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Summary -- Zusammenfassung 

A Mathematical Theory ot Shock-Wave IFormation in Arterial Blood Flow. Theoretical 
and experimental evidence is available for the occurrence of shock waves in arterial blood flow. 
A sudden increase of pressure at the entrance of a fluid-filled semi-infinite elastic tube is 
considered as a model to investigate mathematically the possibility of shock-wave formation. 
By use of the method of wavefront expansions explicit results are obtained about the circum- 
stances under which shocks may form and ~bout the time and distance at which this may 
o c c u r .  

Eine mathematisehe Theorie fiir Stoilwellen bei Blutstriimungen in Arterien. Es gibt 
theorctische und experimentelle Hinweise ~fir das Auftreten yon Stol~wellen bei Blutstr6- 
mungen in Arterien. Ein Drucksprung am Eintritt  eines halbunendlich langen, elastischen 
Rohres wird als Modell benutzt, um mathematisch die ~6glichkeit der Bildung einer Stofi- 
welle zu untersuchen. 

Dureh Entwicklung in der Umgebung der Wellenfront ergeben sich explizite Ergebnisse 
fiber e r r  and Zeit der Stol~bildung. 

1. Introduction 

The m~thema t i ca l  t h e o r y  of b lood flow in the  larger  ar ter ies  is usua l ly  based  
on an  u n s t e a d y  one-d imens ional  model  in which the  in te rna l  pressure  and  f lu id  
ve loc i ty  are  ~ver~ged over  t he  cross sect ion of the  a r t e ry .  Since the  resul t ing 
set of nonl inear  f i r s t -order  pa r t i a l  d i f ferent ia l  equa t ions  is hyperbol ic  and  resem- 
bles s t rong ly  the  equat ions  governing  u n s t e a d y  one-d imens ional  gasdynamics ,  
the  n a t u r a l  ques t ion arises whe the r  shock waves  m a y  develop in t h e  solution.  
There  is expe r imen ta l  evidence (cf. An]iker  e t  al. [1]) t h a t  th is  m~y  occur under  
physiologica l  c i rcumstances ,  l~udinger  [2] considered inviseid  flow through  a 
semi- inf ini te  un i form dis tensible  t ube  which is in i t ia l ly  u n d i s t u r b e d  and  pre-  
scr ibed ~ cont inuous  b u t  non-smooth  pressure  rise a t  the  en t rance  of the  tube .  
Using the  m e t h o d  of charac ter i s t ics  he found  ~n express ion for  the  shock- format ion  
dis tance.  

I n  the  p resen t  pape r  we sh~ll general ize Eud inge r ' s  p rob lem to flows wi th  
f r ic t ion th rough  non-uni form elast ic  tubes .  W e  are  in t e res t ed  in the  circum- 
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stances under which a shock wave will form and at which time and at which 
distance from the entrance of the tube this will happen. I t  is to be expected that  
the non-uniformity of the tube and the viscosity of the fluid will have a con- 
siderable influence on the shock-wave formation. After the formulation of the 
mathematical model in Section 2, we consider first in Section 3 l~udinger's problem 
as a special ease of the general problem. This problem which is solved within the 
framework of simple-wave solutions (ef. Whitham [3]) serves as a convenient 
introduction to the general ease which is dealt with in Section 4~. For the general 
problem no simple-wave solutions exist and we employ in Section 4 the useful 
method of wavefront expansions [3] to derive an ordinary differential equation for 
the evolution in time of the jump in the first derivatives of the pressure at the 
wavefront. This equation can be solved in closed form, but in general a numerical 
evaluation is needed to obtain the time instant at which the jump in the first 
derivatives of the pressure becomes infinite, that  is, at which a shock wave forms. 
In  Section 5, therefore, we consider some special cases for which explicit results 
can be obtained. I t  will turn out that  for a tube which becomes narrower for 
increasing distance from the entrance the shock wave will form earlier and nearer 
to the entrance than for a uniform tube. Furthermore, friction has a delaying 
effect on shock-wave formation. 

2. The One-Dimensional Theory 

The usual one-dimensional model for blood flow in the larger arteries is 
based on a number of assumptions. The blood is considered as an incompressible 
fluid and the artery as a straight elastic tube of circular cross section. Since 
arteries are constrained longitudinally, only axisymmetric bulging motions of the 
(impermeable) tube wall are considered. Furthermore, tile tube radius is usually 
much smaller than the typical axial wavelength of the flow, and thus radial 
accelerations and pressure forces in the fluid are neglected. Hence only axial 
fluid accelerations and forces are taken into account, and the fluid velocity and the 
pressure are averaged over the internal cross-section of the tube. The only inde- 
pendent variables in the mathematical model are thus the axial coordinate x and 
the time t. 

We are now in a position to formulate the equations of motion for the fluid [1], 
[2]. First we have the continuity equation 

At @ (Av), = 0, (2.1) 

where A denotes the cross-sectional area and v the axial fluid velocity (averaged 
over the cross section). Next we have the momentum equation 

1 
vt + vv,~ 4- - -  Px = / ( v ,  A) ,  (2.2) 

o 

where p is the pressure difference across the tube wall (the exterior pressure being 
taken constant), o denotes the constant density of the fluid and/(v, A) is a friction 
term (with [(0, A) - 0) which will be specified later. I t  should be remarked that 
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for flows in which discontinuities (shocks) have developed the validity of these 
equations has to be questioned. Prior to the shock formation, however, l~',qs. (2.1) 
and (2.2) are valid. 

We shall consider the flow as a perturbat ion (not necessarily small) of the 
undisturbed state v ~ 0, p = Po = constant, A ~ Ao(x) given, Po, A0 positive, 
which corresponds to an inflated tube with non-uniform cross-section Ao(x). 

To complement Eqs. (2.1) and (2.2) we need a third equation. For an elastic 
tube one usually takes the relation between p and A which holds under static 
conditions : 

A = A(p,  x),  (2.3) 

with A(po, x) =- Ao(x) and Ap(po , x) > 0 for x ~ 0. This means tha t  the tube wall 
reacts instantaneously on pressure changes in the fluid. 

Eqs. (2.1)--(2.3) constitute a hyperbolic set of quasi-linear first-order partial  
differential equations very similar to those of one-dimensional unsteady gas- 
dynamics. Hence there is a possibility tha t  discontinuities in the form of shock 
waves develop in the solution. 

In  the case of flow through a uniform.tube (A = A(p) ,  A(po) = Ao ~ constant) 
without friction ( / ~  0) we may  consider infinitesimally small perturbations Zi,/5 
and ~ about the undisturbed state. When we substitute A = A0 @ z{, p = P0 + / 5 ,  
v = ~ into Eqs. (2.1)--(2.3) and subsequently linearize, we find tha t  Si, /5 and 
all satisfy a one-dimensional wave equation of the form 

~ t t  - -  C02Uxx ~ 0~ 
where 

: ~  A0 V ~ 

is the infinitesimal-wave propagation velocity. For actual blood flow in the larger 
human arteries Co is of the order of magnitude of 3--  10 m/s. The fluid velocity v, 
however, is very much smaller in general. For the general case we now define the 
"local wave velocity" c(p, x) by the relation 

x) 

I t  appears to be convenient to rewrite Eqs. (2.1)--(2.3) as two equations involving 
p and v only. We arrive at the following equations: 

Pt + Vpx + Oc~(io, x) Vx + Ax(p' x) Ap(p, x) v = 0, (2.5) 

I 
vt ~- VVx 4- - -  Px = /{v, A (p ,  x)}. (2.6) 

With appropriate initial and boundary conditions these equations form the basis 
for the calculations in the sequel. 

10" 
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3. Inv i sc id  F l o w  T h r o u g h  a U n i f o r m  Elas t i c  T u b e  

In  the special case of inviseid flow ( / =  0) through a uniform elastic tube we 
have A = A(p) ,  A(po) = A0 = constant ,  c ~-- c(p), c(po) = Co = constant.  Then  
Eqs. (2.5) and (2.6) simplify to 

Pt -~ Vpx -~- oC2(p) vx --~ O, (3.1) 

1 
vt ~ VVx ~- - - P x  = O. (3.2) 

These equations have exact  solutions in the form of "simple waves" which are 
easy to obtain.  

We consider a semi-infinite tube (x > 0) which is initially undisturbed.  Thus, 

p(x,  O) = Po, v(x, 0) --~ 0. (3.3a) 

For  t ~ 0 we prescribe the pressure at  x = 0: 

p(0, t) - -  g(t), (3.3b) 

and  for small t we assume g to be expandible as 

g(t) = Po ~- rt ~- O(t2), r > 0. (3.3c) 

So we consider a continuous but  non-smooth  increase of the pressure at  x = 0. 
This m a y  describe the si tuation at the entrance of the aorta  where the aortic 
valve remains closed as long as the pressure inside the left ventricle of the hear t  is 
below P0 and it opens suddenly when the ventricle pressure rapidly exceeds P0- 

Since the equations are hyperbolic, continuous solutions with discontinuous 
first derivatives are allowed. Discontinuities in first derivatives propagate  along 
characteristics. I n  our problem this will occur along the wavefront  characteristic 
Co + emanat ing f rom the origin in the x,t-plane and  pointing into the region 
x, t > 0, see Fig. 1. The s t rength of the discontinuity m a y  increase when prop- 
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agating along Co + as t ime increases. I f  it becomes infinite at some point (xs, ts) 
on Co +, a shock has to be fitted in the solution for x ~ x~, t ~ t~ in an appropriate  
way in order to avoid a multivalued solution. Geometrically the point (x~, t~) is 
the point nearest to the origin on the envelope formed by  the characteristics 
starting from points (0, 3) on the positive t-axis for small 3. We shall assume for 
simplicity tha t  Co+ is the only characteristic on which a shock may  develop. 
Therefore one migh t think of g as a smooth function with a single hump and an 
infinite tail (like, for example, q(t) = Po d- rte -t) so tha t  the compressive par t  of 
the pressure disturbance is wholly restricted to the neighbourhood of rise wave- 
front  characteristic Co + . We are especially interested in the circumstances under 
which a shock wave may  occur and in the point (xs, t~) on Co + where it starts. 

Taking a suitable linear combination of Eqs. (3.1) and (3.'2) we obtain the two 
characteristic forms 

pt + (v :s c) p~ • ec[vt + (v • c) vx] = O. 

I n  other words, the two Riemann variables 

e ~(p) 

on the Ce-characteristics satisfying 

= constant 

dx 
- -  = v • c(p). 
dt 

Since Ivl ~ c for our problem, all C--characteristics have negative slope. So all 
C--characteristics in the region x, t ~ 0 start  f rom the positive x-axis where we 
have the undisturbed situation. Hence we have for all x, t ~ 0: 

v - -  r  = --q~(Po) = constant.  (3 .4)  

This means tha t  we have a simple-wave solution in this case and the problem 
reduces to solving one first-order partial  differential equation for p. This equation 
has the form of a kinematic wave equation (ef. Whi tham [3]) and it  is obtained b y  
writing down the C+-characteristic form and making use of relation (3.4): 

pt + [r  - r + c(p)] px = o ,  x, t >= O. (3.5), 

This equation implies tha t  p = constant on the C+-charaeteristics satisfying 

dx 
d-i = r  - r 1 7 6  + c ( p ) .  

So the C+-characteristics are straight lines. In  particular, Co + is the line x -~ cot. 
The solution of Eq. (3.5) satisfying conditions (3.3) is given by  

p - - g ( r  

x = [o{g(r  - r  + cig(r (t - r  ~: :> O, 

(3.6a} 

(3.6b} 
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in the region D~ covered by the C~-characteristics emanating from points (0, :) 
on the positive t-axis, and by 

P = Pc 

in the region D e covered by the C+-characteristics x - -  cot ~ ~ emanating from 
points ($, 0) on the positive x-axis. 

For small ~ the C+-characteristics through (0, v) are approximately given by 

x ----- [Co + ,vrCov + O(T2)]  (t - -  T), (3 .7 )  

where the constant 7 is defined as 

?, = - -  - -  § c ' ( p o )  . ( : ~ . 8 )  
Co ~OVo 

When 7 > 0, the C+-characteris t ics  emanating from points (0, v) on the positive 
t-axis will form an envelope located in the region x >= cot. This means that  the 
regions D e and D~ overlap, thus giving rise to a region of multivMuedness in D e. 
The envelope is determined from Eq. (3.6b) and the equation obtained after 
differentiation of Eq. (3.6b) with respect to v. As we are only interested in the 
location of the point (x~, 4) on Co + where the envelope begins (notice that  at 
(xs, 4) we have v - 0), it suffices to differentiate Eq. (3.7) with respect to v. This 
yields 

0 = 7rcot -- co + O(r). (3.9) 

Taking T ~ 0 in Eqs. (3.7) and (3.9) we find 

z ~ = C o 4 =  %~ ~ + C ( p o )  - , (3.10) 
r 7r  

which is in agreement with Rudinger [2]. 
There is some experimental evidence that c'(po) >= 0 for blood vessels ([1], [2]). 

Hence the occurrence of shock waves is to be expected in practice. Whether the 
predicted values (3.10) for x~ and 4 are physiologically realistic is open to doubt. 
A tapering of the tube and the inclusion of a friction term in the basic equations 
will probably influence the results greatly. This shall be analyzed in the next 
section. 

Olsen and Shapiro [4] investigated both theoretically and experimentally 
flows through a uniform distensible tube made of a rubber-like material obeying 
the pressure-area relation 

, ( ao~ (3.11) 
p = p0 + T ~c~ l - - ~ - 1 ,  

and found that  steepening effects were absent. :Now (3.11) implies 

_ P - - P o ~ ] 2  
c(p) - C o  1 Z~o~/2 ] , 

and so c'(po) ~- --(oco)-L Thus, 7 ---- 0 for the material obeying relation (3.11) 
which confirms that  no shock will form in this case. 
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~ 0 :  

T ~ 0 :  

4. A General  W a v e f r o n t  E x p a n s i o n  

In  this section we shall consider the more general case of flow through a 
non-uniform elastic tube included the effect of friction. That  is, we consider 
Eqs. (2.5) and (2.6) in the quarterplane x, t ~ 0 under the same initial and 
boundary conditions (3.3) as for the uniform-tube case in the preceding section. 

Globally we have the same situation: a jump in the first derivatives of the 
solution which propagates along the wavefront  characteristic Co + through the 
origin and which may  become infinite at some point (xs, 4) on Co +, so that  we 
have the formation of a shock at  (xs, 4). In  contrast  with the simpler problem of 
Section 3, U0 + is not a straight line in general. The two characteristic forms of 
Eqs. (2.5) and (2.6) read 

Pt -~- (v ~ C) Px ~ o~c[vt ~- (v ~ c) vx] -]- Ax(P' x_____~) v I @c] : O, (4.1) 
Ap(p, x) ' 

and hence the Ca-characteristics are to be determined from 

dx 
- -  = v ~: c(lo, x) .  (4.2) 
dt 

The wavefront  characteristic Co + separates the undisturbed region in the x,t-plane 
from the disturbed one. Thus,  Mong CO+ we have v = 0 and p = Po. Introducing 
the representation t ~ T(x) for Co + we find from Eq. (4.2): 

T(x) ~- f d~ (4.3) 
J C(po, ~) 

0 

Frequently we shall use the inverse representation x --  X(t)  for CO+, so X(T(x) )  ~- x. 
An elementary exact solution like the simple-wave solution in Section 3 is not 

possible in the case of Eqs. (2.5) and (2.6). The additional terms in the charac- 
teristic forms (4.1 i make  it impossible to integrate out one of the Riemann 
variables. Hence we must  resort to a different approach, namely the wavefront 
expansion (cf. Whi tham [3]). This type of expansion yields an exact equation for 
the evolution in t ime of the jump in the first derivatives of p and v along the 
wavefront characteristic Co +. 

The basic idea is as follows, i f  one introduces the variable T by  

= t - T ( x ) ,  ( 4 . 4 )  

the quarterplane x, t ~ 0 is divided into an undisturbed region T ~ 0 (where 
P = Po and v = 0) and a disturbed region ~ ~ 0 separated by the wavefront 
characteristic Co + upon which ~ --~ 0. In  the immediate neighbourhood of Co + we 
assume the following "wavefront  expansions" for p and v :  

P ~ Po, v ~-- 0, 

1 
P = P o + v p ~ ( t ) @ - ~ P 2 ( t ) @ " ' ,  p ~ ( 0 ) = r > 0 ,  (4.5) 

1 ~v2(t) §  v = ~vl( t )  + 
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Note  tha t  Pl and v 1 are a measure for the jump in the normal  derivatives o f p  and 
v, respectively, along Co+ and tha t  pal0) is determined by  the boundary  condition 
(3.3b, c) at  x = 0. Wavef ron t  expansions like (4.5) provide a nice formal tool 
to calculate the evolution along characteristics of discontinuities in derivatives of 
solutions of hyperbolic equations. 

Expansions  (4.5) for v > 0 are inserted into the basic Eqs. (2.5) and (2.6) and, 
after expanding all terms in increasing powers of r, the coefficients of successive 
powers of T are equated to zero. In t roduc ing  the notat ions 

tiP0, X(t)} = c(~ cvfpo, X(t)} = cv(~ cx{po, X(t)} ----- G.(~ 

Av{po, X(t)} : Ap(~ Ax{po, X(t)}  = A~(~ /v[O,A{po,  X(t)}] =/v(~  

noting tha t  differentiations t ransform according to 

8 8 8 8 8 1 8 
- -  + - -  - - - ~  - T ' ( z )  - -  = 

8t 8t 8v ' 8x 8v c(p o, x) 8r ' 

and keeping in mind tha t  the a rgument  x has to be expanded everywhere as 

x : X ( t  - T) : X ( t )  - 7 :X' ( t )  + . . . .  X ( t )  - r e { p c ,  X ( t ) )  + . . .  

: X ( t )  - ~c(~ + . . . ,  

we find tha t  the coefficients of r ~ provide two equivalent  equations relating p~ 
a n d  v 1 : 

Pl - -  o~c(~ : O, vl Pl __ O. (4.6) 
�9 ~oc(O) 

If  the curve x = X( t )  had not  been a characteristic, Eqs. (4.6) would have been 
independent  and then the only possible solution would have been p~ = v~ ~ 0. 
This shows tha t  jumps in first derivatives of the solution can only propagate  
along characteristics. 

The coefficients of r lead to the equations 

ply1 oc(~ - -  2ocv(~ q- ~c(~176 q- A~'(~ O, (4.7a) Pl '  + P2 c(o) A/iOi = 

vl u 1 {Cx(~ -~ P2} ~ Vl/v (~ vl' ~- V2 c(0) oc(0 ) (4.7b) 

When  we consider Eqs. (4.7) as a set of two inhomogeneous linear algebraic 
equations for v2 and P2 we see tha t  the coefficient de terminant  equals zero (as in 
Eqs. (4.6)), and hence v2 and P2 can be eliminated completely from Eqs. (4.7). 
Using (4.6) to eliminate fur ther  Vl, we obtain after  some manipulat ion a single 
ordinary differential equat ion of Riccati  type  for Pl : 

@--~ + p(t) pd + Q(t) pl = 0, (4.8) 
dt 
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where the coefficient, functions P and Q are given by  

P - -  c(o) q- Cp (~ , Q = -~- [ec(O)Ap(0 ) cx (~ - - / v  (~ . (4.9) 

The initial condition for Eq. (4.8) is pl(0) : r. 
Eq.  (4.8) can be wri t ten as a linear equat ion for 1/pi, 

and  hence the solution of Eq. (4.8) satisfying the initial condit ion pi(0) : r is 
obtained in the form of the variat ion-of-constants  formula 

p i ( , )  = 
0 0 

(4A0) 

I n  general a numerical  evaluat ion of (4.10) will be needed to investigate whether  
Pl becomes infinite for some value 4 of the t ime t. However,  for a few special 
cases the solution of Eq.  (4.8) can be evaluated easily and the conditions for 
shock format ion  together  with the value of 4 can be obtained explicitly. This will 
be done in the next  section. 

5. Some Special Cases 

5.1. Uni/orm Tube; Inviscid Flow 

This is the problem of Section 3. We have ] = 0 and Ax(p,x)  - -  O. So cx(p, x) = 0 
and  c(~ = C(po) = co = constant .  The wavefront  characteristic Co+ is given by 
x = X(t)  = cot. The Riceati  Eq.  (4.8) for Pl reads in this case: 

dPldt col{~o + c'(P~ pI2 = O. 

The solution of this equat ion which satisfies the  initial condition p~(0) = r is 
given by  

p i ( t )  - -  1 - -  ~,rt  ' 7 = Co 

We observe tha t  p ,  becomes infinite in finite t ime if Y > 0, and the t ime at  which 
this happens is 4 = (Yr) -i.  These results agree with those obtained in Section 3. 

5.2. Exponentially Tapered Tube; Inviseid Flow 

I n  this case we have ] = 0 and A(p,  x) = e - ~ A ( p )  where t5 is a measure for the 
taper  of the  tube :  /3 > 0 corresponds to a tube which becomes narrower as x 
increases, fl ~ 0 to one which widens as x increases. The remarkable  feature of 
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this case is t ha t  the wave  veloci ty c is independent  of x: 

F'(p)--- ~(p) 
oA'(P) " 

This means  t ha t  the wavef ron t  characterist ic  Co+ is again  the s t ra ight  line 
x ~ X( t )  = cot, co ~ c(po). Thus  we have  

A~(~ - -  fi~OCo 2, Cx ~~ ~ 0. 
Ap(o) 

The Riccat i  equat ion for p~ becomes 

dPl 1 {~Co § c ' (p0)}Pl 2 - 1 dt Co -~ ficop~ = 0 

with solution given b y  

1 __ 1 e - V r 2 4 7  ~Cot 

I f  p~ becomes infinite in finite t ime t= then  

co rico ., 27~r ] 

From (5.2) it is seen t h a t  shock-wave fo rmat ion  occurs in finite t ime when 

~J > 0 ,  rico > _ 1 .  (5 .3)  
2yr 

So shocks m a y  develop even in a widening tube  (fl < 0) p rovided  X and r are 
sufficiently large positive. For  small values of lflco/(yr)l the  logar i thm in (5.2) can 
be expanded  in a series, and  we find for 4: 

For  f i -+  0 we find again the  results for  the  uni form case. We observe t ha t  a 
narrowing of the tube  as x increases (fl ~ O) leads to a more  rapid shock format ion  
compared  with the  uni form case (fi = 0). 

5.3. Uni /orm Tube;  F low  Wi th  Frict ion 

The effect of friction can be incorpora ted  in the  model  by  a choice of the 
func t ion / (v ,  A)  in the basic equations.  We  shall consider two possibilities: 

8~v (5.4) laminar  flow: / - -  ~A ' 

turbulent  flow: t = - -0 .1360  ( L I  1]4 [?)1'/4 sgn v, (5.5) 

where # is the coefficient of viscosi ty of the  fluid. The  expressions (5.4) and  (5.5) 
represent  the  well-known friction coefficients for  s t eady  flow in a circular pipe 
a t  low and  high Reynolds  number ,  respect ively  [1]. Of course one might  object  
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t h a t  we use s t e a d y - s t a t e  resul ts  for a flow which is essent ia l ly  non-s teady .  Never-  
theless we bel ieve t h a t  for the  p resen t  p rob lem re la t ions  (5.4) and  (5.5) l ead  to  a 
reasonable  p ic tu re  of the  effect  of f r ic t ion on shock-wave  format ion .  

I n  the  case of t u r b u l e n t  flow we f ind  

]v(~ =/~,[0, A{po, X(t)}] : 0,  

so wi th in  t he  f r amework  of our t h e o r y  tu rbu lence  has no inf luence on shock 
format ion .  F o r  l amina r  flow, however ,  we have  

/v(o)(t) - -  eA ~ , 

and  hence the  R icca t i  equa t ion  for  Pl becomes 

dPldt col 1 + c'(po) pl ~ -}- ~ o  Pl : 0 .  

W e  f ind  for p~ : 

1 _ 1 ( 4 " , q  
Pi(t) e x p  -- - -  r \ @Ao ] 

This  implies  t h a t  a shock will develop in f ini te  t ime  ts, 

when 
Co 4~3* @Aoyr ! 

4~___~ ~ 1~ y > O. 
@A07r 

F o r  small  va lues  of #/(@Aoyr) we have  

=-[ ( )] 1 1 - /  2~!~ + 0  
4 yr @Aoyr @2Ao2y~r~ ' 

which shows t h a t  f r ic t ion  de lays  shock-wave  format ion .  
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