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Summary. Exact analytic solutions for the flow of non-Newtonian fluid generated by periodic oscillations 
of a rigid plate are discussed. Some interesting flows caused by certain special oscillations are also ob- 
tained. 

1 Introduction 

There are very few cases in which the exact analytic solutions of Navier-Stokes equations can 
be obtained. These are even rare if the constitutive equations for the non-Newtonian fluid are 

considered. Although there are many models used to describe non-Newtonian behavior of the 
fluids, the fluids of differential type (cf. Truesdell and Noll [1]) have received special attention. 
In recent years, interest in the flows of non-Newtonian fluids has very much increased, and 

we refer to the papers by Sirvatsava [2], Rajeswari and Rathna [3], Beard and Walters [4], 

Mansutti et al. [5], Siddiqui and Kaloni [6], Massoudi and Ramezan [7], Benharbit and Siddi- 

qui [8], Erdogan [9], Rajagopal et al. [10], [11]. In another paper, Rajagopal [12] gave solutions 
for an unsteady unidirectional flow of an incompressible second grade fluid. He analyzed the 

flow due to a rigid plate oscillating in the form of U cos COot and calculated the velocity field 
using separation of variables. 

The aim of the present paper is to investigate the general class of flow problems due to 
arbitrary periodic oscillations of a rigid plate. For the periodic oscillations we can construct 

the Fourier transform directly from its Fourier series representation. The resulting Fourier 
transform for a periodic oscillation consists of a train of impulses in frequency, with the areas 
of the impulses proportional to the Fourier series coefficients. This will turn out to be a very 
important representation, as it will facilitate out treatment of the application of Fourier 
analysis techniques to problems of modulation. A general periodic oscillation f(t) with period 
To is considered. The response of oscillations in the flow field can be built up using Fourier 

series representation and the temporal Fourier transform. The exact analytical solution for 
unsteady unidirectional flow due to periodic rigid plate oscillations is obtained. The flow field 
due to certain special values of oscillations is then derived as a special case of the periodic 
oscillations including the one considered by Rajagopal [12]. Thus, the technique used and the 
arbitrary nature of oscillation may be a significant contribution in the theory of non-Newton- 
ian fluid (2nd grade fluid) of which very little is known. 
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2 Basic equations 

The Cauchy stress tensor T for an incompressible homogeneous fluid of  second grade has the 
following form [13], [14]: 

T = - p l  + #A1 + ~1A2 + a2A12 (1) 

where - p l  is the indeterminate spherical stress, # is the coefficient of  dynamic viscosity, and 

oz 1 and a2 are material  moduli  which are usually referred to as the normal  stress coefficients. 

The kinematical (Rivlin-Ericksen) tensors AI and A2 are defined through [1] 

A1 - (grad u) + (grad u) T, (2.1) 

and 

d A A 2 = ~  l + A l ( g r a d u ) + ( g r a d u ) r A 1 ,  (2.2) 

where d/dt denotes the material  time derivative and u denotes the velocity. The signs of  the 

coefficients a l  and c~2 are the subject of  some controversy and a thorough discussion of  the 
same can be found in Dunn  and Fosdick [15], Fosdick and Rajagopal  [16] and the more crit- 

ical review by Dunn and Rajagopal  [17]. 
For  fluid o f the type (1) that  is compatible with thermodynamics,  in the sense that all motions 

of  the fluid meet the Clausius-Duhem inequality, which is interpreted as the second law of ther- 
modynamics,  and the assumption that  the specific Helmholtz  free energy is a minimum when the 

fluid is in equilibrium, the following restrictions on the signs of  the material  moduli  hold: 

# _> 0, c~1 >_ 0, c~1 + a2 = 0. (3) 

By replacing the constitutive expression (1) into the balance of  linear momentum 

du 
div T + t)b = t )~-  (4) 

and using the fact that  the fluid can undergo only isochoric mot ion since it is incompressible, 

i.e. 

div u = 0, (5) 

we have 

Ou 
~A~ + ~ 1 a 5 {  + ~ I (A~  • ~) + (~1 + ~2) 

Ou 
• { & A v  + 2 div [(grad v) (grad ~,)r]} _ t)(w • u) - O H  = grad P,  (6) 

where 

P = p -  al(v .A~) (2c~1 + ~2)iA~[2 + Q 

In the above equations we have used that  the body force b is conservative and hence can be 
expressed as b = grad ~. In Eq. (6), A denotes the Laplacian, ~7 the gradient operator,  IAll 

the trace norm of A1 and 

w = curl v. (7) 
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Since we are dealing with unidirectional flow, 

= ~(~, ~) i, 

where i denotes a unit vector in the x-coordinate direction. 
Using Eq. (8) in Eq. (6) we get 

(s) 

02~ Oa~ Ow Op 
# 0 9 2 T a l @ 2 0 t  Q O[ Oz (9) 

(2Cgl @ O~2) ~ (0~) 2 0; 
0y 

(10) 

Op 
0 = o ~ .  (11) 

Furthermore, by defining 

b = P -  (2cq +~2) oy /  (12) 

we have from Eqs. (9) to (11) 

02u Oau Ou O~ 
~ ~ 2  @-Oil - -  Oy 20t o Ot Ox (la.1) 

o~ ob 
o -  ov O z  (14.1,2) 

From Eqs. (13) and (14.1, 2) we obtain 

0 ~  O4u 02~ 
~ + ~ 1 - -  - = o. (15) O~ a O~ 0 

Now we suppose that the upper half of the (x, y)-plane be occupied by fluid, the rigid bound- 
ary being at y = 0. The plate is making periodic oscillations of the form f(~) with period To. 
The rigid boundary is having the velocity Uf(t). The Fourier series representation of f(t)  is 
given by 

f(t) = ~ ~ ~,~.0~ (t6.1) 
]g~ -oc 

where 

(lS.2) 

with non zero fundamental frequency co0 - 27r/To. Equation (16.1) is referred to as the synthe- 
sis equation and Eq. (16.2) as the analysis equation. The coefficients {c~k} are the Fourier 
series coefficients or the spectral coefficients of f(t).  In practice the fluid motion would be set 
up from rest, and, for some time after the initiation of the motion, the flow field contains 
"transients" determined by these initial conditions. It may be shown that the fluid velocity 
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gradually becomes a harmonic function of t, with the same frequency as the velocity of the 
boundary, and only this periodic state will be considered here. The governing differential 
equation is (15), with the boundary condition 

u(O,t) U ~ ctk ik~o0t. (16.3) 
, ~ - -  o o  

3 Solution of the boundary value problem 

We attempt to find the solution using Fourier transform. So the temporal Fourier transform 
pair is defined as 

OO 

~(v,~) = / ~(v,t) e -  iwt dt (17) 

O0 

O 0  

;(y,~) = U r ~ d~, (18) 

- - O O  

co being the temporal frequency. From Eqs. (15) and (17) we find 

d 2 
dy 2 

where 

(~ + ~n)~ = ~(i/2 + ~ < )  (20) 
/22 + (c~1) 2 �9 

Transforming the boundary condition (16.1) we get 

~(0,~) = u ~2 2 ~ ( ~ -  k~o). (21) 

Note that Eq. (21) is of the form of a linear combination of impulses equally spaced in fre- 
quency. We see that Eq. (16.3) corresponds to the Fourier series representation of u(0, t), and 
its Fourier transform given by Eq. (21) can be interpreted as a train of impulses occurring at 
the harmonically related frequencies. The area of the impulse at the kth harmonic frequency 
kWo is 27r times the kth Fourier series coefficient ak. 

The only solution that remains finite as y -+ oc is 

.~(y, ~) = Ae-('~+i~)v. (22) 

From Eqs. (21) and (22) 

~(v, ~) = u ~ 2~a~(~ - k~o) ~-(~+'~<< (23) 

Substituting Eq. (23) in Eq. (18) and then solving the integral in the resulting expression after 
using the property of delta function, we arrive at 

~(v, ~) = u ~ ~k ~-~+~(k~o~-~) (24) 
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where from Eq. (20) 

~ = ~ [~  + ( ~ o ) ~  ] {[,~ + (~Mo)~] ~,/~ + ~ M , , } ,  

I ( k~oM0 \ ~ 
n ~  = 2 [~2 j ( - ~ w o f ] )  {[~ + (~a~o)~l ' "  - ka~Wo}. 

(25.1) 

(25.2) 

Equation (24) gives the complete analytic solution for the velocity field due to the rigid plate 
oscillating periodically in its own plane. As a special case of this oscillation, the flow field for 
different plate oscillations is obtained by an appropriate choice of the Fourier coefficients 
which give rise to different plate oscillations. The periodic oscillations and their corresponding 
Fourier coefficients are given in the following table: 

Oscillations 

f(~) 

( i)  e i~~ 

(ii) cos Mot 

(iii) sin Mot 

(iv) / 
L0, T~ < [tl < To/2 

Fourier coefficients 

gk 

al = 1  and a k , = 0 ( k r  

1 
a l = a  1 = ~  and a ~ = 0 ,  otherwise, 

1 
al = - a - t  = 2/ and a~ = 0, otherwise, 

sin ( kMoT1) 
go 2T1/To; ak , for all ~: r 0, kTc 

oo 

(v) ~ 6(t - kTo) ~ = 1~To for ~11 k,. 
]c=-oo 

The flow fields in above five cases can be easily obtained by using successively the appropriate 
Fourier coefficients in Eq. (24). The resulting flow fields for these cases are then given by 

~tl (~/, ~ ) = 

~3(y, ~) = 

where 

~fe-Tni y+/(a;0t niy) 

U (e_,W+~(~0~_~w) + e_~ ~y-~(~,0t+,~_~)} 

Ue -m'~ cos (Mot - n ly) ,  

i f  { e  . . . .  ~@'g(Od0t--7/'l~) e -/7z 1l"] i(~0l~+N'-l/d)} 

Ue - ~ v  sin (Mot - n ly) ,  

U @ sin(kw0T1) 
e - m ~ y + i ( h a . , o t - n a y )  

z_ ,  7c ]~ : k =  - .~c 

U 

Too k = _ e o  

(26) 

(27) 

(2s) 

r 0, (29) 

(30) 

9,~ 2 ?.?de2* 2 r n s  = m~ [~.0=2,~/To, = n~ ]~0=2~/T,,, n - i  = --nl .  

We note that tt2(y: ~) given by (27) agrees with the result of Rajogopal [12] corresponding to 
the oscillations U cos Mot. 
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5 Concluding remarks 

We have solved a canonical boundary value problem for the flow field of  a non-Newtonian 

fluid, due to a rigid plate oscillating in its own plane. It is noted that the velocity field in the 

case of  a second grade fluid is governed by a third order partial differential equation as com- 

pared to second order Navier-Stokes equations for Newtonian fluids. The velocity profile (24) 

represents a wave of  transversal vibrations propagating inwards from the boundary (in the y- 

direction) with the phase velocity (ka~o/r~l~) and rapidly diminishing amplitude. TEe damping 

is such as to make the amplitude of  the oscillations fall off as exp{-m~$}.  

The linear magnitude (ra + in)-I is of  great physical importance in all problems of  oscilla- 

tory motion which do not involve changes of  density, as indicating the extent to which the 

effects of  viscosity penetrate into the fluid. It is worth mentioning that the formula (24) for an 

arbitrary harmonic component  of  the velocity of  the rigid boundary can be used to build up 

the solution for a certain special periodic motion of  the rigid boundary. Further, the results of  

flow for Newtonian fluid can be obtained as a special case of  this problem by choosing 

o q = 0 .  
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