ACTA MECHANICA

Acta Mechanica 30, 145—155 (1978) © by Springer-Verlag 197

A Mathematical Theory of Shock-Wave Formation
in Arterial Blood Flow

By
H. W. Hoogstraten and C. H. Smif, Groningen, The Netherlands
With t Figure

(Received June 10, 1977)

Summary — Zusammenfassung

A Mathematical Theory of Shock-Wave (Formation in Arterial Blood Flow. Theoretical
and experimental evidence is available for the occurrence of shock waves in arterial blood flow.,
A sudden increase of pressure at the entrance of a fluid-filled semi-infinite elastic tube is
considered as a model to investigate mathematically the possibility of shock-wave formation.
By use of the method of wavefront expansions explicit results are obtained about the circum-
stances under which shocks may form and about the time and distance at which this may
oceur.

Eine mathematische Theorie fiir Stofwellen bei Blutstromungen in Arterien. Es gibt
theoretische und experimentelle Hinweise fiir das Auftreten von StoBwellen bei Blutstro-
mungen in Arterien. Ein Drucksprung am Eintritt eines halbunendlich langen, elastischen
Rohres wird als Modell benutzt, um mathematisch die Méglichkeit der Bildung einer Stofi-
welle zu untersuchen.

Durch Entwicklung in der Umgebung der Wellenfront ergeben sich explizite Eruebmsse
iber Ort und Zeit der Stofbildung. -

1. Introduction

The mathematical theory of blood flow in the larger arteries is usually based
on an unsteady one-dimensional model in which the internal pressure and fluid
velocity are averaged over the cross section of the artery. Since the resulting
set of nonlinear first-order partial differential equations is hyperbolic and resem-
bles strongly the equations governing unsteady one-dimensional gasdynamies,
the natural question arises whether shock waves may develop in the solution.
There is experimental evidence (cf. Anliker et al. [1]) that this may ocour under
physiological circumstances. Rudinger [2] considered inviscid flow through a
semi-infinite uniform distensible tube which is initially undisturbed and pre-
scribed a continuous but non-smooth pressure rise at, the entrance of the tube.
Using the method of characteristics he found an expression for the shock-formation
distance.

In the present paper we shall generalize Rudinger’s problem to flows with
friction through non-uniform elastic tubes. We are interested in the circum-
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stances under which a shock wave will form and at which time and at which
distance from the entrance of the tube this will happen. It is to be expected that
the non-uniformity of the tube and the viscosity of the fluid will have a con-
siderable influence on the shock-wave formation. After the formulation of the
mathematical model in Section 2, we consider first in Section 3 Rudinger’s problem
as a special case of the general problem. This problem which is solved within the
framework of simple-wave solutions (cf. Whitham [3]) serves as a convenient
introduction to the general case which is dealt with in Section 4. For the general
problem no simple-wave solutions exist and we employ in Section 4 the useful
method of wavefront expansions [3] to derive an ordinary differential equation for
the evolution in time of the jump in the first derivatives of the pressure at the
wavefront. This equation can be solved in closed form, but in general a numerical
evaluation is needed to obtain the time instant at which the jump in the first
derivatives of the pressure becomes infinite, that is, at which a shock wave forms.
In Section 5, therefore, we consider some special cases for which explicit results
can be obtained. It will turn out that for a tube which becomes narrower for
increasing distance from the entrance the shock wave will form earlier and nearer
to the entrance than for a uniform tube. Furthermore, friction has a delaying
effect on shock-wave formation.

2. The One-Dimensional Theory

The usual one-dimensional model for blood flow in the larger arteries is
based on a number of assumptions. The blood is considered as an incompressible
fluid and the artery as a straight elastic tube of circular cross section. Since
arteries are constrained longitudinally, only axisymmetric bulging motions of the
(impermeable) tube wall are considered. Furthermore, the tube radius is usually
much smaller than the typical axial wavelength of the flow, and thus radial
accelerations and pressure forces in the fluid are neglected. Hence only axial
fluid accelerations and forces are taken into account, and the fluid velocity and the
pressure are averaged over the internal cross-section of the tube. The only inde-
pendent variables in the mathematical model are thus the axial coordinate » and
the time £.

We are now in a position to formulate the equations of motion for the fluid [1],
[2]. First we have the continuity equation

4; 4 (dv), =0, (2.1)

where A denotes the cross-sectional area and v» the axial fluid velocity (averaged
over the cross section). Next we have the momentum equation

1
v + o, _O_px = f(% A)’ (22)

where p is the pressure difference across the tube wall (the exterior pressure being
taken constant), o denotes the constant density of the fluid and f(v, 4) is a friction
term (with f(0, A) = 0) which will be specified later. It should be remarked that
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for flows in which discontinuities (shocks) have developed the validity of these
equations has to be questioned. Prior to the shock formation, however, Eqgs. (2.1)
and (2.2) are valid.

We shall consider the flow as a perturbation (not necessarily small) of the
undisturbed state v = 0, p = p, = eonstant, 4 = Ady(x) given, p,, 4, positive,
which corresponds to an inflated tube with non-uniform cross-section Ay(z).

To complement Egs. (2.1) and (2.2) we need a third equation. For an elastic
tube one usually takes the relation between p and A which holds under static
conditions:

A= Alp, =), (2.3)

with 4(py, ) = Ag(x) and A,(py, ) > 0 for x = 0. This means that the tube wall
reacts instantaneously on pressure changes in the fluid.

Egs. (2.1)—(2.3) constitute a hyperbolic set of quasi-linear first-order partial
differential equations very similar to those of one-dimensional unsteady gas-
dynamies. Hence there is a possibility that discontinuities in the form of shock
waves develop in the solution.

In the case of flow through a uniform tube (4 = 4(p), 4(p,) = A, = constant)
without friction (f = 0) we may consider infinitesimally small perturbations 4, p
and % about the undisturbed state. When we substitute 4 = 4, - 4, p = py + 5,
v = § into Eqs. (2.1)—(2.3) and subsequently linearize, we find that 4, p and &
all satisfy a one-dimensional wave equation of the form

2 —
Uy — Co*Uyy = 0,

o i
Cy = ;
o4’ (o)

is the infinitesimal-wave propagation velocity. For actual blood flow in the larger
human arteries ¢, is of the order of magnitude of 3—10 m/s. The fluid velocity v,
however, is very much smaller in general. For the general case we now define the
“local wave velocity” ¢(p, ) by the relation

o A(p, z) |1/2 '
e R vt I 24

where

It appears to be convenient to rewrite Eqs. (2.1)—(2.3) as two equations involving
p and » only. We arrive at the following equations:

9 Ax(p’ x) —0 25
P+ vps + 0¥(p, %) v, + Ap ) v , (2.5)
%+mu+%m:%%M%@L (2.6)

With appropriate initial and boundary conditions these equations form the basis
for the calculations in the sequel.
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3. Inviscid Flow Through a Uniform Elastiec Tube

In the special case of inviscid flow (f = 0) through a uniform elastic tube we
have 4 = A(p), A(p,) = 4y = constant, ¢ = c(p), ¢(py) = ¢, = constant. Then
Eqgs. (2.5) and (2.6) simplify to

P 1 vps + ch(p) v, = 0, (3.1)
v + vv, + %—px =0. (3.2)

These equations have exact solutions in the form of “simple waves’” which are
easy to obtain.
We consider a semi-infinite tube (x = 0) which is initially undisturbed. Thus,

plz, 0) = p,, vz, 0) = 0. (3.3a)
For t = 0 we prescribe the pressure at + = 0:
(0, 7) = ¢(t), (3.3b)
and for small ¢ we assume ¢ to be expandible as
g(t) = po + 1t + 0@, r>0. (3.3¢)

So we consider a continuous but non-smooth increase of the pressure at x = 0.
This may describe the situation at the entrance of the aorta where the aortic
valve remains closed as long as the pressure inside the left ventricle of the heart is
below p, and it opens suddenly when the ventricle pressure rapidly exceeds p,.
Since the equations are hyperbolic, continuous solutions with discontinuous
first derivatives are allowed. Discontinuities in first derivatives propagate along
characteristics. In our problem this will occur along the wavefront characteristic
Oyt emanating from the origin in the z,t-plane and pointing into the region
x,t > 0, see Fig. 1. The strength of the discontinuity may increase when prop-
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agating along Oyt as time increases. If it becomes infinite at some point (x,, £;)
on Og+, a shock has to be fitted in the solution for » = =, t = ¢, in an appropriate
way in order to avoid a multivalued solution. Geometrically the point (z,, ) is
the point nearest to the origin on the envelope formed by the characteristics
starting from points (0, 7) on the positive ¢-axis for small 7. We shall assume for
simplicity that COg+ is the only characteristic on which a shock may develop.
Therefore one might think of g as a smooth function with a single hump and an
infinite tail (like, for example, g{f) = py + rte*) so that the compressive part of
the pressure disturbance is wholly restricted to the neighbourhood of the wave-
front characteristic Cgt. We are especially interested in the circumstances under
which a shock wave may occur and in the point (z, ;) on Cg+ where it starts.

Taking a suitable linear combination of Eqgs. (3.1) and (3.2) we obtain the two
characteristic forms

Py + (v =€) po = ocfor + (v I ¢) v;] = 0.

In other words, the two Riemann variables
df i dp
v+ D(p)=v + — | —— = constant
0 J clp)

on the *-characteristics satisfying

d:
gf=vic(p)-

Since |v| < ¢ for our problem, all C--characteristics have negative slope. So all
(C--characteristics in the region x, ¢ = 0 start from the positive z-axis where we
have the undisturbed situation. Hence we have for all z, ¢ = 0:

v — D(p) = —D(p,) = constant. (3.4)

This means that we have a simple-wave solution in this case and the problem
reduces to solving one first-order partial differential equation for p. This equation
has the form of a kinematic wave equation (¢f. Whitham [3]) and it is obtained by
writing down the C+-characteristic form and making use of relation (3.4):

e + [P(p) — P(po) + c(p)] P, = 0, x,t=0. (3.5)

This equation implies that p = constant on the C+-characteristics satisfying

da
= D(p) — D(po) + c(p).

So the Ct-characteristics are straight lines. In particular, Cgt is the line @ = c,l.
The solution of Eq. (3.5) satisfying conditions (3.3) is given by

p=g(v), (3.6a)
¢ = [Dlg(v)} — B(py) + clg(x] (t—~17), =0, (3.6b)
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in the region D, covered by the C*-characteristics emanating from points (0, )
on the positive ¢-axis, and by

P = Po

in the region D, covered by the C*+-characteristics z — ¢gf = & emanating from
points (£, 0) on the positive z-axis. \
For small v the O+-characteristics through (0, 7) are approximately given by

x = [¢ -+ yreer + O(*)] (E — 7). (3.7)

where the constant y is defined as

st {_L X c’(po)}. (3.8)
S 2%

When y > 0, the C*-characteristics emanating from points (0, 7) on the positive
t-axis will form an envelope located in the region # = cgf. This means that the
regions D; and D, overlap, thus giving rise to a region of multivaluedness in D;.
The envelope is determined from Eq. (3.6b) and the equation obtained after
differentiation of Eq. (3.6b) with respect to z. As we are only interested in the
location of the point (z,, ) on Cy;~ where the envelope begins (notice that at
(#,, £,) we have T = 0), it suffices to differentiate Eq. (3.7) with respect to . This
yields

0 = pregt — ¢ -+ O(7). (3.9)

Taking v = 0 in Egs. (3.7) and (3.9) we find

2y = Coly = K {—1— + c’(po)}_lz Z, (3.10)
r 0C vt
which is in agreement with Rudinger [2].

There is some experimental evidence that ¢'(p,) = 0 for blood vessels {[1], [2]).
Hence the occurrence of shock waves is to be expected in practice. Whether the
predicted values (3.10) for z, and {, are physiologically realistic is open to doubt.
A tapering of the tube and the inclusion of a friction term in the basic equations
will probably influence the results greatly. This shall be analyzed in the next
section.

Olgen and Shapiro [4] investigated both theoretically and experimentally
flows through a uniform distensible tube made of a rubber-like material obeying
the pressure-area relation

1 4,2
P =Po + 5 0% (1 - ?fT)’ (3.11)

and found that steepening effects were absent. Now (3.11) implies

— 1/2
o (1 — 2= B\
«(z) 0 ( 002 )

and so ¢'(py) = —(oce)t. Thus, y = 0 for the material obeying relation (3.11)
which confirms that no shock will form in this case.
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4. A General Wavefront Expansion

In this section we shall consider the more general case of flow through a
non-uniform elastic tube included the effect of friction. That is, we consider
Eqgs. (2.5) and (2.6) in the quarterplane «, ¢ = 0 under the same initial and
boundary conditions (3.3) as for the uniform-tube case in the preceding section.

Globally we have the same situation: a jump in the first derivatives of the
solution which propagates along the wavefront characteristic Cy+ through the
origin and which may become infinite at some point (v, £,) on Oy, so that we
have the formation of a shock at (g, t,). In contrast with the simpler problem of
Section 3, Cy* is not a straight line in general. The two characteristic forms of
Eqgs. (2.5) and (2.6) read

Pt (0 ) pe ol + 02 o) 0] + 220 F =0, @)
p(pﬂ x)

and hence the C*-characteristics are to be determined from

dx <
7 = + ¢e(p, x). (4.2)
The wavefront characteristic Cg+ separates the undisturbed region in the ,i-plane
from the disturbed one. Thus, along Cy+ we have » = 0 and p = p,. Introducing
the representation ¢ = T(x) for Oyt we find from Eq. (4.2):

T

[
T) = Of g 4.3)

Frequently we shall use the inverse representation z = X (¢) for Cg+, so X(T'(x)) = =.

An elementary exact solution like the simple-wave solution in Section 3 is not
possible in the case of Egs. (2.5) and (2.6). The additional terms in the charac-
teristic forms (4.1) make it impossible to integrate out one of the Riemann
variables. Hence we must resort to a different approach, namely the wavefront
expansion (cf. Whitham [3]). This type of expansion yields an exact equation for
the evolution in time of the jump in the first derivatives of p and » along the
wavefront characteristic Cyt.

The basic idea is as follows. If one introduces the variable v by

v =t— T(x), (4.4)

the quarterplane x,¢ = 0 is divided into an undisturbed region 7 << 0 (where
p = pp and v = 0) and a disturbed region 7 > 0 separated by the wavefront
characteristic Cy* upon which v = 0. In the immediate neighbourhood of Cy+ we
assume the following “wavefront expansions” for p and »:.

T<0: p=19py, v=0,
1
>0 p=mp+ pa(t) + Et%(t) + ey pl0)=7>0, (4.5)

o= w0+ 5 )+
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Note that p, and v, are a measure for the jump in the normal derivatives of p and
v, respectively, along Oyt and that p;(0) is determined by the boundary condition
(3.3b, ¢) at z = 0. Wavefront expansions like (4.5) provide a nice formal tool
to calculate the evolution along characteristics of discontinuities in derivatives of
solutions of hyperbolic equations. ,

Expansions (4.5) for v > 0 are inserted into the basic Eqgs. (2.5) and (2.6) and,
after expanding all terms in increasing powers of 7, the coefficients of successive
powers of 7 are equated to zero. Introducing the notations

C{Pm X(t)} == C(O)(t)= Cp{p(): X(t)} = Cp(o)(t): Cx{pm X(t>} = Cx(o)(t)’
Aplpo, X(0)} = 4, N0), Aulpo, X)) = 4,S90), 1[0, Alpe, X(0)}] = £,00),
noting that differentiations transform according to

2,2,08 2 pplo__L 2
of ot ox ot c(pgs &) T

and keeping in mind that the argument z has to be expanded everywhere as

v=X(t — 1) =X() — 7 X'(t) + --- = X(&) — welpo, X)) + -
= X(t) — TC(O)(t) + -,

we find that the coefficients of ° provide two equivalent equations relating p,
and v;:
pr — o, = 0, vy — L = 0. (4.6)

)

If the curve # = X () had not been a characteristie, Eqgs. (4.6) would have been
independent and then the only possible solution would have been p; = v, = 0.
This shows that jumps in first derivatives of the solution can only propagate
along characteristics.

The coefficients of 7 lead to the equations

A Oy,

C
»y’ + Pz — p(lo)l — 000y — 20¢, Opyvy A 90, Vv; + jp(o) =0, (4.7a)
2
o'+ v — %‘ — == (e, Y1 + po} = v, /0. (4.7b)
o c(0)

When we consider Eqs. (4.7) as a set of two inhomogeneous linear algebraic
equations for », and p, we see that the coefficient determinant equals zero (as in
Egs. (4.6)), and hence v, and p, can be eliminated completely from Eqgs. (4.7).
Using (4.6) to eliminate further v;, we obtain after some manipulation a single
ordinary differential equation of Riccati type for p,:

L PO p2 + Q) 1 =0, (4.8)
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where the coefficient functions P and @ are given by

1 (1 1 4,0
Rl o A oy Rl S
The initial condition for Eq. (4.8) is p,(0) = r.

Hq. (4.8) can be written as a linear equation for 1/p,,

4 _L)_ﬁ_?_p:o
dt \py ’

and hence the solution of Kq. (4.8) satisfying the initial condition p,(0) = 7 is
obtained in the form of the variation-of-constants formula

f 0 :
p11<t> B [':_ ‘+Of Pes) {eXP S f Q(""')d‘*'} ds] exp OfQ(s) ds. (4.10)

In general a numerical evaluation of (4.10) will be needed to investigate whether
P, becomes infinite for some value ¢, of the time ¢&. However, for a few special
cases the solution of Hq. (4.8) can be evaluated easily and the conditions for
shock formation together with the value of #, can be obtained explicitly. This will
be done in the next section.

5. Some Special Cases

8.1. Uniform Tube; Inviscid Flow

This is the problem of Section 3. We have f = O and 4 ,(p,z) = 0. So ¢,(p, ) =0
and c9(f) = ¢(p,) = ¢ = constant. The wavefront characteristic Cyf is given by
x = X(t) = ¢ot. The Ricecati Eq. (4.8) for p, reads in this case:

dp, L {1 ' 2 __
i, {Qco+c(po)}p1 = 0.

The solution of this equation which satisfies the initial condition p,(0) = r is
given by

Pl = s v = ). (5.1)

yrt Cy

We observe that p; becomes infinite in finite time if y > 0, and the time at which

this happens is #, == (yr)~*. These results agree with those obtained in Section 3.
5.2. Exponentially Tapered Tube; Inviscid Flow

In this case we have f = 0 and A(p, «) = e-24 (p) where § is a measure for the
taper of the tube: § > 0 corresponds to a tube which becomes narrower as a
increases, § << 0 to one which widens as z inereases. The remarkable feature of
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this case is that the wave velocity ¢ is independent of z:
2y — 4@
04’ (p)
This means that the wavefront characteristic Og+ is again the straight line
x = X(8) == col, ¢y = ¢(p,). Thus we have

Ax(o)
Ap(o)

= —focy?, c," = 0.
The Riceati equation for p; becomes

d 1 (1 , 1
W ) pet e = 0
G QG 2

with solution given by

If p, becomes infinite in finite time #; then

%zﬁzim@+&y (5.2)
¢ Peg 2y
From (5.2) it is seen that shock-wave formation occurs in finite time when
y >0, &>—1. (5.3)
Qyr

So shocks may develop even in a widening tube (8 << 0) provided y and r are
sufficiently large positive. For small values of |fcy/(y7)| the logarithm in (5.2) can
be expanded in a series, and we find for 4,:

_ 1] B By
b [1 ar T O(VW)]'

For 8 — 0 we find again the results for the uniform case. We observe that a
narrowing of the tube as z increases (§ > 0) leads to a more rapid shock formation
compared with the uniform case (§ = 0).

4.3. Uniform Tube; Flow With Friction

The effect of friction can be incorporated in the model by a choice of the
function f(v, 4) in the basic equations. We shall consider two possibilities:

laminar flow: [ = — By , (5.4)
/ 7/
turbulent flow: f= —0.1360 <—/Z—)1'4 ZL}/: sgn v, (5.5)

where y is the coefficient of viscosity of the fluid. The expressions (5.4) and (5.5)
represent the well-known friction coefficients for steady flow in a circular pipe
at low and high Reynolds number, respectively [1]. Of course one might object
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that we use steady-state results for a flow which is essentially non-steady. Never-
theless we believe that for the present problem relations (5.4) and (5.5) lead to a
reasonable picture of the effect of friction on shock-wave formation.

In the case of turbulent flow we find

fzz(o)(t) = fi7[07 A{Pm X(t)}] =0,

so within the framework of our theory turbulence has no influence on shock
formation. For laminar flow, however, we have

8mu
O () = ———,
g = — 2

and hence the Riccati equation for p, becomes

d 1 {1 , 4
B ol =0,
G QG o4,

We find for p,:
210 r 04, 4y 04,

This implies that a shock will develop in finite time #,,

_ A4 4
% dmp odgyr
when
Ayt 1, y > 0.
edgyr

For small values of u/(044yr) we have

i 2rp u?
=11 L0 i
Cor { + 0dgyr + ( Q* Ay )}

which shows that friction delays shock-wave formation.
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