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Summary. This paper presents an approximate three-dimensional analytical solution to the elastic 
stress field of a penny-shaped crack and a spherical inhomogeneity embedded in an infinite and iso- 
tropic matrix. The body is subjected to an uniaxial tension applied at  infinity. The inhomogeneity is 
also isotropic but has different elastic modnli from the matrix. The interaction between the crack 
and the inhomogeneity is treated by the superposition principle of elasticity theory and Eshelby's 
equivalent inclusion method. The stress intensity factor at  the boundary of the penny-shaped crack 
and the stress field inside the inhomogeneity are evaluated in the form of a series which involves 
the ratio of the radii of the spherical inhomogeneity and the crack to the distance between the centers 
of inhomogeneity and crack. Numerical calculations are carried out and show the variation of the 
stress intensity factor with the configuration and the elastic properties of the matrix and the in- 
homogeneity. 

1 Introduction 

W i t h  the  increas ing use of composi te  mate r i a l s  and  the accompany ing  need to under s t and  

the i r  f rac ture  behavior  in more  detai l ,  a g rea t  deal  of efforts has been devo ted  to s tudy ing  

the in te rac t ion  be tween the crack and  the  inhomogene i ty  in an  infini te  medium.  Because of 

the  m a t h e m a t i c a l  difficult ies mos t  of the  s tudies  have deal t  wi th  two-dimens ional  p rob-  

lems. The in te rac t ion  be tween a crack and  a circular  inclusion in a sheet  under  tens ion was 

s tud ied  b y  T a m a t e  [1] and  an exac t  solut ion was obta ined .  Hsu  and  S h i v a k u m a r  [2] in- 

ves t iga ted  the  in te rac t ion  be tween an elast ic  circular  inclusion and  two symmet r i ca l ly  

p laced  eol l inear  cracks.  The p rob lem of a crack loca ted  be tween two r ig id  inclusions was 

s tud ied  b y  Sendecky j  [3]. All  these problems,  however,  were l imi ted  to two-dimensional  and  

were t r e a t ed  b y  the  complex  var iab le  method .  A few papers  concerned with  the  in te rac t ion  

of a crack and  a c a v i t y  (a special  k ind  of inclusion) in three-d imens ional  space have been 

publ ished.  S r ivas t ava  and  Maha jan  [4] de te rmined  the stress d i s t r ibu t ion  in an infini te  solid 

conta in ing  a spher ical  c a v i t y  and  an ex te rna l  crack.  H i r a l  and  Sa take  [5] solved the p rob lem 

involv ing  a p e n n y - s h a p e d  crack loca ted  between two spher ical  cavit ies  in an infini te  solid. 

These resul ts  were ob ta ined  ma in ly  b y  numer ica l  compu ta t ion  and  the  stress i n t ens i ty  

fac tor  a t  the  p e n n y - s h a p e d  crack b o u n d a r y  was shown graphical ly .  

The ob jec t ive  of th is  p a p e r  is to de te rmine  t h e s t r e s s  field and  the  stress in t ens i ty  fac tor  

for a p e n n y - s h a p e d  crack loca ted  near  a spher ica l  i nhomogene i ty  in an  inf ini te  isot ropic  

m a t r i x  wi th  elast ic  modul i  20 and/~0. The inhomogene i ty  is also isotropie  wi th  the  radius  a 

and  elast ic  modul i  21, #I. The center  of the  spher ical  i nhomogene i ty  is loca ted  in the  same 
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Fig. 1. The theoretical model 

plane as the penny-shaped crack which has the radius c. The matr ix  is under uniaxial 
o constant at  infinity (see Fig. 1 a). tension in the z-direction applied at  infinity, i.e. a~ = 

Two coordinate systems (x, y, z) and (2, ~, g) are used, of which the origins are situated at 
the centers of the sphere and the penny-shaped crack, respectively. These two coordinate 
systems are related by 

~2~x,  ~ ] = y - A ,  g-=z,  

where A is the distance between the centers of the inhomogeneity and the crack which is 
located in z : 0 plane. A dimensionless quanti ty d is introduced to be equal to max (a, c)/A. 
In  this paper the stress field inside the spherical inhomogeneity is evaluated by dropping the 
terms with the fifth or higher order of d. The stress intensity factor at  the boundary of the 
crack is obtained by  neglecting the terms with the sixth or higher order of ~. As a result, the 
stress inside the spherical inhomogeneity is a linear function of the coordinates. Moschovidis 
and Mura [6] showed a numerical result on the problem of two ellipsoidal inhomogeneities 
in an infinite solid. They determined tha t  the interaction between the inhomogeneities 
becomes negligible if a/A is less than 1/4. Numerical examples of our solutions indicate a 
similar result on the interaction. 

2 $uperposition process 

Since the problem is symmetric about x--y plane, the shear stresses on the plane z = 0 
vanish. The superposition principle of the elasticity theory is adopted to determine the stress 
distribution of the problem. When the crack is removed, the stress distribution at the crack 
domain in the z-direction is supposed to be a~. The original problem shown in Fig. 1 a is 
decomposed into the sum of Fig. 1 b and Fig. 1 c. We are to find the stress G~z which is 
applied on the top and the bot tom surfaces of the crack in Fig. 1 e. 

The stress field ~ ]  inside the inhomogeneity in Fig. l b  is determined by Eshelby [7] as 
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i, [ 2  /h 
% = ~o(/~ 2-~o) + ~o 

1 ~1 ~ 0 
+ --5-~0(~1 -- ~0) + ~OJ % '  

where n~, #i and no,/~0 are the bulk and shear moduli of the inhomogeneity and the matrix, 

respectively, and 

1 1 §  2 4 - -  5vo 
~o 3 1 - - v o  15 1 - -~o  

in which v0 is Poisson's ratio of the matrix. 

The stress distribution outside the inhomogeneity in Fig. 1 b is rather complex. An alter- 

native method proposed by Tanaka and Mura [8] to evaluate the elastic stress distribution 

for points exterior to the inhomogeneity is adopted. The process of solving the problem is 

illustrated in Fig. 2. The figure shows that  the problem of a spherical inhomogeneity in a 

matrix under a~ i applied at infinity is the sum of the problem of a spherical void in the 
~ d i~ The stress distribution matrix under ~ij - ~ff an the problem of an infinite body under aii" 

igt 
in Fig. 2 b due to aij - ~ii apphed at infinity is given by 

0 in  in  
Gz  z z Gz z - -  ~ z z  ~ f f x x  - - -  (Yyy ~ - - t Y x x "  

I 0 We decompose this stress distribution into a uniaxial tension in z-direction as azz ~- azz 

e 2 2 i~ By using Timoshenko's 
_ C~zzin _~ 6x xin and a hydrostatic pressure azz ~- axx = auy = - a x x .  

elastic solution [9] of the problem of a spherical void in an infinite body under uniaxial 

tension and by adding the stress field of the hydrostatic pressure to the elastic solution, we 

obtain the stress a~ on the z = 0 plane for Fig. 2b as 

(Yzz(7, ~-- O) = (~]0 - -  1 )  ( # 1  - -  /AO) 1 ~ -  _~_ - -  0 

fl0(~ tto) ~ tto 2(7 -- 5Vo) 2(7 5vo) %~ 

- ][ 1 (-:;1 1 #1 gl 1 @ -~ %0, 
+ 3  0 ( # 1 - ~ 0 ) + # 0  ~ 0 ( ~ 1 - ~ 0 ) + ~ 0  

where r = ~/~ + y2. 

a 

+ 

b c 

Fig. 2. Ta.naka-Mura's alternative method 
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B y  combining Fig. 2b and Fig. 2e, r a t  z = 0 in Fig. 2a or Fig. l b  ontside the in- 
homogenei ty  is obtained as 

%cz(z = O) = cr~ 1 -t- o(/X, - - ; O )  @ SO --  gCO(gl --'~O) -~- NO 

_ + * - 1 , * - , o , ( # }  4 - -  5~1} (~0 1) (/21 /,tO) ] 3 

+ ~ -- g0) ~0(~, - e0) + ~0 j ~ ( ~  -eo) J e0 
f 

This is the stress o~ applied to the top and the bo t tom surfaces of the crack in Fig. 1 c. We 

now change the coordinate system from (x, y, z) to (2, ~, g), so tha t  r = ~x 2 @ (~ + A) ~. 
When the coordinates of a point  (2, y) are on the surface of the crack, i.e., 22 @ ~ = ~ ~ c ~, 
we m ay  express 

= 1-~ -3--~ @ 2 1 -  3 ~ + 0(5~), 

So the stress %~ on the crack surface is rewri t ten as 

0 1 + A  1 3 A 2 A ~ + - 2 - - ~  + B  + 0 ( d )  ~, (1) % ( 2  = O) = % 

where 

1 (  #1 ~1 ) 4 -  5Vo ( f l o -  l ) ( ~ - / ~ o )  (2) 
: -- ~- 2(7 5Vo) flo(th tto) § ~to' 

B = (3) 
/~0(/s - -  ~0 )  + [AO 

A, B are constants which are related to the elastic moduli of the matrix and the inhomo- 

geneity. 

3 The equivalent inclusion method 

We now determine the solution of Fig. 1 c by  adopt ing Eshelby 's  equivalent  inclusion 
method [7]. The crack and the inhomogenei ty  are t reated to have the same elastic moduli  

�9 c ,s inside the crack and as the mat r ix  by  introducing so called eigenstrains [10] qi and sij  

the domain of the spherical inhomogeneity,  respectively. The eigenstrains for the sphere 
and the crack are to satisfy the following equations:  

l 0 *s = cij~l(%,t + %,~ eke), 
1 0 pt 0 0 pt *s o r  Cijkl(skl + %t) : cijkt(%,t 4- ekt -- %t)  for sphere,  (4) 

0 0 --0 - -p t  *c = qi~l(uk.l + Uk,l - % l ) ,  

o r  0 o -o - p t  , c  = C~jkl(%l @ %1 -- %l) for crack,  (5) 

where c~)~ and c~ are the elastic moduli of the inhomogeneity and the matrix, respec- 

tively, uk ~ is the displacement inside the spherical inclusion domain when the inhomo- 

geneity is replaced by the same material as the matrix while the crack still exists. ~k ~ is the 

displacement inside the crack site when the crack is filled by the same material as the matrix 

while the inhomogeneity still exists. The real displacements inside the spherical inclusion 
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and the crack are uk ~ + uk pt and ~0  + ~vt, respectively. Because of the interaction between 
0 a n d  - o  the crack and the sphere, %,z %,~ are no longer uniform. Consequently, e "~ and s *s are 

no t  uniform either. They  are a funct ion of the position vector. 

Suppose the eigenstrain ei'/~ inside the crack is determined, when the spherical inhomo- 

genei ty is no t  present,  the displacement field caused by  ei*] ~ in the mat r ix  is given by  a 

sm-face integral:  

0 *c$/ u?(~) = ~ (;/ij(:r - ~') cjktmq,, k & ' ,  (6) 
8r 

where Gq(~ - V) is Green's tensor function and S,  is the surface of the  crack. 

Green's funct ion in an infinite body  m a y  be wri t ten for our problem as 

- -  A 1 A~ 

_ 3 -- 4% , and A2 = 1 We let the domain for where R ~= =r - V, A1 - -  16~]~o(1 _ %) 16~/~o(1 _ %) 

the penny-shaped  crack be 

2,2 :~,2 g,2 
c - - 7 @ ~ + ~ < l a a  ~" = and an-->0. 

Equa t ion  (6) m a y  thus be wri t ten as 

  0te) = lira f f Ill/ aa---~O (~J - -  X)U + (9' - -  Y)U + (aaV1 --  (~"= + Y ' 2 ) / c 2  - -  z)= 

' 1 
Aldi]  

~i2'  -- 2) 2 + (Y' -- Y)"~ + (%1/1 -- (~,2 + g,~)l~, + ~)2 

(2' 2) ~ + (~' -- ff)~ + (aa]/1 -- (2 '2 + ~m)/cU -- ~)~ 

-- A2Ri t l i  cialn, q m dx dy  
~, _ ~)~ + (y' - ~)~ + (~ l /~  - (~,~ + ~'~)I~, + 

9 

6 1 / u  (~"2 + y'~,)lc ~ } o . c  

J 

where D is the domain:  ~'~ -b- Y'~ ~ c *. 
The displacement .~i0(~) in Eq.  (7) is under  coordinate system (~, 9, 5). When  ~ is inside 

the spherical domain,  we change the coordinate system to (x, y, z) as 

~ . = x ,  ~ = y - - d ,  ~ : z ,  and x ~ + y ~ + z  ~ a 2 .  

Note  tha t  the integrat ion is still on the original coordinate system and ~'~ + y'= ~< c =, so we 

h a v e  

1 1 [ y y' ~'~ + r ~ x2' + yy,~-a/.2 
[ ( ~ '  - -  2 )2  ._}_ (~t  - -  y )2  _[_ ~213/2 Z] 3 \1 -- 2 -~- -[- 2 ~ + A2 2 = _  _ _  ~ /  

i l + a  y - a - ~ -  + o ( a  ~) (8) 
= 5 ~  D- 
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- -  J 

- -  + O(d~) ,  R~ = r~ - -  ~ '  - -  A d ~ .  (9) 
[(~' - e)~ + (~' - ,~)~ + ~]~/~ A ~ 

RiR~. 
I f  i or j is equal to 2, ~ m Eq.  (9) has a t e rm with the order of ~ .  Subst i tu t ing Eq.  (8) 

and  (9) into Eq.  (7), we obta in  

u,~ = l i m  f f I 2 A ~ 3 ~ i ( 1 + 3  y _~)  R,R~] z ]// ff:,~ + ff,z 

D 

0 *~ - !  (10) 

Here  v is inside the  spherical domain.  All the t e rms  with the order ~5 or higher are dropped 
Z 

in the above equation.  Since there  is a t e rm  ~ appear ing  in the in tegra t ion of Eq.  (10) 

which has the  order of 6 s, we only need to main ta in  the zeroth and first  order te rms  of 6 in 

*~ La te r  we will show el m,c to get uiO(r), el ~,e is de termined b y  a~z and  the effect caused by  sl~. 
,s *~ has the order of d 6 and thus neglected in determining ui~ t ha t  the effect of S~m on etm 

c 0 0 *c with the zeroth F rom Eq.  (1), a~ ~- a~z ~- 0(6~), which means  tha t  only az~ can offer e m 
order tern of ~. 

0 exer ted  on the  According to Mura [10], the eigenstrain caused by  a constant  stress azz 
top and  the bo t t om surfaces of a penny-shaped  crack is given by  

2(1 C ~c constant  = ~* o and other  ei* c -  0. lira a3saa = - -  az~ 
aa-+O [~0 ~ 

/ 

Subst i tu t ing this result  into Eq.  (10), we obtain 

l/i ' t t i~ ") = 2AIO~ i 1 + 3 ~ -- 3 + 6A2 ~ - ~  c ~ 

x (20 + 2m) e*~3 d~' d~' + 0(~ 5) 

__ o 1 -  % :z#~(f---'-2vo) a~z -~ 1 q- 3 zoo3 -- d~z + 0((5~). (11) 

F rom the above equation,  we can easily find tha t  u~,t(r ) is a linear funct ion of the coordi- 
�9 s determined b y  Eq.  (4) is also a nares. Sendeckyi  [11] and Moschovidis [121 showed tha t  ekl 

linear funct ion of the coordinates as 

%l*s = B~t + Betmxm, (12) 

*~ by where Bkt and Bk,,, are constant  tensors, u~.~ in Eq. (4) is related to ekz 

pt  
"lt i, k 

1 
[(Btu @ 2Bitt) xk @ (Bitt -]- Bttj) xi(Sik @ (B~u @ Buk) xi 

35(1 -- ~'o) 

P0 
+ (Bji~ § 2Bjki + Bkij) xj] 4- - -  (B,.,.~xk + B,.,.kxi + B,.,.~z~Oik) 

5(1 -- %) 
2 

@ --~ (BiuXk -+-Bu~xl + Biktxt) + Sij~Bjl ,  (13) 
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in which S~jel is Eshelby's tensor for a sphere. After substituting Eqs, (11), (12) and (13) 
into Eq. (4), we compare the constant terms on both sides of Eq. (4) and find that  

[ 0 1 /t~l /b~O - -  ~ '~1~ ~_0 A3 -~-  fizz ~-  0(~5)  ' (14) 
B l l  : B22 ~-  "3- (121 - -  /20) fi0 -tl- //0 (Zl - -  Z0) 0r -~ Z0 

~ ,  - m + . . . .  A3 ~ -  % + O(O~). (15) 

(1 --  vo) (3 --  4Vo) 
Here A~ = , and other B o- ~ 0. Comparing the coefficients of the linear 

3~F0(1 -- 2v0) 
terms on both sides of Eq. (2), after the same substitution, we can determine B~u. I t  is 
found that  only Bt~2, B ~ ,  B~s2, B~z and Bss~ are not zero. The general expressions for the 
coefficients B~,~ are too long to be included in this paper. If we are to take v~ = v0 - 1/3, 
and let ~ = F~/F0, we can get. a simplified expression as 

-- 57 9 73 9 57 - 
1 + ~ ( ~ - -  1) T 4 ( ~ -  1) 2 + ~ ( ~ -  1) ] ]  1 + ~ 5 ( ~ - -  1) 

37 9 15 13 7 
2 + ~ - ~ ( ~ - -  1) ] ~ ( ~ - -  1) 1 + ~ ( ~ - -  1) ~-~(~-- 1) 1 + ] ~ ( ~ - -  1) 

7 13 15 9 37 
I + ~ - ~ ( V - -  1 ) ~ ( ~ ] - -  1) I + ] - ~ ( V - -  1) ~ ( V - -  1) 2 + ~ - 5 ( V - - 1 )  

27 44 27 
~6 (~ - -  1) 2 + ~ ( ~ - -  1) ~ ( V - -  1) 0 0 

27 27 27 
0 0 7-~( ~ -  1) 2 + ~ - 0 ( r / - -  1) ~ ( ~ - -  1) 

211 / 

X Bz22 = A~crz~ 

Be32 

[ij 5 

10 

in which 

2,, 
A , =  

This result will be used when we calculate the numerical examples. Once u~,~ is determined 
through Eq. (13) after B~ i and B~k are obtained, the real stress field inside the domain of 
the spherical inhomogeneity can be calculated easily by 

s 1 0 p t  1 0 p t  
% -- %u(%t + %3 = %kz(uij + ucj), 

in which ul 0 is given in Eq. (11). We will discuss in detail the stress field inside the inhomo- 

geneity in Section 5. 
We now consider the effect of the inhomogeneity on the crack since we have gotten e~ as 

in Eq. (12). By the same equivalent inclusion method we used earlier, first we determine the 
-0 in the crack domain when the crack is filled by the same material as the matrix. strain e~i 

-0 may be divided into two component parts as The strain %. 

-o = ~o] + ~97 
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where ~o/1 is due to the stress a~z exerted on the crack surface and ~i~ is caused by  the in- 

homogeneity. The two component strains are given by  

c ~0 
"01 ~zz -01 -01 c 
~33 ~ " ~ 0  ~ 811 ~ 822 ~ -  E o  ffzz~ 

-o2 1 -01  = + 

where 

~i~  r G~i(r , o ,~ = -- r ) c)kt~et~n~ ds'. (16) 
Ss ~ 

Ss' is the surface of the spherical inclusion: x ' e +  y ' ~ +  z ' e ~  a ~, and G i i ( r -  r') is 
Green's tensor function. From the expressions of Bii and Bii~ we know that. e~m*S t~'-as the order 
of 8 3. For the solution of the crack we keep the accuracy to the order of 6 ~. So we need to 
keep the terms containing the second order of ~ in Gii(r - r') to obtain ~i~.a through Eq. (16). 
When r is inside the crack domain, we change the coordinates from (x, y, z) to (2, if, 5) as 

x = ~ ,  y : ~ + d ,  z =  ~, and c ~ + a 8  ~=<1 

So we have 

while a 3 - > 0 .  

, , 1 ( ,  
= l r - r ' l = ~  1 + 7 - 2  +0(83) ,  

R~Rj RIRj  

R 3 

1 
- -  + 0(~ 3) = ~ [8~(~j - r/) + 5 ~ ( ~  - r~')] + 0(83), 

and Green's tensor function is changed into 

A 1  
Gi~(r - r') = - f f  

A1 

A 

Substituting this 

Ss ~ 

+ 0(86), 

A 2 

1 + --~ -- 2 8ii + ~ [Oi2(~j" -- r'j) + 8j2(~i -- ri')] + 0(83). 

expression and Eq. (12) into Eq. (16), we have 

__ __ __ , eOklmBtmTOc 1 + -h-- 2 + --27 [8i2(~j r/) + ,~j~(~i r~ )] ,dS' 

now we can easily get, 

--02 ~ [ A1 A2 ] o ds, ~_0(86) 
u i j  =- - - ~  ~j2~ip + " - 5  (8i28pj + 8p28ii) Cj~tmBtmnk 

Ss" 

(AlSj~Sip + A28io.8pi + A28p.281i) o 1 r : Cj~o~B~.,~ ~ nk ds' + 0(66) : 0(86). (17) 

Ss t 

The above result shows that  after the superposition process, the effect of the inhomogeneity 
on the crack in Fig. 1 c has the order of 0(56) and can be neglected. This conclusion is used 
in Section 4 to determine the stress intensity factor on the boundary of the crack. 
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4 The stress intensity factor of the crack 

As we discussed above, the effect of the spherical inhomogeneity on the crack in Fig. l c  
can be neglected. Therefore the stress intensity factor on the crack boundary is determhmd 

e e is a quadratic function of the coordinates by r which is given in Eq. (1). The stress %~ 
and we divide it into three parts, 

c e0 cl  c2 

c about ~-axis : co is the symmetric part  of %z where %~ 

co o I + A  1 . + B  
a z z  = ~ z z  2 ~-2  " 

co is The stress intensity factor K1 e~ caused by  azz 

0 1 + A 1 --  + B (18) K I  ~ = 2 % - ~  

cl is the linear part  of ~ and expressed by (T zz 

cl 3AaOz~ 

Following Mura [10], the stress intensity factor K I  cl caused by o'~lz i s  

- ~ c  ( @ ) 3 g  (19) K / e l =  2 A(r~ - - j .  

The stress az~C2 is the quadratic part  of g~r and is given by 

c2 15 ( @ ) 8  0 (~_)~ 
(~ zz = --~ A %~ . 

~2 into We change the expression of azz 

~ -~ % ~ [ ( ~  + y~) - ( ~  - ~ ) ]  

= __ o -- A (:~2 _ ~2). 

According to Kassir and Sih [13], the second term in a~ez gives rise to the stress intensity 
factor 

24: [ a ' l  8 o 1 
A 

The first term in azzc2 is symmetric about the crack and gives rise to the stress intensity 
factor 

3 2 
K / '  5A o 

~ -  ~ZZ " 

So the stress intensity factor caused by a~ is 

3 2 24 1 a 
o 5 K I  c2 = K I '  -}- ~( I"  = A ~z, 5 A n (y'~ - ~ ' )  " 

But, since 5;2 + ~2 = c z, we may rewrite the above equation as 

1 a 3 o 
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The stress intensity factor Kx caused by o~ is given by 

f~I ~" a~I cO --  K1 cl @ K I  c2. (21) 

Substituting Eqs. (18), (19) and (20) into Eq. (21), we obtain the stress intensity factor on 
the crack boundary as 

- -  4 

-- A ~-- ~- ~ -A -b 0(d ~) (22) 

where A, B are constants given in Eq. (2) and Eq. (3). Since the stress intensity factor in 
Fig. lb  is zero, the stress intensity factor for our original problem Fig. l a  is given by 
Eq. (22). 

5 The stress field inside the inhomogeneity 

In Section 3, we determined the stress field inside the spherical inhomogeneity in Fig. lc  
to be: 
(Yi~ 0 0 pt *s 

= ~ jk z (u i4  -4- v i , j  - q j  ) 

where ui ~ sit and up,} are given by Eqs. (11), (12) and (13). The general expression of a~} is 
too long to be written down here. If we assume v! = v0 = 1/3 for the purpose of obtaining 
numerical results and 21/20 = #i/t'~0 = U, the stress field q~ thus becomes 

x 8 8 
~21 = ~-~  ~~ 7 '  ~23 = ~ ~~ ~- ,  ~"~3 = o,  

) (Y~I = " ~  fizz ~ + ~01 , 

20 ~  S 3 y  ) 
4~ =: ~ ~ 7 + So~ , 

where S~ (i from 1 to 5) and S01, S02 are constants related only to U by 

1 

1 
Se = 3 @ ~-~ (13J~n2 + 32B222 + 13-B332 -~- 157.Bm ~- 157J~233), 

1 
Sa = 6 q- 7-0 (--21/~u2 + 5B222 -- 66B33~ -~ 82B2~ + 101B233), 

1 

1 1 
s~ = - - g  + ~ ( ~ m  + 1 4 ~  + 1 4 ~  + lO~m - 2 ~ ) ,  

16 U-- 1 5(V-- 1) 16 U-- 1 ~7-- 1 ,  
So~ : 5 2r] + 1 7 U + 8 ' So~ = 1 -~- 5 2 U + 1 -[- 10 
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in which Bl12,  B211, "J~222, B233 and/~s3s are given by  

- 57 9 73 9 
1 +~-0(0 - -  1) ~ ( 0 - -  1) 2+~-~(~]--  1) l--4 

37 9 15 13 
2 + 3 - ~ ( 0 - -  1) ~-~(0--  1) 1-]- ]-~ (0 -- 1) ~ ( 0 - -  1) 

7 13 15 9 
+i-o  ( ~ -  1) gg(O-- 1) l + i " i  ( ~ -  1) i4 ( ~ -  1) 
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1 + i-O (v -- 1) 
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2 +gg ( ~ -  1) 
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By adding the stress field inside the domain of the inhomogeneity shown on Fig. 1 b and the 

stress expressions given above, we obtain the stress field inside the spherical inhomogeneity 

for our original problem of Fig. 1 a as 

- -  -L" -3-~- ~ S!  -~-  -~- ~,~01 , 

)] - - + - ~  S ~ - + S 0 s  , 

- -  + ~ s~ 7 + s0~ , 

s ~ - ,  ~ = 0  0"23 ~ ~ 0.13 " 

(23) 

(2~) 

(25) 

(26) 

0.n=0.~- ~ + 1 7~ + 8  

8 0 [ ~ 5~ 
% ~ - :  %[2~]  + 1 7~ + 8  

% 3 =  0.zz + % / +  8 

6 :Numerical examples  

For all our numerical examples, we let the radius c of the penny-shaped crack be one-half 

of the radius of the spherical inhomogeneity, and assume v1 = v0 ---- 1/3, 0 = ).i/2o =/A//~o. 
o --__ c o n s t a n t .  The stress field at  infinity is az~ 

When the crack touches the inhomogeneity, the interaction between them becomes the 

largest. Figure 3 shows the variation of KI /Kx  ~ with the position factor ~/A when A = a 
+ c ---- 3c, i.e. the crack touches the inhomogeneity. KI  ~ is the stress intensity factor on the 
crack boundary without the inhomogeneity. ~ varies from --c to c. When the inhomo- 
geneity is rigid, tha t  is 0 ---- o0, Kt  on the crack boundary decreases more than 20% on 
average compared with KI  ~ I f  ~] = 3, K x decreases about  10~o compared with K1 ~ I f  
0 = 1/3, tha t  is, the inhomogeneity is softer than the matrix,  K1 increases more than 10~o. 
I f  the inhomogeneity is a cavity, tha t  is, 0 ---- 0, the t ( i  value undergoes the greatest change 

with the maximum of 32.5% at y/A =- --c. 
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Fig. 8. The SIF at the boundary of the crack when the crack touches the inhomogeneity 
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Fig. 4. The S~F at the left tip of the crack 
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As Fig. 3 shows, the greatest  increase or decrease of K• ~ occurs at  the left crack tip 

(~ = - c ) .  KdK1  ~ at  this point  f luctuates with ~7 and A as shown in Fig. 4. For  A = a + c, 

tha t  is, when the crack touches the inhomogeneity,  K• ~ varies f rom 1.33 for ~ = 0 to 

0.82 for ~ = 4. When  A increases, the interaction between the crack and the inhomogenei ty  

decreases. When  A = 2(a + c), K d K I  ~ remains almost  constant  at  1 for all values of ~. I n  

other  words, the interact ion between the crack and the inhomogenei ty  is negligible when 

A = 2(a § c). A similar behavior  was observed by  Moschovidis and Mura [6] with two 

cavities problems. 
Wi thou t  the crack, the stress field inside the inhomogenei ty  is constant .  I t  is, however, 

a linear funct ion of the coordinate y with the crack given by  Eqs. (23) through (26). Because 

the stress exerted at  infinity is only  (7~ ~ and a~2 are much smaller than 6~3 , the max imum 

value of (7~3 is reached at point  (0, a, 0), which is the nearest  point  to the crack. Table 1 

shows the variat ion of ' ~ ~ is the stress inside the inhomo- %J(raa with ~ and A. Note that ~a3 

geneity without the crack. 

Table 1 shows that the effect of the crack on the inhomogeneity is basically deter- 

mined by the distance A. 

Because of the crack, our problem is not symmetric about the Z-axis. Shear stress (7~1 

and (7~a exist inside the inhomogeneity. Both of them have the order of 34 and are much 

smaller than 0 (7Z2" 

Some special expressions of a~) are given in the following: 

~ = ~ '  (711 - -  (TZZ 

X Z 
s -- 0.073 86~,  8 = O. " = O'O159@z~ -~-' %a -~--, (71a (721 

~] = -  3 ,  f i l l  ~ Gzz 

(733 ---  Gzz 

1 
~ = ~ ,  

X 
- 4  0 (7218 = --2.336 X 10 (7zz --,A 

X 
s 1 0 = 0.0 838%~ (721 " ~ ' ~  

8 ~ O .  .~ : 0 .03395a~ ~ - ,  a13 (723 

~8 ~ 0 .  s = 9.274 X lO-aaz~ - j  ~,_a (723 
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Table 1. The variation of s in %3/%3 with ~ and A 

A 

co 3 1/3 

a + c 1.4127 1.3951 1.4623 
2a 1.147 9 1.139 8 1.1316 
2(a T c) 1.0360 1.0344 1.0202 
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