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Summary. The nonlinear transfer behaviour of an assembled structure such as a large lightweight space 
structure is caused by the nonlinear influence of structural connections. Bolted or riveted joints are the 
primary source of damping compared to material damping, if no special damping treatment is added to the 
structure. Simulation of this damping amount is very important in the design phase of a structure. Several 
well known lumped parameter joint models used in the past to describe the dynamic transfer behaviour of 
isolated joints by Coulomb friction elements are capable of describing global states of slip and stick only. 

The present paper investigates the influence of joints by a mixed experimental and numerical strategy. 
A detailed Finite Element model is established to provide understanding of different slip-stick mechanisms in 
the contact area. An advanced lumped parameter model is developed and identified by experimental 
investigations for an isolated bolted joint. This model is implemented in a Finite Element program for 
calculating the dynamic response of assembled structures incorporating the influence of micro- and 
macroslip of several bolted joints. 

List of symbols 

a acceleration 
Eo, Ee material moduli 
Fo mass weighted excitation force 
F t tangential joint force 
F generalized force 
F*xc excitation force 
F~xc amplitude of excitation force 
Fco spring element force 
FRo friction element force 
KA, KB normal stiffness 
K t tangential stiffness 
L length of contact area 
M t transmitted joint torque 
/'F/re d reduced mass 
p normal contact pressure 
r effective radius 
q generalized coordinate 
z internal variable 
x coordinate in the contact area 
Au relative displacement 
At~ relative velocity 
Aq~ relative angle 
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# friction coefficient 
0 damping ratio 
2 material parameter 
ao equivalent slip limit 

microslip parameter 
f2 excitation frequency 

1 Introduction 

Proper design of a dynamically loaded structure has to take the nonlinear transfer behaviour of 
joints into account in order to avoid significant deviations between model simulations and real 
structural response. The influence of joints on structural dynamics depends on the individual 
joint design. E.g. bolted lap joints cause local stiffness and damping changes when connecting rod 
or beam structures. This is why the existence of joints leads to small changes of resonance 
frequencies and the reduction of vibration amplitudes associated with the nonlinear effects. The 
increase of equivalent damping due to joints is significant in structures with small material 
damping [2], if no additional damping treatment is added to a structure. The actual normal 
contact pressure distribution in a dynamically loaded lap joint is not uniform in the interface [3]. 
Depending on the transmitted load, the contact interface is divided into stick and slip zones. 
Before gross slip behaviour occurs, the so called macroslip, only local slip exists, the so called 
microslip [5]. The present paper investigates the influence of joints on the dynamic behaviour by 
a mixed experimental and numerical strategy. The first step is to measure the dynamic behaviour 
of an isolated joint. The joint is implemented into a two mass resonator to avoid the influence of 
connected structures. Different degrees of freedom were analyzed. A detailed Finite Element 
model of the isolated bolted lap-joint is established to provide deeper insight into the physics of 
the contact area and allows proper interpretation of the measured results. Then an advanced 
lumped parameter model is developed and implemented as a nonlinear substructure modul into 
a Finite Element program. Finally the response of a space structure such as a satellite mast with 
several bolted joints is calculated. A comparison with an equivalent linear model shows the 
significance of the nonlinear influence of the connections. 

2 Experimental investigation of isolated joints 

By implementing the lap joint between two lumped masses with an additional flexure spring so 
that the system is a resonator, the isolation of the joint is achieved and different modes of joint 
deformation can be analyzed separately. Longitudinal and torsional vibrations are excited and 
measured at resonance. 

2.1 Longitudinal resonator 

The two parts of the resonator are bolted together at the lap joint and suspended by flexible nylon 
cords at each center of gravity. The attachment location of the shaker is shown in Fig. 2. A flexible 
connecting rod placed between the excitation point at the force pickup and the shaker assures 
shear force free excitation. The joint normal pressure is measured by a strain gauge mounted on 
the joint bolt. The accelerations al(t) and aa(t), and the driving force are measured by piezo- 
electric pickups. The tangential force Ft is equivalent to the product of the acceleration a2(t) and 
the mass of the right part of the resonator. For the force-diplacement hysteresis loops, a double 



Nonlinear dynamics of structures assembled by bolted joints 171 

Fig. 1. Experimental setup with longitudinal resonator and isolated lap joint 

integration of the acceleration signals is necessary to obtain displacements. Because of super- 
imposed noise in the measured signals, the integration by the amplifier does not lead to sufficient 
results. Time averaging of the signals [2] smoothens the results but creates small systematic errors 
in the displacements signals. The chosen procedure here is to cut off the low frequency noise after 
transformation into the frequency domain by FFT. The remaining signals are integrated twice in 
frequency domain, leading subsequently to the signals in time domain by inverse Fourier 
transformation. The measured hysteresis loops in Fig. 3 correspond to an excitation frequency of 
460 Hz and a joint interface pressure of p = 0.25 N/ram 2. The hysteresis curves in Fig. 3 are 
plotted for a measuring time of 0.5 s which is equivalent to 233 vibration periods. Without 
additional time averaging each hysteresis shows only negligible noise. For large excitation forces, 
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Fig. 3. Measured hysteresis of the 
longitudinal resonator 

Fig. 4. Measured dissipated work 
of the longitudinal resonator 

slip and stick behaviour  can be well distinguished by the two different slopes. In the range of 

excitation force Fex~ between 85 N and 169 N, the transit ion from microslip to macrosl ip takes 

place. Excitat ion forces below the lower limit lead to sharp corners of the hysteresis when the 

relative velocity changes sign. In the transit ion range between micro- and macroslip, the 

hysteresis is rounded at the corners. It can be noticed as well that  macrosl ip leads to a slight 

increase of the t ransmit ted force with growing relative displacement. Impor t an t  conclusions can 

be drawn from the energy dissipation per vibrat ion cycle. The area of the closed hysteresis loop 

for periodic signals representing dissipated work  is plot ted in Fig. 4 versus the ampli tude of the 

relative displacement. The nearly straight line por t ion  represents gross slip behaviour  in the 

range of large excitation forces. In the range of smaller excitation forces between 20 N and 126 N, 

the dissipated work shows an increasing slope with increasing relative displacement. 

2.2 Torsional resonator 

Frequently,  bol ted connections have to t ransmit  bending moments  as well as normal  forces and 

shear forces. Torques are t ransmit ted in bol ted flange connections. 

To isolate the transmission of such moments,  a torsional  resonator  was designed with an 

isolated bolted jo int  (Fig. 5). The resonator  is suspended by a nylon cord fixed at the top in the 
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Fig. 5. Resonator with torsional excitation 

direction of the rotation axis as shown in Fig. 6. The joint normal pressure is controlled by 
a compressed helical spring. The measuring and data processing equipment for the longitudinal 

resonator in Fig. 2 was used for the torsional resonator as well. The shaft of the torsional 
resonator serves as torsional spring like the flexure spring used in the longitudinal resonator 
(Fig. 6). Figure 7 shows measured hysteresis curves corresponding to 6 different excitation force 
amplitudes. The forces are applied by a shaker via a connecting rod at the outer radius of the 
upper resonator mass. 
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The excitation frequency was 87 Hz and the joint pressure p = 1 N/mm 2. The hysteresis 

shapes shown in Fig. 7 are quite similar to those of the joint with longitudinal force excitation. 

Macroslip is identified above a torque corresponding to the excitation force amplitude 
Fexc = 22 N by visible relative displacements between the boundaries of the contacting 

interfaces. Figure 8 depicts the dissipated work per cycle versus the amplitudes of the angle of 

relative rotation. The two ranges are separable by the straight line segment in the macroslip 
range and the curve segment with variable slope in the microslip range. Additional measure- 

ments marked by Y in Fig. 8, underline these ranges. 

3 Finite Element analysis of longitudinal resonator 

To gain more information about the mechanisms at different contact states, a two dimensional 
Finite Element model of the longitudinal resonator is analyzed. The resonator is discretized with 
four node plane stress elements (Fig. 9). The following assumptions are made: the longitudinal 
resonator masses are lumped, the flexure spring is replaced by a longitudinal spring, the bolt hole 

and the bolt shaft are neglected and the pressure distribution in the contact area is due to 
uniformly distributed normal force applied as static preload at the top and the bot tom of the lap 
joint (Fig. 10). After the normal forces are applied, the model is subjected to a tangential force 

equivalent to the driving force of the experimental resonator. 
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In the contact area of the model, gap friction elements (Fig. 10) with Coulomb type 

constitutive equation represent the frictional interface. Furthermore, it is possible to use 

additional springs in both directions of the plane model to simulate an intermediate layer. Due to 

the static preload, the additional gaps are dosed  during the whole calculation. Along the contact 

area, the coordinate x is introduced and normalized by the entire length L. In a first investigation, 
the normal gap stiffness Ka  is varied. In case of a small stiffness Ka  = 10000 N/mm (Fig. 11), 

uniform distribution of the pressure appears along the contact area. For  larger stiffness 

KA = 100000 N/ram, the pressure increases from both ends to a maximum level at the middle of 
the contact area (x/L = 0.5). The Coulomb slip limit is proportional to the normal pressure with 

friction coefficient/~ which varies along the contact area. For  a constant distribution of the slip 

limit along the whole contact area (KA = 10 000 N/ram) all coulomb elements exceed their slip 

limits at the same time. In this case there is a change between stick and global slip without any 
transition between the different slopes (Fig. 12). For  KA = 100000 N/mm the contact areas at 

both ends begin to slide first, while in the middle of the contact area (x/L = 0.5) no slip occurs 

N / m m  2 

o- 1/ \ 
I I I I 

0.25 0.5 0.75 1.0 
general ized coordina te  x /L  

KA = 10000 N/ram 
K  ̂ 50000 N/ram 

[] K, = 100000 N / m m  

Fig. II.  Distribution of contact pressure 

0- 

N 

100- 

-100-  

I I I 

-2* 10 * 0* 10" 2* 10* 
HI 

relative displacement ~.u 

KA = 10000 N/mm 
- ' ~ ' -  KA = 50000 N/mm 

l!1 K^ = 100000 N/mm 

Fig. 12. Calculated hysteresis 



176 L. Gaul and J. Lenz 

m 

2,10 -"- 

-~ 1,10 -._ 
�9 

�9 

0"i0 ~ 

_1,10-6_ 

-2"10 -~- 

_3,10 -6 
0.0 

--IN' - -  ",, i"E[i-- 
I 

I ~ I 

! 

",I' " ..... - i ?  

l it - m -  x / L  = 0.0 
~ _..~.. e x/L = 0.3 

�9 "~'" x/L = 0.5 
)K, = 100000 N/ram] 

I I I I I I 

0.5 1.0 1.5 2.0 2.5 3.0 

*10-~s 
t ime t 

Fig. 13. Sliding displacement in 
gap 

(Fig. 13). Then more and more Coulomb elements exceed their slip limits until all elements are in 

slip state and macroslip occurs. This is the reason why the global hysteresis in Fig. 12 has 

a rounded transition between the stick and the global macroslip domain. This state, where local 

stick and slip zones exist simultaneously in the contact area, is called microslip. 

Further investigations show, that the elastic displacement of the joint in horizontal direction 

has negligible influence on the slip behaviour. The influence of the contact surface on 

a microscale has been studied by statistics in [8]. 

4 S i m u l a t i o n  o f  m i c r o s l i p  and m a c r o s l i p  by  the  V a l a n i s  m o d e l  

The aim of the study is not only to investigate the dynamic behaviour of single joints, but also of 

structures assembled by several bolted joints. Therefore, it is important to develop a joint model 
with only a few parameters. Different joint models which are implemented into a simple two mass 

resonator have been tested [5]. 
As only the relative displacement A u = Uz - ul between the lumped masses is of interest, the 

associated equation of motion with periodic excitation force 
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represents a SDOF system. To obtain the behaviour of both regimes (micro- and macro-slip) by 
one model and to simulate response under cyclic loads as well as transient behaviour, the Valanis 
model known from plasticity [7] has been adopted. Without slip-stick parameters and by 
assuming velocity independence, the model is governed by the differential equation 

F'(z) + 2F(z) = Eoq'(z) + 2Etq(z), (3) 

where F is the generalized force, q is the generalized coordinate, and Eo, Et and 2 are material 
parameters. In the next steps, the parameters will be identified for the joint description. The 
relation between the internal variable z(t) and physical time t is given by 

4(0 F(t) 2(t) = - z ~-o" (4) 

Differentiation of F and q with respect to z in Eq. (3) is now replaced by 

dF dF dt dq dq dt 
F' - - q' - - (5) 

dz dt dz' dz dt dz" 

Insertion of Eq. (5) in Eq. (3) leads to 

. 1  1 
F - + 2F = Eoq - + 2Etq, (6) 

2 z 

and replacement of 2 using Eq. (4) yields 

P =  EodI + 2 - x ( E t q -  F). (7) 

By restricting the parameter ~: 

0 < z < 1, (8) 

an equivalent formulation in the following expression is possible 

Insertion of Eq. (9) in Eq. (7) leads to the evolution equation of the joint hysteresis as differential 
equation of first order 

Eogl 1 +  ~ ~ (Etq - F) 

F' = = f(q, (1, F). (10) 

1 + x E--oo ~ (Etq - F) 

If we interprete 

q = A u  F =  

it is possible to 
resonator. This 
ment Au 

EoAfi 

mredA/i 
1 

Ft (11) 

couple Eq. (10) for the joint model with the equation of motion Eq. (1) of the 
leads to the following differential equation in terms of the relative displace- 

2 Aft ] 
1 + To (e, au - v)  

2 Ati 
+ -k-So (e, u - F) 

+ Fo~2 sin (f2t). (12) 
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The stiffness modul of the stick condition is denoted by Eo while the tangent modulus Et describes 
the slope of slip motion. The parameter z controls the influence of microslip. High values of 

correspond to small influence of microslip. The parameter ao denotes a stick limit equivalent to 
the yield stress as being defined in [4]: 

E o  

~ o -  ( z E,~" (13) 
2 1 -  EoJ 

The parameters of the joint model in Eq. (10) are identified from a single measured hysteresis and 
by an iterative fit of e. Figures 15 and 16 show hysteresis curves for 7 different excitation force 
amplitudes. They were extrapolated from the hysteresis model with parameters identified for the 
low normal pressure of p = 0.25 N/mm 2 and the excitation force amplitude of Fexo = 310 N as 

shown in Fig. 3 

Eo = 2.2 * 108 N/mm 2 Et = 1.4 * 1 0  7 N/mm 2 

ao = 180 N u = 0.01 

5 Implementation of  the Valanis model as a nonlinear substructure modul into finite 
element software 

Equation (10) of the Valanis model is implemented as user defined modul into the Finite Element 
Software MARC [6]. It  is possible to simulate the dynamic response of a structure assembled with 
bolted joints. In an example, the dynamic response of an assembled structure such as the 
spaceframe mast shown in Fig. 17 is calculated. A selected simplified 2-D FE-model in Fig. 18 
consists of 133 beam elements, one additional tip mass and i5 Valanis elements. The Valanis 
elements connect the rotational degrees of freedom at each pin joint. The parameters of the 
Valanis model are identified from the measured hysteresis of the isolated torsional resonator 



Nonlinear dynamics of structures assembled by bolted joints 179 

large space 

framework 

~ space platform 

Fig. 17. Space structure [1] 

additional lumped 

Valanis element 1 Yl 
> 

X 

Fig, lg. Twodimensional beam FE model 

(Fig. 7). In this example the damping of the longitudinal motion is neglected. The FE-model of 
the space structure is excited with a force impulse near the additional tip mass in vertical 
direction. The structure is fixed at two nodes on the left side (Fig. 18). 

The response is compared with the response of an equivalent linear FE-model with a material 
damping ratio of 8 = 0.1% only. Figure 19 shows the damped response. The displacement 
amplitude of the structure including the Valanis model decreases faster when compared to the 
curve with material damping only. 
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Figures 2 0 -  22 show the hystereses of the Valanis element 1 between the two beams at the 
additional tip mass for different times. When the oscillation starts, the slip limit of the Valanis 
element is exceeded and macroslip occurs (Fig. 20). 

Because of high damping, the amplitude of the relative angle of rotation decreases and 
a typical microslip hysteresis appears after 0.6 s. The slip limit is no longer reached, but energy is 
still dissipated (Fig. 21). Figure 22 shows the hysteresis shape after 1.18 s. There is only little 
damping left, but the damping of all Valanis elements is still larger than the material damping of 
the linear model. 

6 Conc lus ion  

The dynamics of assembled structures is influenced by the nonlinear transfer behaviour of its 
connections. Bolted and riveted joints are the primary source of damping. Therefore it is 
desirable to predict the dynamic response of an assembled structure in the design phase. The 
present paper investigates the dynamic transfer behaviour of bolted joints with a mixed 
experimental and numerical strategy. The transfer behaviour of an isolated joint is measured first 
for different modes of vibration and than analyzed by using a detailed FE-model. To improve the 
ability of lumped Coulomb models restricted to stick and macroslip description only, the Valanis 
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model known from plasticity is adopted, tested and implemented in a FE-software package for 
simulating micro- as well as macroslip in joints of assembled structures. As an example, the 

calculated 2-D response of a space structure model demonstrates the nonlinear influence of the 
connections by the rapid decay of free vibrations of the assembled structure. With this FE-modul  

it is possible to predict the response of assembled structures in the design phase or to predict the 
influence of structural modifications, if sufficient knowledge of the behaviour of the individual 

joints is available. 
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