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Summary. The objective of the present paper is to analyze the dynamic flexural behavior of elastic two-laye.r 
beams with interlayer slip. The Bernoulli-Euler hypothesis is assumed to hold for each layer separately, and 
a linear constitutive equation between the horizontal slip and the interlaminar shear force is considered. The 
governing sixth-order initial-boundary value problem is solved by separating the dynamic response in 
a quasistatic and in a complementary dynamic response. The quasistatic portion that may also contain 
singularities or discontinuities due to sudden load changes is determined in a closed form. The remaining 
complementary dynamic part is non-singular and can be approximated by a truncated modal series of fast 
accelerated convergence. The solution of the resulting generalized decoupled single-degree-of-freedom 
oscillators is given by means of Duhamel,s convolution integral, whereby the velocity and acceleration of the 
loads are the driving terms. Light damping is considered via modal damping coefficients. The proposed 
procedure is illustrated for dynamically loaded layered single-span beams with interlayer slip, and the 
improvement in comparison to the classical modal analysis is demonstrated. 

1 Introduction 

Layered structures are designed for engineering applications where both high strength-to-weight 

and stiffness-to-weight ratios are required. Due to modern technologies, a problem-oriented 

choice of the material properties in different layers becomes possible [1]. If the layers are con- 

nected continuously by means of strong adhesives, the mechanical assumption of a rigid inter-- 
connection between the layers is reasonable. In the last four decades various types of classical as 

well as higher order linear elastic composite theories for perfectly bonded beams, plates, and 

shells have been developed, where basically two classes of theories can be distinguished: the'. 

equivalent-single-layer theories and the layerwise laminate theories, compare [2]. The latter 
category is derived by admitting a separate displacement field within the individual layers of the 
composite, see [3] - [5]. Besides the equations of motion an additional set of equations is obtained 

by prescribing the continuity of the transverse shear stresses across the interfaces. Alternatively, 
the extension of homogeneous beam and plate theories is based on one displacement expansion 

throughout  the thickness of the laminate that results in equivalent-single-layer theories, e.g. [6], 
[7]. Consequently, the transverse strains are continuous through the laminate thickness. Such 
theories cannot accurately model laminates made of dissimilar materials layers. 

In some widely used structures, such as in composite steel-concrete beams or in layered wood 
systems connected with nails, rigid bond between the layers cannot be achieved. Due to relative 
deformation of the connectors an interlayer slip occurs, that significantly can affect both strength 

and deformation of the layered structure. Linear static analysis of layered beams with partial or 
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flexible connection is well established in [8] - [12]. An extension to steel and concrete composite 
beams with nonlinear shear force-slip relationship is introduced in [13]. 

The present paper is concerned with the dynamic analysis of two-layer composite beams with 
linear elastic interlayer slip. In case of dynamic loading, the partial interaction also increases the 
damping capacity of the structure. Girhammar and Pan [14] solve the governing boundary value 
problem by modal analysis, where the deflection is transformed to a set of modal amplitudes. 
This procedure leads to solutions which are slowly convergent or even divergent. Hence, this 
paper introduces a different approach. Thereby, the dynamic response is separated in 
a quasistatic and in a complementary dynamic response, and a modal expansion is performed 
only for the complementary dynamic part of the solution. The quasistatic portion is determined 
separately and in a closed form by means of weighted integration of the corresponding influence 
function. Such a splitting is numerically efficient and also more accurate since the quasistatic part 
may contain singularities or discontinuities that are properly accounted for and which would be 
poorly modeled by a truncated modal series solution. The remaining complementary dynamic 
response is non-singular and can be approximated by a finite modal series of fast accelerated 
convergence. This type of solution procedure has been first suggested by Boley and Barber [15] 
for the analysis of rapidly heated beams and plates and was later picked up by Ziegler et al. 
([16] - [21]), in order to analyze the elastic-plastic behavior of beams and plates. An additional 
convenient feature of that kind of modal approach is the incorporation of viscous damping, that 
is introduced via modal damping coefficients. The proposed procedure is illustrated for simply 
supported two-layer beams with interlayer slip for various loading functions, and the 
improvement in comparison to the classical modal analysis is shown. 

2 Governing equations for two-layer beams with interlayer slip 

Plane bending of two-layer composite beams with partial interaction is inspected. Due to an 
interlayer slip considered between the layers, the Bernoulli-Euler hypothesis is not applicable for 
the cross-section as a whole. However, the assumption that plane sections remain plane after 
deformation is still valid for each individual layer. In case of composite elements with 
concentrated mechanical shear connections like bolts and nails, it is assumed that the 
concentrated slip forces are distributed uniformly along the length of the member. Since the 
interlaminar slip A u  is assumed to be a linear function of the shear force T transmitted between 
the two layers, the slip is given by 

T 
a u  = ~-, (1) 

where k is a constant slip modulus. 
The equation of flexural motion is derived by considering the free-body diagram of an 

infinitesimal beam element with distributed transverse force q. Application of the conservation of 
momentum in transverse direction renders together with Eq. (1) the following partial differential 
equation of motion for the lateral deflection w ([14]): 

# # ~2 1 
w, . . . . . .  -- ~Zw . . . . .  + ~ 0  vO :,~ -- o~ 2 --Ej~ • = -- --EJ~ q + ~ o  q ' " "  (2) 

x represents the axial beam coordinate, and O,x and (') stand for the spatial and time derivatives. 
# denotes the mass per unit length, 

# = 01A1  + 0 2 A 2 ,  (3) 
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EJo and E J ~  are the bending stiffness corresponding to non-composite actions (subscript 0) arid 
to a rigid interlayer connection (subscript oo), respectively, 

E A ; r  z 
EJo = E1J1 + EzJ2 ,  EJoo = EJo + - -  (4) 

EAo 

EAo identifies the longitudinal stiffness, 

EAo = EIA1 + E2A2, (5) 

and the abbreviations ~2 and EAp are defined as 

o~ 2 = k (  E A ~  r z ) 
\ - ~ p  + ~ o  ' EAv  = E1A1E2A2.  (6) 

In Eqs. ( 2 ) -  (6), Oi, Ai, El denote the mass densities, cross-sectional areas and Young's moduli of 
the individual layers, respectively, Ji are the principle moments of inertia of each cross-sectional 
area, and r represents the vertical distance between the centers of gravity of the two layers, see 
Fig. 1. 

The solution of Eq. (2) depends on the initial conditions at time instant t = 0 and on the 
actual boundary conditions at point Xb. In the following, three classical boundary conditions are 
summarized, compare [14]: 

(i) Simply supported end: 

W(Xb, t) = O, Mi(xb, t) = O, Nl(Xb, t) = 0, (7.1l) 

or when expressed through w and its derivatives, 

W(Xb, t) = O, W xx(Xb, t) = O, 

(ii) Clamped end: 

W(Xb, t) = O, W,x(Xb, t) = O, 

or 

q(xb, t) 
w . . . . .  (Xb, t) = (7.2) 

EJo 

Au(xb, t) = O, (8.1) 

EJo ~ w . . . .  (Xb, t) -- q,~(Xb, t) (8.2) W(Xb, t) = O, W,x(xb, t) = O, W . . . . . .  (Xb, t) --0:2 1 -- E J ~ /  EJo 

(iii) Free end: 

Mi(xb, t )  = O, Nl(xb, t )  = O, 

....... f 
perfect 

z bond 

Q(Xb, t) = O, (9.1) 

7 7 

7 
Z 

7 

7 
/ Fig. 1. Cross-section and hori- 

:x(X'Z zontal strain distribution of 
two-layer beams with various 

elastic w i t h o u t  interlaminar connection condi- 
bond bond tions 
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o r  

# #(xb, t) - q(Xb, t) 
w =(xb, t) = O, w . . . . .  (xb, t) + gJoo t~ao ' 

(9.2) 

# iO,x(Xb, t) -- q,x(Xb, t) 
w . . . . . .  (x~, t) - . 2 w  . . . .  (x~, t) + gfoo EJo  

The bending moment M, the shear force Q, normal forces N1, N2 and the slip force per unit 
length T are determined following the lines of Jeschko [22]: 

Edoo E J ~  
M = --EJcow x~ + - -  (t0.1) �9 . O~ 2 W , x x x x  ~2Ej  ~ q, 

E J ~  E J ~  
Q = - E J o o w  . . . .  + 7 -  W . . . . . .  ~2E j  ~ q,x, (10.2) 

N1 = - N 2  = - (EJo - EJoo)W,xx + ~ T  w . . . . .  o:2EJo q , (10.3) 

i F E J ~  E J ~  7 
T =  -r [_(EJ~ - E J ~ ) w  . . . .  + - - ~ 2  W,xxxxx -- o:2EJo q,~j.  (10.4) 

3 D y n a m i c  r e s p o n s e  a n a l y s i s  

Within a linear theory of beam structures the quasistatic response can atways be represented in 
a closed form. The quasistatic part of the solution possibly contains singularities or 
discontinuities, whereas the remaining dynamic part of the solution is non-singular. Due to its 
smooth behavior, this remaining part can be described by means of a relatively small number of 
eigenmodes. Consequently, the total response w(x, t) will be formulated as the sum of its analytic 
quasistatic part (denoted by a subscript ()s) and a modal expansion of its complementary 
dynamic portion (denoted by a subscript ()n), ([151-[21]), 

w(x, t) = Ws(X, t) + wD(x, t). (11) 

Replacing w(x, t) of the partial differential equation (2) by the expression of Eq. (11) renders: 

# ,, # .. 
Ws . . . . . . .  + wv . . . . . . .  - ~2Ws . . . . .  - ~2wo . . . . .  + ~ Ws,= + ~ wo,= 

Lao l~a o 

2 # _ ~2 # c~ 2 i 
--c~ - - v i )  s - - # D  -- - - - - q  + ~ o  q,~ �9 (12) 

E J ~  E J ~  E J ~  

Considering the differential equation of the quasistatic deflection, 

W S , x x x x x x  - -  O ~ 2 W S , x x x x  - -  

o~ 2 i 

EJ~o q + ~ o  q .... (13) 

the equation of motio~ of the complementary dynamic response can be separated from Eq. (12): 

# r # ~2 /z # .. 
wD . . . . . . .  -~2w~ . . . . .  + E & o % ' ~ -  ~ % =  % -  EJ ~ ~ o  Ws,~. 

(14) 
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The solution of Eq. (14) is found by modal analysis. Thereby, the quasistatic part Ws and the 
complementary dynamic portion wD of the lateral deflection are transformed to a set of modal 
amplitudes. This transformation is expressed as 

Ws(X, t) = ~ Y.S(t) ~.(x),  (15.1) 
n = l  

wD(x, t) = ~ Y.D(t) ~.(x), (15.2) 
n = l  

where ~/i stands for the mode shapes of the corresponding boundary value problem. The 
orthogonality relation of normalized mode shapes is given by (see [22]) 

l 

~l)n - -  ~ I }  . . . .  4- ~2 # ~, ,  dx 4- ~, ~,(0, 1) G[Om(0,/)] = 6m,, (16) 
EJo~ j= I 

0 

where 6m, is the Kronecker delta and Cj denotes a linear homogeneous differential operator 
containing derivatives of the boundaries as listed below. 

(i) Simply supported or clamped end: 

C~ = C2 - 0. (17.1) 

(ii) Free end: 

c l  = (), c2 = ~ 0  ()'~ (17.2) 

The modal series Eqs. (15) are inserted into Eq. (14), multiplied by ~/i, and integrated over the 
beam length I. Considering the orthogonality relations Eq. (16) leads to a formally uncoupled 
system of SDOF-oseillator equations for the complementary dynamic variables Y,D(t): 

~D 4- o9,2Y, D = - f-s. (18) 

In the next step, y s is evaluated following the procedures of [22, p. 30] and [23, p. 391]: The 
boundary conditions Eqs. (9) are modified for the static case by neglecting the inertia terms and 
are added to Eq. (13). Inserting Eq. (15.1) into the resulting expression, multiplying by ~m, and 
integrating over length l, the quasistatic modal amplitudes become 

1 
~.s(t) = ~ P.(t), (19) 

where 

l 

P,(t) = r b ,  q - E~o q,xx dx + 2 ,IJ.(O, l) G[q(0,/)] (20) 
j = l  

0 

is the generalized loading associated with the mode shape ~,. Finally, the solution of Eq. (18) is 
given by means of Duhamel's convolution integral ([24]), 

1 
Y,D(0 = - -  Y,D(0) sin co,t + Y,D(0) cos co,t -- - -  

09 n 

t 

l f P,(z) sin co,(t z) dr 
COn 3 

0 

where Y.D(0), I2.D(0) represent the initial conditions. 

(21) 
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4 Consideration of viscous damping 

In the preceding formulations of equations of motion, no damping was included. However, in 
case of layered beams with elastic bond, the shear connectors also govern the energy absorption 
capacity and the damping characteristics. Within a linear theory this kind of distributed damping 
can be introduced directly into the modal equations of motion (18) via modal viscous damping 
coefficients ~n: 

f'D + 2~,con~D + co ayD = _ L s  _ 2~nco. L S .  (22) 

Accordingly, each mode can be damped individually, which seems to be more general in 
comparison to introducing a stiffness- or/and mass-proportional Rayleigh damping into the 
partial differential equation (2). The solution of Eq. (22) is again given by Duhamel's convolution 
integral, whereby the undamped unit impulse response has to be replaced by the damped one, 
compare Ziegler [25]: 

COn 1 1 Y~D(t) = exp (-- (,co.t) (cos cod.t + - -  ~, sin coent) 11.~ + - -  sin cod,tY.D(0) 
codn codn 

1 1 f [P,(z) + 2~.co.P,(z)] exp [ -  ~,c%(t - z)] sin [coa,(t - ~)1 dz. 
con 2 codn 

0 

(23) 

In Eq. (23), cod, stands for the n-th eigenfrequency of the damped system, 

cod, = co, ]/1 - ~2 ~ co,, ~., _< 0.2. (24) 

5 Numerical  examples 

The proposed procedure 
interlaminar connection, see Fig. 2, The free response analysis renders the mode shapes 

�9 ,(x) = A, sin 21,x, n = 1, 2, 3 ..... 

with 

nT~ 

,zl.= 5-' 

is applied to simply supported two-layer beams with partial 

(25) 

~ o J J  ' (26) 

and the corresponding eigenfrequencies, compare [14], [22], 

4 2 (27) co, 2 = 21.(21, + a2) ~ ~ + E J o J J  

The quasistatic response Ws is evaluated most conveniently by means of the method of influence 
functions, 

l 

Ws(X, t) = ~ Ws(~, x) q(~, t) d~, (28) 
0 



Flexural vibrations of elastic composite beams 23 

where u3s is the lateral deflection at point ~ produced by a single unit force applied in x. The static 
Green's function ~s of the boundary value problem considered reads as follows: 

I ( E 1  1 ) ~sinh c~ sinh c~(x - l) ( x ) l  
+ ~5 )o E)~ sinhcd + ~ 1 - ? , ~_< x, (29.1) 

13 (1--~)/[1- (~)2__ (1--~)21 ~(~, x) = 

1(1 
+ ~5 E~ro E)~o [_ c~ sinh cd + x 1 - , ~ >_ x. (29.2) 

Only the complementary dynamic deflection wD(x, t) has to be determined by the modal 
expansion, Eq. (15.2). 

In the following examples, the results obtained by the proposed procedure are compared with 
those derived by means of the classical modal analysis [14]. The latter represents the total 
deflection, 

w(x, t) = ~ Y,(t) ~/i,(x), (3,9) n=l 
where the modal coefficients of a viscously damped beam are of the form (compare [22]) 

Y.(t) = exp (-{.~o.t) coso)d.t + - - ~ .  sino)d.t Y.(0) + - - s inc%. tL(0)  
(2)dn 

(31) t 
if + - -  P.(v) exp [ -  ~.o).(t - ~)] sin [o)a.(t - r)] de. 

(-,O dn 

0 

5.1 Sinusoidal force excitation 

In a first example, a spatial uniformly distributed time-harmonic force excitation, 
q(x, t) = qo sin vt, is switched on at time t = 0. Viscous damping is neglected. In that particular 
case, the quasistatic deflection reads 

( 3 2 )  

The corresponding quasistatic internal actions are given by Eqs. (10), when substituting Ws for 
w and its derivatives. 

The dynamic analysis according to Eqs. (15.2), (21), and (25) renders the complementary 
dynamic quantities: 

wD(x,t): ~ q~ 
,=1,3,5 .... /m), 3 ~-f , ( t ) ,  (33) 
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q~176176 (nn~2[1 + 1__ (nrc'~ 2] sin nnx 
~ kT/ ~ 2 \ i / ]  T f"(O' Mo(x, t) (34) 

n =  1 , 3 , 5  . . . .  

1 q~ EJ~o -- EJo + sin ~-o&(t), (35) 

eo( ,0= 2 iT;iLl +  2/T j /J/c~ (36) 
n =  1 , 3 , 5  . . . .  

1 oo E joo (nn )21 (1 )3cosnnX  To(x,t) = r 2 q~ .Y~[EJ~  - EYo + T f d t  ). (37) 
.=,,s,s .... uco. L ~ 5 -  kT) J 

S ,  D is the n-th complementary dynamic participation factor due to a uniformly distributed 
loading function, 

4v 2 
2'n ~ -- , (38) 

n g  

and f,(t) denotes the n-th unit response due to a sinusoidal force excitation, 

1 
(v sin co.t co. sin vt). (39) f,(t) - vZ __ 0) 2 

Contrary, the results according to the classical modal analysis, Eqs. (30), (31), become: 

w(x, t) = ~, qo~,  sin nnx 
.=1,3,5 .... #o0. ~ -  f,(t), 

M ( x ,  t) = 
n =  1 , 3 , 5 ,  

(nn~z V 1 (nn~2] nnx qoEJ~ qoEd~oS~. \ l j [ _ l  + sin --[-f~(t) 
#COn ~2 \ 1 J J ~2Ej O' 

1 { qo~,  [ EJoo(nn)21(nn~2 sin tnnx EJo~ - Ego + ~-fn( t)  N,(~, 0 = - -  ~ ,.~. ~ -  \ T )  j \ T /  
r n =  1 , 3 , 5  . . . .  

Q(x, t) ~ qoEJ~Y.  3 1 2 n~x 
= 1 + cos ~ - f . ( O ,  

_1 ~ q o ~  [ E J ~ ( n n ~ 2 ] ( 1 ) 3  nnx 
T(x, t) = ~ EJ~ - EJo + cos __/__fdO, 

,'.:,,~,~ .... ~ .  ~ \ 12 J 

with 

4 

n y c  

(40) 

(41) 

q oEJ oo ~ 
~2EJ o J' 

(42) 

(43) 

(44) 

(45) 

It is noted that the series solutions Eqs. (40)-(42) are slowly convergent compared to the 
corresponding complementary dynamic series Eqs. (33)-(35). The total shear and slip forces 
given by Eqs. (43), (44) are even divergent, whereas the expansions Eqs. (36), (37) converge. 

5.2 Random force excitation 

In a further example, a spatially uniformly distributed load q = qef(t), see Fig. 2, with time 
evolution fit), is switched on at time t = 0. Figure 3 shows f(O chosen in this example, that 
corresponds to one sample of a band-limited Gaussian white noise process with 
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b l = 0 . 3 m  

l" 
q(t) = q0 f(t) dl = 0.05 m ~  I Q ) ~  

!:o2:!0.05m 

Fig. 2. Simply supported single-span beam; dimensions of the cross-section 

1 , 5  , J , , i . . . . . . . .  ~ . . . .  ~ , L 

1 

0,5 

0 

-0,5 

- 1 ,  i ~ i 
-1,5 ~ - '  ' i . . . .  i . . . . . . . . . .  i , 

0 1 2 4 
t / T  I 

Fig. 3. Time evolution corre- 
sponding to one sample ,of 
a band-limited Gaussian white 
noise process with 30 < ~  
< 500 rad/s 

30 _< co < 500 rad/s. Duhamel 's  integral equation (23) is solved numerically using the procedure 

proposed in Appendix A. In all subsequent calculations, the geometrical and mechanical 

properties of the two-layer beam are characterized by the following parameters: l = 4 m, 

b l = 0 . 3 m ,  d l = 0 . 0 5 m ,  b 2 = 0 . 0 5 m ,  d 2 = 0 . 1 5 m ,  q o = 4 8 6 N / m ,  El  = 1 2  000 MN/m 2, 
E 2 = 8 0 0 0 M N / m  2, k = 5 0 M N / m  z, ~1 = 2500kg/m3,  ~z = 800 kg/m 3. The damping coeffi- 

cients are assumed to be constant for all modes: ffl = 0.09, i = 1,.. . ,  N. 

In Table 1, the first nine eigenfrequencies of layered beams with various interlaminar 

connection conditions are arranged. It turns out that in the higher frequency range the 

eigenvalues of the elastically bonded beam converge towards those of the beam without layer 

connection. 

Table 1. Eigenfrequencies of simply supported two-layer beams with various 
interlaminar connection conditions 

Eigenfrequency Elastic bond Perfect bond Without bond 
[rad/s] [rad/s] [rad/s] 

1 61.99 72.44 36.22 
2 201.37 289.78 144.89 
3 399.31 652.01 326.00 
4 661.71 1 159.13 579.56 
5 992.67 1 811.14 905.57 
6 1 394.11 2608.03 1 304.02 
7 1 866.93 3 549.83 1 774.91 
8 2 411.57 4 636.51 2 318.25 
9 3 028.27 5 868.08 2 934.04 
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in x = I/2 

I -  ' . . . . . . .  i . . . .  i , , , . . . .  1 . . . .  
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layer  in x = l/2 
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Fig. 7. Total dynamic and 
quasistatic lateral shear force 
in x = 0  
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Fig. 8. Total dynamic  and qua- 
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between the two layers in x = 0 

g 

2 0  I , ' , [ �9 = ' t ' ' ' I ' ' ' J ' ' ' 

15 ~ " i  / . . . . . . .  l mode . I ......................... i .......................... 

0 

-5 

-10 

-~ i ..................................... :- t~-~~ ................................................................................... 1 1 ~  

- 2 0  ~ , , ~ I ~ I F . . . .  

0 0,2 0,4 0,6 0,8 

X / I  

Fig. 9. Total dynamic and qua- 
sistatic spatial distr ibution of  
the shear  force at t ime instant  
t i T  1 = 0.32 
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Figure 4 shows the transient deflection at midspan, with T1 = 2zc/col denoting the 
fundamental vibration period. The solution of the elastically bonded beam is displayed by the full 
line, whereas the dashed line corresponds to the response considering rigid interconnection. The 
dashed line with circles illustrates the lateral displacement when no connection between the two 
layers is assumed. For the numerical computation, the complementary dynamic deflection is 
sufficiently well approximated by means of the first five symmetric modes. 

Figures 5 and 6 display the evolution of the total bending moment and of the total axial force 
of the upper layer at midspan, respectively, as well as the corresponding (closed-form) quasistatic 
results. Furthermore, the approximate single-mode solution is compared to the results according 
to a five-mode expansion. Especially for the lateral shear force, Fig. 7, and for the shear force 
transmitted between the two layers, Fig. 8, the higher modes of the complementary dynamic 
response become dominant. 

Finally, in Fig. 9 the distribution of the shear force along the beam axis at a certain time 
instant, t/T~ = 0.32, is illustrated. 

6 Conclusions 

The initial-boundary value problem of flexural vibrations of elastic two-layer beams with 
interlayer slip is solved. The Bernoulli-Euler hypothesis is assumed to hold for each layer 
separately, and a linear constitutive equation between the horizontal slip and the interlaminar 
shear force is taken into account. The solution of the corresponding partial equation of motion is 
found by separating the response of the beam in a quasistatic and in a complementary dynamic 
part. The quasistatic portion that probably contains singularities can be represented in a closed 
form. The remaining non-singular complementary dynamic part is approximated by a truncated 
modal series of fast accelerated convergence. Light damping is considered by means of modal 
damping coefficients, and the solution of the resulting generalized decoupled single-degree- 
of-freedom oscillators is given by Duhamel's convolution integral. Numerical examples are given 
for simply supported composite beams under harmonic and random excitations. The computa- 
tional procedure described in detail shows high improvement when compared to the classical 
modal analysis approach. 

Appendix A 

Numerical  evaluation o f  the dynamic response 

In case of a lateral loading function with arbitrary time history, the solution is found 
incrementally. The convolution integral equation (23) is evaluated by assuming a linear variation 
of the load variable q within the time increment At  = ta+ 1 - t~, 

q(x, t )  = q(x, ta) + Aq(x)g(t) ,  f =  t - ta, (A1) 

g(0 = 1, f >  At; g(f) = f lAt ,  0 <_ f < At; g(0 = 0, f _< 0. (A2) 

Discretization of the incremental load variables by application of higher-order spline functions is 
discussed in [26]. In the following, subscripts (.), and (.L + 1 refer to variables at the beginning and 
at the end of the time step, respectively. When computing the dynamical modal response 
according to Eq. (23), the time derivatives g and g enter, and, hence the approximate variation of 
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g(f) within the time interval must have unique first and second derivatives at ta and ta + 1 This 
degree of smoothness is achieved by assuming at least the linear ramp function g(t') to start at t . -  
immediately after ta, and to end at t~-+, immediately before ta+ ,. Accordingly, the first and the 
second derivative of Aq become 

Aq = Aq(x)/At, A4 = Aq(x)[3(0) -- 6(At)J/At, (A3) 

with Dirac delta function 6. The evaluation of Eq. (23) together with Eq. (A3) renders the 
increments of the complementary dynamic coefficients ([22]), 

1 
AY. D = ]r176 + J.Y.V(t.) - 2 ~ .AP . ,  (A,4) 

con 

with the following abbreviations: 

1 J .  = exp ( -  (.co.A t) cos cod.A t + - -  (. sin cod.A t_ -- 1, (A5) 
co dn 

1 
J .  = - -  exp ( -  ~.co.At) sin cod.At, (A6) 

codn 

{ ,17, ~ .  - 2(. + exp ( -  (.co.A t) co" 
co. At 

AP. stands for the increment of the generalized load, compare [22], 

l 

~2 1 4 . ,~  d~ + ~. Cj[Aq(O, 1)] 4.(0, l). (A8) 
AP. = Aq 4 .  - -  EJ~oo j=l 

0 

Relation (A4) has to be completed by the increments of the velocity of modal coefficients. They 
are given by ([22]) 

1 
A yn D = ~.~nYnD(ta) -[- JnYnD(ta)  - -  ~ n A P n ,  

COn 2 

with 

J"  = exp (--~nco"At) ( - -  co~---~z ~-"2 -- cod") sin 

] Jn  = COScod.At -- - -  (. sin cod.At_ exp(--(.co.At) -- 1, 
09dn 

1 
= ~-~ [exp ( -  (.co.At)(coscod.At + b. sin cod.At) -- 1], 

and 

b . =  ~ . I2  coj2 co" ( 1 -  2~.2)1 
(J)n (Ddn 

(A9) 

(AIO) 

(All) 

(A12) 

(A13) 

Adding the exactly computed quasistatic deflection increments to the complementary dynamic 
increments leads to the total flexural response, 

N 

Aw(x) = AwS(x) + ~ 4n(x)AY. ~ (A14) 
n = l  

whereby the infinite series are approximated by a finite number of N modes. 
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