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Summary. The present paper investigates the properties of the angular velocity tensor �9 and the angular 
acceleration tensor ~ for rigid body motion. Three vectorial invariants of rigid body kinematics are pre- 
sented. In case of tensor ~ being non-singular, its inverse qj-1 is inferred. A novel procedure for auto- 
matic computation of tensors ,I~ and ~g based on measured velocity and acceleration data is developed. 
Depending of the type of available data, three algorithms are suggested. Numerical examples show the 
application of the method. 

1 Introduction 

The problem of  determining the tensors describing the vectorial field of  velocities and accel- 
erations is fundamental  in rigid body kinematics. For  a rigid body ( ~  in general mot ion with 
respect to a reference frame {._.@}, the vectorial field of  velocities and that  of  the accelerations 
are given by [2], [6], [9]: 

- ~,~o = ~ ( ~ -  ~o), (1) 

- ~o = (~,2 + ~) ( ~ _  ~o), (2) 

where Yo and ~o represent the velocity and acceleration of a body-fixed reference point 
O E ( 4 )  described by its position vector go in the considered reference frame {.~}; Y and d 
stand for the velocity and the acceleration, respectively, of  an arbi trary point on the body 
described by its position vector ~' with respect to {.~}. Tensors denoted by ~ and ~: represent 
the skew-symmetric tensors associated with the angular velocity vector c~ and angular accel- 
eration vector g', respectively, [2], [3], [10]. The vectors c~ and g* (and thus the tensors 6) and g:) 
do not depend on the choice of  O. The tensors 

�9 = ~ ,  (3) 

,g  = ~2 + ~, (4) 

are called angular velocity tensor and angular acceleration tensor and completely determine the 
vectorial field of  the velocities and that  of  the accelerations of  the rigid body in motion. Ten- 
sor �9 is singular, i.e. det �9 = 0, since it is skew-symmetric. It can be shown that tensor lit is 
non-singular if and only if vectors g and ~" are non-collinear, e.g. [3]. Classical theoretical 
mechanics treatises generally avoid the computat ion of  the inverse of  tensor 'tg, denoted by 
~ - 1 .  Paper  [4] presents a rather intricate calculus for the tensor ~ - 1 ,  and it also contains typ- 
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ing mistakes in the expressions for qt 1 and for the second scalar invariant of  tensor qJ. A 

method based on Cayley-Hamil ton 's  theorem is presented in [7]. An algorithmic procedure 
for the computat ion of the screw parameters  of  rigid body motion is presented in [1]. 

The present paper  depicts a novel procedure for determining the adjugate tensors of  those 
defined by (3) and (4). Next, an expression for tensor ~ 1 is presented. By means of these ten- 

sors, three vectorial invariants for the distribution of the velocities and the accelerations are 
outlined. 

Further on, it is demonstrated that  tensors O, q~ and 7 -1 can be determined through direct 
measurements of  velocity and acceleration data of  certain points of  the rigid body in motion. 
Especially, tensor �9 can be determined based on the velocity data of  three non-collinear points 
of  the body. Tensor q~ (respectively ql-1) can be determined: (i) by means of the velocity and 
acceleration data of  three non-collinear points or (ii) by means of the relative accelerations of 
three non-collinear points with respect to a fourth point non-coplanar with them. 

Finally, minimal conditions to be fulfilled by the measured data in order to determine ten- 
sors ~ and ~ are established. I t  is demonstrated that the tensors can be determined already 
from the relative velocities and relative accelerations of  two points with respect to a third 
point non-collinear with them. 

2 Properties of the angular velocity and angular acceleration tensors 

According to Cayley-Hamil ton 's  theorem [3], any second order tensor T satisfies its character- 
istic equation: 

T 3 - T r T  2 + Tr lT  - TIHI  = O ,  (5) 

where I denotes the identity tensor and O stands for the zero tensor. TI, TI~ and T m  represent 
the scalar invariants [5], [11] of  tensor T:  

T~ = trace T ,  (6) 

1 
TII = i [(trace T)  2 - trace W2], (7) 

T,H = det T = ~1 [(trace T)  3 - 3(trace T)  (trace T 2) + 2 trace T 3] . (8) 

For a given tensor T,  its adjugate tensor T* is uniquely determined by: 

T .  T* = T* .  T = (detW) I .  (9) 

F rom (5), (8) and (9) we get the adjugate tensor T* as: 

T* = T 2 - T I T  + THI .  (10) 

Denoting the dyadic product of two vectors by | and the skew-symmetric tensor associated 
with vector ff by fi, the following theorem can be stated: 

Theorem 1 

The adjugate angular velocity tensor and the adjugate angular acceleration tensor are given 
by: 

,t,* = ~ |  (11) 

qt* = (~ | ~)2 _ d~2A-~ + ~ |  g. (12) 
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Proof" 

The scalar invariants of  tensors �9 and ~I' may be computed from (6) (8), e.g. [7], [8]. For  the 
angular velocity tensor (3) we get: 

= o ,  (13) 

1 
~Ir  = - ~ trace r = a~ 2 (14) 

r = det r = O. (15) 

Therefore, its characteristic equation is: 

q~3 + a 7 2 ~  = O e=~ e53 + a72~ = O .  (16) 

The first scalar invariant of  tensor ~ is obtained from (6) and (14) as: 

kPi = trace ~ = trace r + trace g; = - 2c~ 2. (17) 

Computing invariant ~Pu with (7) and (17) we get: 

1 1 2 
~Pzz = ~ [(trace ~)2  _ trace ~2] = 2c~4 _ ~trace  ~ . (18) 

F rom (4) and (16) we obtain: 

~2  = ~4 + ~2~; + ~:t~2 + ~2 = _c~2~2 + ~2g; + ~ 2  + ~2, (19) 

hence: 

trace ,u = _ g  2 trace r + trace (r + g:r + trace ~2. (20) 

Since tensor ~2~; + ~62 is skew-symmetric, we get: 

trace (62~: + ~:62) = 0. (21) 

The skew-symmetric tensor ~: satisfies a relation similar to (14), i.e., 

trace ~:2 = _2g,2. (22) 

Substituting (14), (21) and (22) into (20) yields: 

trace~IP = 2c~ 4 - 2g  '2 , (23) 

and with (17) we find: 

~TQI = c~4 ~_ g ,2 .  (24) 

Through direct computat ion,  the third scalar invariant of  tensor W is obtained as: 

OIH = det �9 = -(a~ x g,)2. (25) 

F rom (13)-(15)  and (10) we find: 

~I~* = ~I~ 2 + a~2I  = ~ 2  + c ~ 2 i ,  ( 26 )  

or by means of  identity (A.5): 

~I~* = ~ 2  + g 2 1  = g |  ( 27 )  

proving (11). 
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From (17), (24), (25) and (10) we obtain: 

~ ,  = q p  + 2ca2qj + (ca4 + g,) I = (q~ + o:21) 2 + g'2I. 

Taking (4) and (27) into account, we get: 

q! + g 2 I  = 6) 2 + g 2 I +  ~ = cJ @ g + ~:, 

and thus with (A.5): 

~ ,  = (5@ ca + ~)2 +~,21 = (~ | + ~ .  (ca | ~2) + (c~ | c~). ~: + ~:~ + g 2 I  

= ( ca |  (g@ca) + ( c a @ g ) . ~ + g @ g .  

Making use of  identity (A.6) finally proves relation (12). 
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(28) 

(29) 

(30) 

[] 

3 Vectorial  invariants in rigid body kinematics  

Relations (1) and (2) can be also written as: 

z7-  Jo  = * ( ~ 6 -  go) ,  (31) 

- So = ~ ' ( ~ -  ~ o ) .  (32) 

From (9) we find the identities: 

O . O *  = O * . O  = (de tO)  I = O ,  (33) 

W. ~*  = ~*.  ~ = (det W) I .  (34) 

Multiplying Eqs. (31) and (32) with the adjugate tensors from the left yields: 

a ,*~  = ,I~*~,o, (35) 

~ * K -  (det ~ )  ~ = W'do  - ( d e t ~  r) g'o. (36) 

Since the reference point O c ( ~ )  has been arbitrarily chosen, these relations prove the exis- 
tence of the following vectorial invariants for the velocity and acceleration distribution of  a 

rigid body in motion: 

4 = O ' g ,  (37) 

= ~ * ~ -  (get W) ~'. (38) 

The vectorial characteristics/~ and ~ have the same value at a given moment  of  time in every 
point o f  the rigid body. Taking Theorem I into account, the invariants can be also written as: 

= ( c a @ ~ ) J =  (~.  J )ca ,  (39) 

5 = [(ca e ~ )  ~ -,;,~g+ g| g] ,~+ (~ x g)~j 

= ff x [c~ x (ca x g)] + c~2(c~ �9 ~)c~ + (g. ~) g +  (c~ x g,)s j ,  (40) 

where indentity (a~ @ g ) 2 = ca 2 (g @ ~ ) obtained from (16) and (A.5) has been used. In case of  
x Z = 0, invariant {2 becomes: 

= ~ 2 ( j .  d)ca + (g -g )g .  (41) 
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To the knowledge of the authors, invariant ~ has not been defined in any rigid body kine- 
matics treatise yet. 

By using the results of Theorem 1, the following theorem can be shown: 

Theorem 2 

If the instantaneous angular velocity vector and instantaneous angular acceleration vector are 
non-collinear, i.e. 07 x g r  0', then the angular acceleration tensor is non-singular and its 
inverse can be expressed as: 

~ -1  _ 1 [~2~'~_ (07 | as)2 _ g,| g]. (42) 
(~ x g)2 

Proof: 

Since gJm = d e t ~  = -(07 x g)2 r ~, we get from (34): 

~ - 1  _ - - -  1 ~ff,. (43) 
det 

By means of (12) we find relation (42). [] 
In case of as x g r 0, the explicit form of tensor ~ -1  allows to uniquely find a point 

A E (~)  that, at a given moment, has an imposed acceleration 6A. Denoting by gA the posi- 
tion vector of point A E (~)  with respect to reference frame {~.@}, we get from (32): 

~A - ~o : ' g - l ( 6 A  - 6o) .  (44) 

Taking Theorem 2 into account, relation (44) becomes: 

1 
g4 = 0'O + (07 X g ) ~  { [ ~  X (07 X g)]  • (6A -- 60) -- ~ 2 [ ~ .  (6A -- 60)] as -- [g" (6A -- 60)] g }  

(45) 

In particular, from (45) the position vector of the acceleration pole G c (~)  characterized by 
6c = 0, see [2], [6], is obtained as: 

1 
~*C = ~80 + (as X g.)2 {60 X [aS X (as X g')] + as2[c~ dO] 07 + [g' 60] g ' } .  (46) 

From (44) and (31) the velocity zTA of point A E (~)  with imposed acceleration 6 A is found 

as: 

KA -- KO : @ql-l(6A -- 60). (47) 

After elementary computations, taking into account the expressions of tensors @ and ~-1 ,  
we get: 

1 
,~A = •o + (07 x g)2 [ [07 (6A -- 6O)] 07 X (07 X g) -- [g. (6A -- 6O)] 07 x g } .  (48) 

In particular, from (48) the velocity of the acceleration pole is obtained for 6o = 0: 

1 
,~G = '~o _.~ [ ( ~  6o) as x (as x g)  - (g. 6o) as x g ] .  (49) 

(as X g) 
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Relation (48) spotlights another vectorial invariant for the distribution of the velocities and 
that of the accelerations of a rigid body in motion for d x g' r 0. Due to the free choice of 
reference point O we get a constant: 

1 
= ~ (~ • ~)~ [(~. ~ ) ~  • (~ • ~) - (~. ~),m • ~] .  (50) 

The tensorial form of invariant ~ is: 

1 
{~ = ~ ( ~  [ ( c ~ )  ~ ~ - ( ~ )  ~ ~] ~. (5~) 

4 Computation of angular velocity and acceleration tensors by direct measurements 

The tensors ~ ,  III and I11-1 can be computed from direct measurements of velocities and accel- 
erations of certain points of  the rigid body (~).  Let Ak E (4) , /~  = 1, 3, be three non-collinear 
points of the rigid body, non-coplanar to O E (4 ) .  These points are located with respect to 
the reference frame {S~D} by their position vectors UA~, k = 1, 3. Let u~  and ~TA~ be the absolute 
velocities and accelerations of points Ak E (4 ) ,  k = 1, 3, respectively (Fig. 1). 
In the following, relative quantities will be used: 

v~ = ~5~ - vo ,  (53) 

~k = ah~ - So, ~ = 1, 3. (54) 

In the hypothesis of non-coplanarity of  points O and A~ E (4 ) , /~  = 1, 3, vectors 5+~ are also 
non-coplanar. Therefore, the scalar triple product  of vectors r'l, r+2 and ~+a, denoted by 
{5+i, r'2, 5+3} = r>l �9 (r+2 x 5+3), is not zero, and vectors ?+k make up a basis . 2  = {r+l, r+2, Y3} in the 
free-vectors set ~/'a. Let Jd* = {~,1, ~+2, ~,3} be the reciprocal basis of  .J2. Vectors 5 +k are given 
by relation [5] (see Appendix): 

s~ • sJ (55) 

//..../. ........................................... ~'...\ 

i/ s 
i / ~ /  rk ./' 

 l/d, o ,J; 
',,,, % /  

Fig. 1. Rigid body with reference point O and observed point A~ 
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where e ~j represents Ricci's permutation symbol. Einstein's rule for mute indexes summation 
has been used. This rule wilt be used further on for the sake of conciseness. All indexes run 
from 1 to 3. 

Using notations (52) - (54) the following theorem can be shown: 

Theorem 3 

The angular velocity tensor and the angular acceleration tensor are given by: 

o = J ~ |  

, ~ = & |  

(56) 

(57) 

Proof." 

From (3 t) and (32) and notations (52)-(54) we get: 

or = ~ ,  

,~'s = g~. 

Application of (A. 12) proves (56) and (57). 

(58) 

(59) 

[] 

Remarks 

(4a) The measured relative velocities and relative accelerations of the three given non-coP 
linear points of the body Ak with respect to a fourth point O non-coplanar with them should 
satisfy some necessary and sufficient compatibility conditions. These conditions are derived 
from the rigidity hypothesis: 

~ .  G = const. (60) 

Upon differentiation with respect to time, we derive from (60): 

~-~5 + ~ - 6  = o ,  

~ .  ~j + 2~ . 6 + ~  .~j = 0 .  

(6~) 

(6~) 

Conditions (61) and (62) should be checked for all direct measurements. 

(4b) Taking (A.24) into account, the adjugate tensors of �9 and ~ can be found from (56) 
and (57): 

O* = gl @ (K2 x 173) ~ g2 @ (Y3 x J1)_~ ~'3 @ (z7I x 52) (63) 

{f i ,  #2, #3} <1, #2, #3} <1, ~'2, ~;} 
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(4c) 
obtained, respectively: 

From (56), (57) and (A.18)-(A.20) the scalar invariants of tensors @ and ~ may be 

4r : ~.  < ,  (65) 

_ <~1,~2,r (r 6 ,  ~73> (zT~, r Va) + (66) 
~JII <r162 } -~ <r162 > <r ) , 

r - 

<r r r ' 
(67) 

(6s) 

(69) 

e m  - <<' g~' ga> (70) <r162162 

By comparing relations (13)-(15) to (65)-(67), and (17), (24), (25) to (68)-(70), the following 
indentities are obtained: 

~ .  r = 0 ,  (7 / )  

(vl, v2, Ja) =o ,  

2 

<e~,e~,e~> (72) 

(73) 

(74) 

<1, r r ' (75) 

(c~ x g)2 _ (ffl,~2, a3) (76) 
<T+I, r r ) 

These identities do not depend on the choice of the four non-coplanar points O and 
Ak E (g~). 

(4d) Tensor Rg is non-singular if and only if ~nz # 0. According to (70) we get the condi- 
tion: 

(61, a~, g3} r 0. (77) 

Since~- l  = 1 det ~W*'  we find from (64) and (70) the inverse tensor: 

~ - 1  = ~ | ~ i ,  (78) 

where g~ denote the reciprocal vectors of gi given by: 

~ = eijk ~j • ~k 2<gi, g2, ga} " (79) 
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(4e) Relations (71) and (73) represent the necessary compatibility conditions for rigid body 
motion. Further, from relations (72), (74), (75) and (76) four necessary inequalities for the 
relative velocities J~ and relative accelerations gk are obtained: 

(r'l,/~2,/~3) Jr- {/~1, ~2, ~3) + (/~1,/~2, ~3> 2 0, (80) 
(71,~2,~a) 

gi. r _< 0, (81) 

(81, a2, a3) -}- (al, r+2, a3) ~- (al, (~2, T'3) ~ O, (82) 

(gt, aS, <3) < 0. (83) 
(S~, S~, S~) - 

These inequalities are valid for any four non-coplanar points of the rigid body. 

(4f) According to (A.4) the vectorial invariants of tensors �9 and ~ given by relations (3) 
and (4) are: 

vect �9 = aT, (84) 

vect �9 = g. (85) 

By means of relations (58), (59) and (A.22) these invariants become: 

vect �9 = ~ • Yi, (86) 

= 1~'i • g~. 
vec tq  j (87) 

2 

By comparison, we directly find the instantaneous angular velocity and the instantaneous 
angular acceleration as: 

= ~ ~'~ x ~ ,  (88) 

1~ i c = ~ r  x ~ .  (89) 

5 Minimal conditions for algebraic computation of  tensors @ and 

In Theorem 3, the angular velocity tensor �9 and the angular acceleration tensor ~ are com- 
puted from relative velocities and relative accelerations of three non-collinear points of the 
rigid body. As a consequence of Theorem 3 and relations (1)-(2), the absolute velocities and 
absolute accelerations of four non-coplanar points uniquely determine the vectorial velocity 
field (acceleration field). These conditions, however, are not minimal. 

5.1 Angular velocity tensor 

For the computation of the angular velocity tensor �9 it suffices to know only the absolute 
velocities of three non-collinear points Ak r (~) ,  k = 1, 3, as defined above. Let O E (~)  be 
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now an arbitrary point of  the rigid body non-coplanar to points Ak. Then relation (1) with 

notat ion (52) yields: 

Ja~ - ~o  = ~ # ~ .  (90)  

Computing the scalar product  with vector 5~ results in: 

YAk ' ~k := YO" ~k, no summation.  (91) 

As described above, vectors Y~ make up a basis .y$ = {r'l,?),?'a} with its reciprocal basis 
..r * = {~.1, y 2  5.a} defined by relation (55). Vector go may then be expressed in basis .~/r * as: 

~o = ( J o .  ~ ' J ~ .  

By means of (91), this becomes 

Jo = (OAk' ~ . j k .  

Relation 
coplanar 
Theorem 

(92) 

(93) 

(93) allows to compute velocity 17o from ~A~ for any arbitrary point O c ( ~ )  non- 
with points Ak. This may be used for finding relative velocities in order to apply 

3. 

5.2 Angular acceleration tensor 

Also for the angular acceleration tensor R j we have to know only the absolute velocities and 
absolute accelerations of  three non-collinear points. In order to utilise Theorem 3, the absolute 
acceleration ~o of  a point O E ( ~ )  non-coplanar to A~ has to be established. 

By means of notations (52) and (54), we get f rom relation (2): 

~Ak -- ~O = (~2 + ~) ~k. (94) 

Taking the scalar product  with Yk yields: 

a&"  7k - fro" r'k = - ( ~  • 7k) 2 , no summation.  (95) 

Taking into account (90), relation (95) becomes: 

fro" ~k = i f&'  Yk + (YAk -- 770) 2 , no summation,  (96) 

where the absolute velocity Yo is given by (93). 
In basis 3 '  the acceleration vector reads: 

fro = (fro' Yk) V k  (97) 

yielding the final result: 

go = [if&" ~ + (YAp. -- ~7o) 2] yk.  (98) 

According to (54) accelerations dk may now be computed and used in Theorem 3 to find ten- 
sor ~ .  By means of (93) and (98) for Jo and fro, the compatibility conditions (61) and (62) 
become: 

(zTAi -- ~TA~)" (~A, -- ~'A~) = 0, (99) 

(~Ai - ~ A , ) .  (~A~ - jA,)  + ( J ~  - JA,) ~ = 0 .  ( s00 )  
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5.3. Computation of tensors 4) and gt from relative motion data 

Finally it will be shown that tensors �9 and ~ can be computed based on the relative velocities 
and accelerations of  only two points Ak, k = 1, 2, with respect to a point  O E ( ~ )  non-colli- 
near to A1 and A2. 

Let us consider a third point Aa, located relative to point O by the position vector 

~a = c~(~1 • r (101) 

where oz c R~  is a dimensional constant, e.g. c~ = 1/1r I. By differentiation we find: 

/~3 = ~(/~1 X r -F r X /~2), (102) 

gs = a(ffl x r + 2z71 x z72 + r x ~2). (103) 

Vectors {r r ar x r make up a basis in the free vectors'  space. The reciprocal basis is 
made up f rom vectors: 

r -- 5 X (r X r 
(r • ~2) 2 ' (lO4) 

r _ (r • r • r 
(~1 • ~2) 2 ' ( lO5)  

r  r xr  
OZ(r 1 X r 2 (106) 

Using relations (102)-(106) in Theorem 3 yields the following expressions for tensors �9 and 
W: 

, I ~ = J 1 | 1 6 2 2 1 5 1 6 2 1 6 2 1 7 4  (r • 1 6 2 2 1 5 1 6 2  F(~I • • 1 7 4  r215162 (107) 
(r x r 2 (r x r 2 (r x r 2 ' 

x (r x r (r x r x r 
III = 31 @ 7,2 l- a2 @ 

(#1 x r 2 (r x r 2 

r162 
-F (al  X ~2 -F 2/~1 X /~2 -Fr X a2) @ (r x r 2 ' (108) 

Analogously we find f rom (88) and (89) the instantaneous angular velocity and acceleration: 

o3 = T1~71 + T2~72, (109) 

g' = T l a l  + T232 + T3(/71 x 172) , (110) 

where tensors Tk are given by: 

T1 : (r x r'2) @ r - 2r @ (r x r ~_ (~'1 x r @ r - 2[(r x r | ~2] T (111) 
2(r • r 2 2 < 1  • r 2 ' 

T2 = (r x 71) | r - 2r | (r x r = (~"2 x ~'1) @ r - 2[(r x r  @ r T (112) 

2(r I X r 2 2(r  1 X e2) 2 ' 

T3  = r @ r -- r @ r = r @ r -- [r @ ~'1] T _ f17,~ (113) 
(r x r 2 (r x r 2 (e  1 x r 2 

In writing expression (113) of  tensor Ta, relation (A.7) has been used. 
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6 Algorithms for automatic  computat ion 

The vectorial characteristics (velocities, accelerations) measured in different points of a rigid 
body in motion are customarily given through their components expressed in a right oriented 
orthonormal basis {~,/2,/a} attached to the reference frame {~,~}. 

Denote by a = [al a2 aa] T the column matrix associated to vector ff = a111 + a2~2 + a3[a 
and by 

f i=  
0 -aa  a2 ] 

a3 0 - a l  , 

-a2 al 0 

the skew-symmetric matrix associated with it. Every vectorial operation used in the previous 
paragraphs corresponds to a matrix operation as follows: 

- the scalar product 5. bcorresponds to the matrix product arb;  
- the vector product 6 x b'corresponds to the matrix product fib; 
- the tensor product g | bis represented by the square matrix a bY; 
- the scalar triple product (& b, ~') = d. (bx  ~') is equal to a~i~c = det [a b el, 

Under these hypotheses, square matrices are associated to tensors �9 and ~ .  
The relations established in the previous paragraphs set up the theoretical basis allowing, 

under certain assumptions, to determine the angular velocity tensor and the angular accelera- 
tion tensor of a rigid body in general motion. Further on, three algorithms for the computa- 
tion of the square matrices associated to tensors �9 and �9 are presented. 

6.1. Algorithm A 

In the case that the relative velocities gk and relative accelerations ffk of three non-collinear 
points relative to a non-coplanar point O are known, the following procedure results from 
Theorem 3." 

(i) Denote by rk, v~ and ak the column matrices associated to the relative vectors Yk, ga and 
~ .  They may be summarized as columns of the matrices: 

R = [ h  r2 ra], (114) 

v = [ v l  v2 v3], (115) 

A = [ a l  a2 a3]. (116) 

(ii) Check up compatibility conditions (61) and (62) written in matrix form as: 

RTV + VTR = Oa, 

RTA + 2VTV + ATR = 03.  

(i 7) 

(1 s) 

Relations (117) and (118) express the fact that matrices R r V  and RTA + V:CV are skew- 
symmetric. 
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(iii) Compute the square matrices �9 and ~ associated to the angular velocity tensor and the 
angular acceleration tensor according to (58) and (59): 

�9 R = V, (119) 

WR = A.  (120) 

Since points O and Ak, k = 1,3, are non-coplanar, matrix R is non-singular. Denoting by 
R -1 the inverse of matrix R, we get 

�9 = VR -I , (121) 

= A R  - 1  . (122) 

Relations (121) and (122) represent the matrix replica of Theorem 3. 

(iv) Compute the column matrices corresponding to instantaneous angular velocity vector c~ 
and to instantaneous angular acceleration vector g'according to (84) and (85): 

~1 = v e c t  ( V R - 1 )  , (123) 

= vect (AR 1). (124) 

6.2. Algorithm B 

In case that the absolute velocities and absolute accelerations of three non-collinear points of 
the rigid body are known, another algorithm can be applied. Denote by QA~ the column 
matrices associated to the position vectors of points Ak, k = 1, 3, in the considered reference 
frame. Let VAk and a A be the column matrices associated with the absolute velocities and 
absolute accelerations of these points. Then the following procedure may be used: 

(i) Choose an arbitrary point O E (~)  non-coplanar with points Ak , given by its column 
matrix Qo. Then compute the column matrices 

rk=~A~--GO, k = l , 3 ,  (125) 

making up the square matrix 

R = [ r l  r2 r3]. (126) 

(ii) Compute the square matrix R* having as columns the column matrices r k, corresponding 
to the reciprocal vectors ?.k : 

R* = (R-l)  T = [r 1 r 2 r3]. (127) 

(iii) Compute the column matrices corresponding to the absolute velocity and absolute accel- 
eration of point O based on the matrix replica of relations (93) and (98): 

v o  = r , 

ao = [a~rk + (VA~ -- VO)r(VA~ -- VO)] r ~ �9 

(iv) Build up matrices: 

V = [VA 1 - - v  O VA2 - - v  O VAa - - V o ] ,  

A = [ a A i - - a o  aA~--ao aA3--ao]. 

(12s) 

(129) 

(13o) 
(131) 
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(v) Check up the compatibility conditions (117) and (118). 

(vi) Apply relations (121) and (122) in order to compute matrices �9 and ,I~. 

6.3. Algorithm C 

In the last case, where the relative velocities and relative accelerations of  two points Ak, 

k = 1, 2, about a point O E ( ~ )  are known, the following procedure applies: 

(i) Compute the column matrices: 

r k = ~ A ~ - - ~ O ,  k = l , 2 .  

(ii) Check up compatibility conditions (61) and (62) written as: 

r l T v 2  -r  r 2 T v l  ---- 0 

rlTa2 + 2 vlTv2 + r2Tal = 0. 

(iii) Compute matrices: 

n = rlr2 

m = nr2 T , 

p = - -nr l  T . 

(iv) According to (111 ) - (113 ), compute matrice s: 

(v) 

(1~2) 

(133) 

(134) 

(13~) 

(136) 

(137) 

m - 2m T 
T1 --  2 n T ~  , (138) 

p - 2p 7 
T 2 -  2nTn , (139) 

fi 
Ta - (140) 

nTn - 

Compute the column matrices ~ and ~ corresponding to the instantaneous angular velo- 

city vector g and to the instantaneous angular acceleration g' according to (109) and 
(110): 

m = T l v l  + T2v2, (141) 

e = Tla~ + T2a2 + T391v2 �9 (142) 

(vi) Finally, tensors (matrices) �9 and ~ are given by relations (3) and (4): 

or, taking (107) and (108) into account: 

(I) --  V l@2n)T  -t- v 2 ( I l r l )  T -t- ( r l v 2  -- r 2 v l )  n r 

n T n  

,t, = al(~2n)~" + a2(firl)~ + (~la2 + 2~,1v2 -- ~ a l )  n T 
n T n  

(143) 

(144) 

(145) 

(146) 
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7 Numerical examples 

7.1. In a first example, let A~ be three non-collinear points of a rigid body located in a reference 
frame by the column matrices of their position vectors 

9A1 =[0 0 0] T, ~A2=[0 1 0] T, e & = [ 0  1 1] T. (147) 

Let O E (g~) be a point of the rigid body given by Go = [1 0 1] :r. Assume the relative velo- 
cities and relative accelerations of points Ak, k = 1, 3, about point O to be given as: 

Vl = [1 0 - 1] T, v2 = [0 0 0] T, v3 = [-1 - 1 0] T, (148) 

al =[1 0 1] T, a2=[1  - 2  -3]  T, a3=[2  0 -5]  T. (149) 

Compute angular velocity tensor O, angular acceleration tensor ~ ,  instantaneous angular 
velocity vector m and instantaneous angular acceleration vector e. 

According to Algorithm A, we first compute matrices: 

r 1 = [ - 1  0 -1 ]  T, r 2 = [ - 1  1 -1 ]  T, r 3 = [ - 1  1 0] T. (150) 

Next, we build up matrices R, V and A given by relations (114)-(116): 

i11 i] [10 i] [i 12] a =  0 1 , v =  0 0 - , a =  - 2  0 . ( 1 5 1 )  

-1  -1  -1  0 - 3  -5  

The check (117), (118) shows the skew-symmetry of: 

[ 011 [0 R T V =  0 0 , R T A + V T V =  -2  0 . 

- 0 0 - 2  - 3  

(152) 

Matrix R given by (151) is non-singular resulting in its inverse: 

R - - 1  = 

--1 -1  ! ]  
1 1 - . 

--1 0 
(153) 

Finally, from (121)-(124) we find: 

�9 = V R  - ~  = 

0 -1  -1  

0 - 

1 

t o = v e c t O =  m (154) 

= A R  - 1  = [: :1 
-2  0 1 

- -  - - 2  

- - 4  - -  

s =vec t  ~ =vec t  ~ ~ - WT] = ( 1 5 5 )  
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7.2. In the second example, the same points (147) are used, but now let us assume that the abso- 

lute velocities and accelerations are given." 

VA1 = [ 1  1 0] r ,  V a 2 = [ 0  1 11 T, v & = [ - - 1  0 1] T, (156) 

a& = [ 0  1 6] T, a & = [ 1  - 1  2] T, a A s = [ 1  1 01T. (157) 

According to Algorithm B we arbitrarily choose a point O non-coplanar  with Ak as: 

~ o = [ 1  0 1] T. (158) 

In the same way as in relation (150), matrix R is determined being identical to (151). The 
transpose of its inverse (153), i.e.: 

R* = ( R - l )  r = - 1 , (159) 

- 1  

defines the reciprocal basis by its columns: 

r 1 = [ - 1  - 1  0] T, r 2 = [ 1  1 - 1 ]  T, r a = [ - 1  0 1] T. (160) 

From (128) and (129) the velocity vo  and acceleration ao  are computed using (150) and 

(160): 

v o = [ 0  1 1] T, a o = [ - 1  1 5] 7~. (161) 

The matrices (130) and (131) are the same as in the first example, see (151). Thus, the remain- 
der of  the procedure is identical to Algorithm A. 

7.3. In our last example, assume that only the relative velocities vl, v2 and relative accelerations 

az, a2 of  (148) and (149) are given for two points A1, A2 located by the relative positions rl ,  r2 
o/(150) 

In this case Algorithm C is applied, where we first have to compute n, m and p by means of 
(135)-(137): 

[1] [_11_il [i o il n = 0 , m = 0 0 , p = 0 . (162) 

- 1  1 - 1  - 0 - 

Next, matrices Tk are computed by means of (138)-  (140): 

[i :] E: 0 - 3  1 0 0 , T 3 = ~  - 0 . (163) 
1 0 , T2 = ~ - 3  0 1 1 T~ = ~  - - 1  - 

The column matrices ~ and ~ are computed by means of (141) and (142), i.e.: 

=[1 - 1  1] T, e : [ - 3  0 -1] T. (164) 

Finally, the resulting matrices �9 = 6 and W = 6 2 +  ~; are computed identically to (154), 
(155). 
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8 Conclusions 

In this paper, the properties of the angular velocity tensor �9 = ~ and the angular acceleration 
tensor ~ = ~2 + g: are systematically studied based on tensor algebra. This approach benefits 
from the intrinsic character of the obtained relations. Thus, the vectors emerging in the 
expressions of these tensors in Theorem 3 (relations (56) and (57)) may be expressed either in 
an inertial frame or in a body-fixed frame. 

Our paper considers a tensor as a R-linear mapping of the free vectors set ~'3 into Y'3. A 
tensor may be represented by a matrix only after a basis in the linear space Y/3 has been 
selected. Preferring an orthonormal basis (the most frequently used practice [4], [11]) simpli- 
fies the calculus, but this particular choice may conceal some essential properties. This is 
probably why, to the knowledge of the authors, the expressions of the adjugate angular velo- 
city tensor and adjugate angular acceleration tensor (and implicitly the vectorial invariant 
(40)) have not been defined in any rigid body kinematics treatise yet. 

The computation of the two tensors �9 and ~g by point velocity and point acceleration 
data is an important issue in robotics, especially in parallel manipulator kinematics [3]. The 
algorithms depicted in this paper differ from the ones given by Angeles [1]-[3] and possess 
some specific features. 

Besides its intrinsic character formerly mentioned, Algorithm B presented here is frame 
invariant. It comprises the evaluation of the velocity and acceleration of an arbitrary point on 
the rigid body non-coplanar with the measurement points as a computation step. Thus, the 
matrix R (114) is always non-singular. In the procedure proposed by Angeles, which is not 
frame invariant, inconvenient singularities may occur. Angeles describes in [2] the way these 
singularities may be surmounted through a change of the reference frame. 

From our point of view, Algorithm C seems to be the most suitable one for automatic com- 
putation since no inverse matrix calculation is needed. The computation of tensors T1, T2 
and T3 from (138)-(140) depends only on the measurement points, and once they are com- 
puted, they may be used for more measurements. 

The relations (109) and (110) allow to expeditiously compute both the instantaneous angu- 
lar velocity and instantaneous angular acceleration of a rigid body under general motion 
based on the movement laws of three non-collinear points of the rigid body. This situation is 
frequently encountered in robotics [3]. This computation does not require previous evaluation 
of either Euler angles, Euler-Rodrigues parameters, rotation quaternions or the rotation 
matrix, as e.g. in [6], [9], [10]. 

Finally, the relation (57) from Theorem 3 reveals that the field of accelerations of a rigid 
body under general motion is completely determined by the accelerations of four non-copla- 
nar points of the body, without any prior information on their velocities. This property may 
be extended in the case of the n-th order accelerations, n E N, n _> 2. Moreover, from (4) and 
(57) we get: 

m 2  1 , �9 = ~ [~i 0 P + P 0 ~i], (165) 

and the relation (74) gives: 

~2 1 5, i (166) 
2 a, �9 . 

Thus, the angular velocity tensor can be determined up to a sign without any velocity mea- 
surements. 
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Appendix 

Let ~ 'a  be the free vectors set as subset of  the three dimensional Euclidean space ~s- An 1R- 
linear mapping is called a tensor: 

(A.1) 

The identib~ tensor is denoted by I and the zero tensor is denoted by O. For a given tensor @, 
the transposed tensor is denoted by q~T. 

Given two vectors d, bE Ya,  g |  bdenotes a tensor defined by: 

g |  b': ~ 'a  --' Y'a,  
(a.2) 

(~ | ~) J = (~. 5) g VJ ~ r  

Tensor g | b is called tensor (dyadic)  product  of vectors g and b. Its transposed tensor is 
(g |  ~)T = ~'| g. In general, g |  b ~  b'| g. 

Given a vector d E g'fa, the skew-symmetric tensor associated with vector g is denoted by 
gt and is defined by: 

fi: ~ 'a ~ 5Ya, 
(a,3) 

gut = g x ~ V~ ~ ~ 'a .  

The correspondence is denoted by g = vect 5.. For an arbitrary tensor @, the axial vector of 
is defined by: 

1 [~, _ ~,r]  (A.4)  veer @ = vect ~ 

The following lemma can be proven: 

L e m m a  1." 

For every choice of  vectors co, c, rl ,  r2 E ~J'a, the following identities hold: 

c~| ca = 62 + c~2I, 

~. (~0  ~) + (~0  ~) .  ~ = _~,2g, 

r l r 2 = ~ ' 2 | 1 7 4  2. 

Proof." 

Using the rule for double vector product computation, we successively obtain: 

= (g|  J -  g 2 3 =  ( c 7 |  c~2I) g V~TE ~ '3 ,  

which proves (A.5). 

(A.S) 

(a.6) 

(A.7) 

(A.8) 
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Next, let us evaluate the following expression: 

[~. ( ~ |  ~ )  + ( ~ |  ~] Y =  ~[(~|  ~ )  Y] + ( ~ |  

= ~[(J. ~ ) ~ ]  + ( ~ | 2 1 5  J )  = ( ~ . ~ ) ( g •  ~ ) +  [(g• J ) .  ~ 1 ~  

= - ( Y ' c ~ ) ( c ~ •  V Y e 7  ~a. (A.9) 

F rom this we get ( t .6 ) .  
By means of  definitions (1.2) and (A.3) we find: 

(f1r J = (r • e g  x J = (r  ~ )  ~2 - (r J )  r = (r | q )  J -  (r | r 

= (r @ r -- r @ r ~ V~ C -@~'3 , ( 1 . 1 0 )  

proving (A.7). [ ]  
Let ,~2 = {21, g2, 21} be a basis of  the free vectors set ~'3.  Let ,~* = {g ~, g ~, g 3} be the 

reciprocal basis determined by [5]: 

2i=d; ~ e Ox~ '~  
2(21,  g2, e'3) ' ( A . 1 1 )  

where e ij~ represents Ricci's permutat ion symbol, and (2~, Y2, #a) = 2~ �9 (2~ x g;) denotes the 
scalar triple product  of  vectors 2b 2~ and e~. Einstein's rule for mute indexes summation has 
been used. All indexes run f rom 1 to 3. 

For  an arbitrary tensor we can prove [5]: 

Lemma 2." 

A tensor �9 : Y3 ~ 9/'3 is uniquely determined by the values of  application of  �9 to the ele- 

ments of  basis . 2  = {21, 22, 23} : 

, i ,  = ( a , 2 d  | g ~ . ( A . 1 2 )  

[]  

The scalar invariants of  tensor �9 are computed f rom condition: 

q~Y = AJ, A �9 R ,  Y 7~ 6 (1.13) 

that  determines the characteristic equation of tensor O: 

p(A) = det (~D - AI) = 0 .  (A.14) 

Using the expression: I = ~ | g i for the identity tensor, we find from (1.14) by means of  
Lemma 2: 

det {[O2i - Agi] | g i} = 0. (A.15) 

This proves that  vectors ~2i  - ),2i, i = 1, 3, are linearly dependent. Therefore their scalar 
triple product  is zero: 

{ ' 2 1  -- /~21, 11122 --  /~22, 1I}23 -- /~23) = 0 .  (A.16) 

By means of the properties of  the scalar triple product,  we get f rom (A. 16) the characteristic 
equation: 

A 3 - ~SrA 2 + ~HA - ~zH = 0, (A.17) 
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<~1,~,~> 

Cayley-Hamilton's theorem 
therefore: 

where Cr, C n  and ~ n I  denote the scalar invariants of  tensor O: 

~ = trace r = ( r  ~ ,  (A.18) 

<~1, (I)~'2, (IDa'3> Jr- (tlDel, ~2, (I~r } + (IID~I, (I)r ~3> 
ezz = (A.19) 

(A.~0) 

[3] states that any tensor satisfies its characteristic equation, 

�9 3 - (PiO 2 + ~ n O  - (Pnfl = O .  (A.21) 

The vectorial invariant of  tensor �9 can be computed according to (A.4). From Lemma 2 with 
relation vect (~ | b') = (b x g ) / 2  we find [3]: 

vect r = 1 ~,i x (r (A.22) 

The adjugate tensor of  O, denoted by O*, is uniquely determined by: 

r  r  : (det q~) I. (A.23) 

An explicit expression for q r  is: 

(,I,~2) x (~,~3) ~ ~2 | + ~s | (A24) 

which can be tested by (A.23) using (A. 12) and (A.20). 

In case o fde t  �9 r 0, tensor �9 is non-singular and: 

1 (1)-1 (A.25) 
= det �9 ~* " 

By means of  (A.20) and (A.24), we get from (A.25): 

( r  • (a,~;) ~-~'~ | (r • ( r  (a ,~)  • ( r  (A.26) 
a'-~ = ~'~ | <r a,~2, a,~3) <r  r r + ~3 | <a,~, r  r " 
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