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rotating beams 

Summary. The paper presents a finite element model of a rotating cracked beam. A crack occurring in the 
rotating beam is open. The method of calculation of the characteristics matrices of the cracked beam finite 
element are presented. The effects of crack location and its depth on the dynamic behavior of the rotating 
beam are studied. It is found that the crack can change the natural frequencies of the system. 

1 Introduction 

The crack in structural elements causes a local change of a structure stiffness. Since this stiffness 
alters inside the considered element its dynamic characteristics, i.e. natural frequencies, 
amplitudes of forced vibrations, the regions of stability alter as well. The dynamic behaviour of 
cracked structures depends upon crack location, depth, shape as well as upon analyzed form of 

vibration. 
Bibliography given by Wauer [1] concerning the influence of cracks on dynamic behaviour of 

different structures is extensive. However, only a few papers are devoted to analysis of the 
rotating blades and beams. Modelling and formulation of the equations of motion for the 
cracked rotating blade were studied by Wauer [2]. He states that the resulting equations of 
motion for small superimposed vibrations are completely linear. Chen and Chen [3] presented 
the model of the cracked blade which may be restricted to very low angular speeds. The reduction 
impact of the crack on natural frequencies and areas of stability were reported by them. Chen and 
Shen [4] presented the model of the rotating cracked blade made of an orthotropic material. The 
influence of the crack location, its depth and angle between the composite fibre and the blade 

longitudinal axis on the natural frequencies were analyzed. 
The main objective of this paper is to elaborate the beam finite element with one-edge open 

crack and to analyze the influence of this crack on the natural frequencies of the rotating beam. 
Because the rotating beam is tensed a non-breathing model of the crack is assumed. The 
displacement finite element method is applied, and two different shape functions, for left and 
right part of the cracked beam element, are defined. The characteristic matrices of the cracked 
beam finite element are computed i.e. the consistent mass matrix, stiffness matrix, geometrical 
stiffness matrix and stiffness matrix depending on squared angular velocity. The influence of the 
crack location and its depth on changes of the natural frequencies are illustrated with two 

numerical examples. 
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2 A f inite  e l e m e n t  m o d e l  

The beam element of a rectangular cross-section with one-edge crack is presented in Fig. 1. 
A general loading is indicated by the four general forces P1 . . . . .  /)4 at a node.  The element of 
length I has the crack at distance ll from its left end, where 0 < I1 < I. In a general case the crack 
introduces a discontinuity at ll, in both the deflection and slope, due to the bending and shear 
compliance. In the presented model only discontinuity in slope due to the bending is introduced. 
Therefore, at Sections 1 and 2, two different shape functions will be defined as the third order 

polynomials 

u i i  = a i  + a2x + a3 X2 + a4x 3, 

ui2 = a5 + a6x +a7 X2 + a8 X3, 
(1) 

U21 : a9 + azox + a l l  %2 + a i2  X3, 

U22 = ai3 + ai4x + a i5  x2 + a i 6 x  3- 
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Fig. 1. A beam finite element with one-edge open crack 
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Application of the following boundary conditions at the beam ends: 

ql = Ull]x=0 

q2 = Uillx=0 

q3 = u21I~=o 

q4 = uillx=o 

and continuity 

q5 = U12[x=l~ 

q6 = ui2l~=l, 

q7 = U2Zlx=t, 

qs = u;2[~=l, 

and compatibility with bending compliance cl, c2 at the crack location 

(3) 

U11(ll) = U12(11) 

ulz(ll) = uil( l l )  

U~'1(ll) = Ui~2(/1) 

t i t  t t !  
U11(11) = Ulz(ll) 

UZl(/1) = b/22(11)  

u'2dlO = u h ( L )  

uii(13 = U:Z'2(I1) 

ui'i(h) = uz'i(h) 

+ clui'dL) 

+ c2u'2'1(11) 

(4) 

yield the shape functions 

~1, x ,  x 2, X 3 
N1 I- 6- 

1 - 1 ,  X, X 2, X 3 
Nz I- 6 

j, x, , ;1 ,  

1, x, c %, x3-1 tl/z. 
The matrices •1 and 11~2, for 11 = I/2, have the forms 

(F_v I 

-1 0 0 0 

0 1 0 0 

Ga G2 0 0 

G4 G5 0 0 

0 0 1 0 

0 0 0 1 

0 0 G1 G6 

0 0 G,, Gs 

-1 G8 0 0 

0 G9 0 0 

G1 G2 0 0 

G~ G5 0 0 

0 0 1 Gll 

0 0 0 G12 

0 0 G1 G6 

2 0 G4 G5 

0 0 0 

0 0 0 

- G 1  Ga 0 

- G4 G5 0 

0 0 0 

0 0 0 

0 0 - G 1  

0 0 - G 4  

0 G8 

0 Glo 

- G 1  G3 

- G4 G5 
0 0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

0 

0 

--G1 

- -  G 4 

m 

0 

0 

0 

0 

0 ' 

0 

G7 

G5 

0 

0 

0 

0 

G l l  

G13 

G7 

Gs 

(5) 

(6) 

(7) 

(8) 



38 

where 

G1 = - - 3 / l  2 

G2 = - 3 / 1 2  -- 1/(2l + 2ci) 

G 3 = - - 3 / l  2 q- 1/(2l + 2Cl) 

G4 = 2/I 3 

G5 = 1/12 

G 6 = - 3 / 1 2  - -  1/(2l + 2C2) 

G7 = - 3 / 1 2  + 1/(21+ 2c2) 

G8 = I/2 - 12/(21 + 2q)  

G9 = l/(l + q )  

Glo  = q / ( l  + c , )  

G l l  = 1/2 - 12/(2l + 2C2) 

G12 = I/(l + c2) 

GI3 = c2/(I  q- c2). 
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(9) 

-1 �9 
7J N1, (13) 

0, 1, 2x, 3x 

9"-1 1~2" (14) 
�9 

0, 1, 2x, 3x -d 

F0, 1, 2x, 3x 2 
]131 

L �9 

r0, 1, 2x, 3x 2 

L �9 

The non-dimensional flexibilities due to the crack are equal [5] 

1/2 c -12n(1  2)hfaF 2(a)dafae, 
0 0 
a 1/2 (10) 

C2 _ 4 8 / 7 ( 1 7  v2) h f af22(~)da f 
o 0 

where c~ = c~/h, i = z /b  (see Fig. 1). 
The functions FI(~) and F2(~), taking into consideration the finite dimensions of the element, 

have the forms [5] 

Fl(c~) = t ] / t~  2/2 [0.752 + 2.02c~ + 0.37(1 - sin 2)3]/cos 2, (11) 

F2(~) ----- t ~  2/2 [0.923 + 0.199(1 -- sin 2)4]/cos 2, (12) 

where 2 =/7c~/2h. 
The changes of the non-dimensional flexibilities as a function of the non-dimensional depth 

of the crack and slenderness ratio of the beam element h/l are given in Fig. 2. 
The matrices of stress-strain relations in this case have the forms 
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Fig. 2. Non-dimensional coefficients of the flexibility due to the crack; a 
y-direction b bending compliance c2 in z-direction 

bending compliance cl in 

The element stiffness matrix is equal 

1/2 1 

]K~ = 5 NI'IDIB, dx + S N2'DN2 dx, (15) 
0 1/2 

where D is the stress-strain relation matrix [6], t is the symbol  of transpose of a matrix. 
Similarly the geometrical stiffness matrix can be expressed as 

ll2 1 

~ g e  = f P l l l ~ l t ~ 7 ? { ~ l  d X  "1- f P111~2'~:2~1~2 d x ,  ( 1 6 )  
o q2 
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where p l l i s  an axial force loading the element, and the m a t r i x I F h a s  the form 

-0 0 0 0 

0 1 2x 3x 2 
(D 

0 2x 4X 2 6X 3 

0 3X 2 6X 3 9X 4 
IF = 

0 0 0 0 

0 1 2x 3x 2 �9 
0 2x 4X 2 6X 3 

0 3x 2 6x 3 9x 4 
m 

The matr ix ofstiffness depending on squared angular  ve lod ty  can be written as 

(17) 

1/2 l 

]Kce = ~~176 I Nl t~ 'g~r ]N1 dx + o~c02A S N 2 t ' W t ~ 2  dx, (18) 
o t/2 

where W i s  the cosine directions matr ix  [7], ~ is the mass density and A is the area of cross-section 

of the element. 

I X 

Material data 

Young modutus: 

] Poisson ratio: 

mass density.. 

A - A  

zl 

E = 2.1 "10 fJ N/m 2 

9 = 0.3 
f ,=7860 kg/m 3 

Fig. 3. A rotating cracked beam 
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The consistent mass matr ix  for the element is equal 

t12 l 
]Me = QA ~ N I ' N 1  dx + QA I N2'N= dx .  (19) 

o t/2 

In the case when cl  = c2 = 0 the forms of the matrices given above are identical to 

a non-cracked beam finite element of Bernoulli-Euler type [6]. 
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3 Vibration of the cracked rotating beam 

The cracked beam element developed above was used to study the dynamic behaviour of 
a cracked rotating beam, the geometrical and material data of which are given in Fig. 3. 

The mathematical model of the natural vibration of rotating linear body discretized by finite 
elements was set up in the form [7] 

tv'J~ + (~ + ~ ,  + ~c) c2 = o ,  (20) 
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where ]IV[ is the global matrix of inertia, N is the global matrix of linear stiffness, ~g is the global 
matrix of geometrical stiffness, lK~ is the global matrix of stiffness matrix depending on squared 
angular velocity, and ~, ~ are the column matrices of generalized accelerations and displace- 
ments, respectively�9 

Figures 4 -  6 show changes of three natural frequencies of the rotating beam with one crack 
located at the distance equal 40 mm from the fixed end. The changes of the natural frequencies 
are plotted for a/h = 0, 0.2, 0.4, 0.6 and rotational velocities from 0 to 3 600 rpm. Progressive 
reduction in the resonant frequencies depending on the crack depth is observed�9 
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The changes of three natural frequencies of the rotating beam with one crack with depth 
equal 8 mm are presented in Figs. 7 - 9 .  The changes of the resonant frequencies are plotted for 
L1/L = &l, 0.3, 0.5, 0.7 and rotational velocities from 0 to 3 600 rpm. It is clearly shown that the 
reduction in the resonant frequencies depends on the mode of vibration. 

Figure 10 presents the changes of the bending natural frequencies in two perpendicular 
directions of vibrations. We can easily notice that these changes are different for each 
direction. 
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4 Conclusions 

The method of generation of the characteristic matrices of the beam finite element with the 
one-edge open crack is presented in the paper. The method of creation of the shape functions 
discussed in the work enables the construction of the beam finite elements with cracks of different 
types (double-edge, skew, internal, elliptical, etc.) if only the local flexibility for a given type of the 
crack is known. 
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The results of the numerical calculations have confirmed that the changes of the natu- 
ral frequencies of the rotating beam are a function of the depth and position of the crack. When 
the depth of the crack increases, the reducing effect of the crack in natural frequencies also 
increases�9 The influence of the crack position on the change of the natural frequencies is 
connected with the vibration mode. The change of the natural frequencies corresponding to the 
mode vibration is biggest when the crack is located at the points for which an amplitude of the 
mode of vibration is equal to zero. On the other hand, when the crack is located at points for 
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which an ampli tude of the mode of vibrat ion is maximal,  the change of the natura l  vibrat ion is 

negligible. 

The changes of the bending natura l  frequencies in two perpendicular  directions are different. 

This effect can be used for the crack identification. This problem will be considered in future 

reports. 
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