McTaggart and Lindsay [7], the Cattaneo number C may not be very small in 
astrophysical applications. For example, C is of order 10-2 in a low temperature hydrogen gas. 
Hence, a qualitative and quantitative analysis of the wave structure is desirable. However, the 
thermal relaxation time 2 does not appreciably change the magnitude of the temperature and 
velocity fields. 

The waves produced by the oscillations of the plate or of temperature imposed on the plate 
exhibit the following structure: There exists a progressive dispersive thermal wave-train in the 
temperature field with a velocity which approaches the velocity of similar waves in the classical 
case. In the velocity field, there exist two types of dispersive progressive wave-trains, one of which 
represents the classical Stokes waves except for a phase lag, while the other is similar to the above 
thermal wave-train except for the amplitude and phase lag. 

2 Mathematical analysis 

We will consider Stokes' second problem (see, e.g., Schlichting [10]). Let a viscous incompressible 
fluid rest adjacent to a vertical flat plane in the xy-plane and occupy the space z > 0, with x-axis 
in the vertical direction. The flow is induced by oscillation of the plate, or by its periodic heating, 
or both. The plate initially at rest and at constant temperature 0~o which is the free stream tem- 
perature is moved with a velocity Uoe ~~ in its own plane along the x-axis, and its temperature is 
subjected to a periodic heating of the form (0w - 0 J  e ~~ where 0w(+ 0~) is some constant. 

The basic equations of continuity, momentum, and energy, governing such a flow, subject to 
the Boussinesq approximation, are 

Di, i : O~ 

qbl -= - P , i  + #V2~) i  - 0[1 - e(O - 0~)] g~i l  n t- tki,k, 

0~ ~ = - - q l , i  + tikdik 

(2) 

(3) 

(4) 

where the vector v = (u, 0, 0) represents the velocity, 0 the density, # the dynamic viscosity, p the 
pressure, e the specific internal energy, ~ the coefficient of thermal expansion, g the acceleration 
due to gravity, tlk the non-Newtonian stress tensor, and dik the strain tensor. Taking into account 
the geometry of the problem which results in the disappearance of the dissipative terms and 
noting that hk -- 0 for the MCF model (see McTaggart and Lindsay [7]), Eqs. (2)-(3) reduce to 
the following equation of motion: 

u, = vuzz + gc~(O - 0~). (5) 

Equation (1), after substitution into (4), gives 

~CpO = - q i , i  , (6) 
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since e = %0 for the M C F  model. If  we drop the nonlinear terms zohjqi in (1) because z and ~o are 

small quantities, we get 

zdli,i = -q l , i  - xO u. (7) 

Eliminating q~,~ between (6) and (7) we find that  

-Ocp'cO = OcpO - ~0 . ,  

which in one-dimensional form, after dropping the convective terms (because these terms become 
automatically zero), leads to 

�9 o,, + o, = ~ o=. (8) 
QCp 

Note that  the term zO, in (8) is necessary to ensure finite speed of propagation.  We shall use the 
nondimensional quantities 

v v 0 - 0 ~  
Z = U o  z , u = U 0 u '  , t = U o  2 t , Ow _ Ooo 0 ' ,  

G - vgc~(Ow - 0~) P - -  YOCP C - -  T~EU02, 2 -- zU~ -- C P ,  (9) 
UO 3 ' ~ ' y2~Cp  Y 

where G is the Grashof  number. Then the governing equations (5) and (8) for the flow and heat 
conduction, after suppressing the primes, become 

u t=Uzz  + GO, 

,'],POtt+ POt = Ozz. 

The boundary  conditions are 

u(0, t) = e ~'t = 0(0, t), u(o% t) = 0 = 0(0% t). 

(10) 

(11) 

(12) 

Taking u(z, t) = U(z) e i% and O(z, t) = O(z) e ~t, Eqs. (10), (11), and the boundary  conditions 
(12) yield 

U" - ioJU = - G O ,  (13) 

O "  -t- (2P( .o  2 - -  iogP) 0 = 0, (14) 

U(0) = O(0) = 1, U(~)  = O ( ~ )  = 0. (15) 

The solutions of (13)-(15)  are 

U ( z )  = e - m z  - ((31 + i G 2 )  {e - " z  - e-~(rl+~'2)},  

O(z) = e -~(r1+'2), 

where 

m = (1 + i) ] / ~ ,  

G1 + iG2 = 

(16) 

(17) 

/ c o P  (V1 + 22c~ ~ 2~o) 
F1,2 (18) g 

. 2 ' 

G[2Po~ 2 -- ico(1 -- P)] 
22pza~4 + co2(1 _ p)e" (19) 
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From (16), we find that 

Re u(z, t) = e -z ~ cos (cot - z  ~ )  - e-Z/gg[G1 cos (cot - z  ~ )  

- G2 sin (cot - z 1 / ~ ) ]  + e-'lZ[G1 cos (cot - r2z) - G2 sin (cot - r2z)]. (20) 

In the classical case, the solutions for both temperature and velocity fields can be obtained by 
taking 2 = 0 in (17) and (20) respectively. Then 

O(z) = e - ( l+ i ) z l / ;~  +i~t (21) 

and G1 = 0, and G2 = 1/co(P - 1). Thus P = 1 becomes a singular case, and the solution for the 
velocity field in the classical case for P = 1 has to be obtained directly, which is given by 

(1-i) Gs e~_(~+0~ or ) " (22) 

The standard definition of displacement thickness 8" is 

(7"= 1 -  ~ dz, (23) 

0 

where U~ is the free stream velocity. In our case, the plate is moving while the free stream is 
stationary. Therefore, the formula (23) is modified, in the nondimensional form, as 

6" = S u dz. (24) 
0 

This formula can also be obtained by imparting to the entire system a negative velocity equal to 
the velocity of the plate. Using the formula (24) the absolute value of the displacement thickness is 
given by 

1 ,) 
[6"1 = - (G1 + iG2) (rl + ir2) for all P, 2 4: 0. (25) 

This thickness, in the classical case, is 16"[ = I1/m] in the absence of heat transfer. But in the 
singular case P = 1 and 2 = 0, it is given by 

1 
16"[ = ~ ]/1 + G2/4co 2. (26) 

The skin friction on the plate is proportional to 

O2z=o cot{Gz( r2 Re =cos - - ~ ) -  GI(F I ] ~ ' )  -- ]~ /2 }  

+ sin co ,{Gi( r2-  ] ~ )  + G 2 ( r l -  ] / ~ ) -  ~ } .  (27) 

The rate of heat transfer at the plate is given by 

t~0 ----- ~4(rl COS cot  - -  r2  sin cot). (28) 
- - ~  ~ Z  z=O 
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3 Discussion 

The oscillatory nature of the flow generates waves in both temperature and velocity fields. 

Although these waves decay rapidly, it is of some interest to understand their structure. 

Wave structure of thermal waves 

The solution (17) exhibits a progressive dispersive wave-train with a wave-front at z = oot/r2, 
wave number r2, velocity cO/rz, attenuation coefficient rl, and group velocity 

2 ]//2co(1 + ~2~o2) 

V~(2co + ~ ) 3 t z ,  (29) 

which approaches 2 V ~ / P  as 2 ~ 0. This velocity is the same as in the classical case (2 = 0). 

The depth of penetration of this wave is 2rt/rz. In the case when co is small, we find that 

VP/oo ~ .  In this r 1 = r 2 ~ P ~ / ~ 2 .  But if the product 209 is large, we find that rl ~ ~ - - ,  r 2  ~ (.0 

case, then, the wave velocity is 1/l/~ff. Since 2 is very small, the speed of the thermal wave is huge, 

and this wave decays very fast. 

Wave structure of velocity field 

The solution (16) exhibits two types of dispersive progressive wave-trains: One has a wave-front 

at z = t l ~ ,  which corresponds to the classical Stokes waves. The difference between the 

classical and the present case is that a layer at a distance z from the plate oscillates with a phase 

lag of z ~ - tpl, where 

co(P- I) 
tan ~Pl = 22pZfo 4 q_ (o2(p _ 1 )  2 _ G2pa)Z. (30) 

For  P = 1, this reduces to the classical case (~pt = 0). The other wave-train is similar to the above 

mentioned thermal wave, except for the amplitude and the phase lag which is equal to zr2 - ~#z, 
where 

P - 1  
tan ~/)2 - G2Pa)" (31) 

In this case we note that ~P2 = 0 for P = 1. From (22) we find that for P = 1 in the classical case of 

the velocity field, the above two wave-trains coalesce into one with a wave-front at z = t ~ ,  

and a phase lag of (z /V2 - ~)/c~ for a fluid layer at a distance z from the plate, where 

Gz 
tan q5 = ~ _ .  (32) 

Gz + 2 V2 o 

Temperature field 

The effect of 2 on 0 is not  appreciable for small frequencies. However, for large co the presence of 
2 affects both ]01 and Re 0. As can be seen from Figs. 1 and 2, the magnitude 10[ reduces as 2 



increases for both small and large P; moreover, an increase in 2 decreases the thermal boundary 
layer. 

A similar delay response time is also observed in Re 0 as seen in Fig. 3. 

Velocity fieM 

The influence of 2 on both Re u and [ul is found to be very small, although it changes the character 
of the velocity field. Since 2 takes very small values, we have presented the graphs of Re u and lul 
in Figs. 4 and 5 for 2 = 0.005, 09 = 10, G = +5  and t = 0.1. For large 09, the influence of both 
2 and G is negligible; we have sketched both Re u and [u] in Figs. 6 and 7 for 2 = 0.005, ~o = 1 000, 
G = - 5 .  As can be seen from Fig. 5, an increase in G increases the fluid boundary layer. The 
thermal boundary layer is much smaller than the fluid boundary layer. 
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Fig. 1. Behavior of [0l vs. z for co = 1000, 
P = 0 . 7 ,  4 = 0  (I), 4 = 0 . 0 0 1  (II), and 
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Fig. 2. Behavior of [01 vs. z for co = 1000, 
P =  7.0, A = 0  (I), 4 = 0 . 0 0 1  (II), and 
4 = 0.005 (lID 
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Fig. 3. Behavior of Re 0 vs. z for 
c o =  1000, P = 0 . 7 ,  2 = 0  (I), 
4 = 0.001 (II), and  4 = 0.005 (III) at  
t = O . 1  
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The velocity field can be regarded as consisting of two layers: one corresponding to e-mZ and 

e-(r~+ir2)z. The former is the Stokes-Rayleigh layer which is of order O(1 / ] /~ ) ,  while the other t o  

the latter is the thermal layer which is of order O(1/rl). 

In order to observe the effect of 2 on Re u we have presented some data in Tables 1 and 
2 below. Thus, in Table 1, which is for G = - 5 ,  it can be seen that an increase in 2 tends to 

decrease Re u up to z = 0.26 for an increase in 2 from 0.0 to 0.005, and increase it thereafter; 

again, 2 increases Re u up to z = 0.22 for an increase in 2 from 0.005 to 0.01, and decreases it 
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Fig. 7. Behavior of lu[ vs. z for 
co = 1000, P = 0.7, G = - 5 ,  and 
2 = 0.005 at t = 0.1 

Table 1. Re u at t = 0.1, co = 10, P = 0.7, and G = --5 

2 z = 0 z = 0.2 z = 0.21 z = 0.22 z = 0.26 z = 0.27 z = 0.3 

0.0 0.540302 0.43217 0.424626 0.417018 0.386215 0.378483 0.355388 
0.005 0.540302 0.432036 0.424508 0.416917 0.386211 0.378511 0.355524 
0.01 0.540 302 0.431996 0.424 487 0.416 919 0.386 329 0.378 664 0.355 8 

Table 2. Re u at t = 0.1, co = 10, P = 0.7, and G = 5 

2 z = 0 z = 0.2 z = 0.21 z = 0.22 z = 0.26 z = 0.27 z = 0.3 

0.0 0.540302 0.656184 0.654077 0.6514 0.635479 0.630307 0.612286 
0.005 0.540302 0.656318 0.654195 0.651501 0.635482 0.63028 0.61215 
0.01 0.540 302 0.656 358 0.654216 0.6515 0.635 365 0.630127 0.611874 

thereafter.  This  behav io r  is reversed for G = 5, as is obv ious  f rom Table  2. The  under l ined  da t a  

are the cri t ical  values  of  Re u wi th  respect  to 2; at these values  there  is a reversal  in response  to 

an increase in 2. 

A c o m p a r i s o n  of  Figs. 4 (I) and  6, and  Figs. 5 (I) and  7 shows tha t  an  increase in o9 tends to 

increase the decay  in the veloci ty  Re u(z, t). This  is also obvious  f rom express ion (20). 

4 Conclusions 

The  presence of  2 modif ies  the pure ly  the rmal  wave. In  par t icular ,  the classical wave  veloci ty  

V ~ / P  modif ies  to o9/r2 in the nonclass ical  case and approaches  a finite value  of  1 / ~ / ~  for large 

09. This  is a m a j o r  bu t  expected dev ia t ion  f rom the classical case. 

A l t h o u g h  i modif ies  bo th  t empera tu re  and  veloci ty  fields, this influence is, however ,  no t  

uniform. I t  tends to increase the ampl i tude  of  b o t h  of  these fields under  some  cases and  to 

decrease it under  o ther  cases. 

The  so lu t ion  for the veloci ty  field exhibits  two types of  wave  mot ion ,  one  of  which  

cor responds  to the the rmal  wave  and  the o ther  to the classical Stokes wave. The  equa t ion  of  

m o t i o n  is modi f ied  only  to the extent  tha t  the t empera tu re  is modif ied.  
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