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Summary 

Presented is an analysis on the Couette flow of cohesionless granular materials betw(,en 
two co-axial rotating cylinders. The constitutive equations employed have been postulated 
on the basis of available experimental and theoretical results which take into account the 
particle collisions as well as dynamic pressures induced by the truce of the unsemble phase 
average of the square of flow fluctuations. These constitutive equations loosely resemble the 
l~einer-Rivlin fluid behavior, and predict normal stress effects. 

New non-Newtonian effects in striking manners have been predicted in the cases of 
outer cylinder rotating-inner cylinder fixed as well as outer cylinder fixed-inner cylinder 
rotating. The theoretical predictions for the free surface profile for these two cases agree 
with our experimental observations and point to the validity of the proposed constitutive 
equations. All our results are based on no-slip conditions on the boundary surfaces. Further- 
more, the results obtained are different from the classical results obtained for the Couette 
flow of simple non-Newtonian fluids. 

Introduction 

Two idealized flow regimes exist in cohesionless granular  materials. The 
first flow regime which could loosely be termed the slow flow regime or  the 
initial flow regime corresponds to a case in which the interparticle interactions 
normal ly  arise mainly  due to interparticle Coulomb type  friction and sliding. 
I n  this regime the effect of particle collisions are negligible and one m a y  assume 
tha t  the const i tut ive equations are r~te independent.  Calculations based on 
this assumption for the s teady plastic flows and evolution of slip planes have 
been carried ou t  by  m a n y  authors  such as Drueker  and Prager  [1], Shield [2], 
[3], Drueker,  Gibson, and Henkel  [4], Jenike and Shield [5], Jenike [6], de Josselin 
de Jong  [7], [8], [9], Shunsuke [10], Rowe [11], Spencer [12], t to rne  [13], [14], 
[15], Spencer and Kingston [16], Mandl and Luque  [17], Drescher and De Jong  
[18], Mroz and Drescher [19], Nikolaevskii [20], Drescher [21], Wilde [22], Micha- 
lowski and Mroz [23], Mehrabadi  and Cowin [24], and Nemat-Nasser  and Shokouh 
[25]. 

I n  the second flow regime, wha t  is called the rapid flow regime, on the con- 
t ra ry  to the first slow plastic flow regime, the effect of Coulomb ty-pe inter- 
particle friction and interact ion is negligible compared to the interparticle forces 
tha t  arise due to the exchange of m o m e n t u m  in particle collisions. I n  this regime 
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the nature of constitutive equations are entirely different from the plastic type 
constitutive equations corresponding to the first regime. Surprisingly very few 
works have been reported on these t~)es of rapid flows. Historically, Hagen 
[26] was the first to study the flow of sand in tubes. Bagnold [27], [28] has studies 
the Couette flow of gravity-free suspension of solid particles in a Newtonian 
fluid and has defined what is now known as inertia dominated regions in flowing 
granular materials. Brown and Richards [29] have extensively discussed the 
various developments on the mechanics and flow of granular materials up to the 
year 1970. Savage [30] has extensively discussed the literature on varions gravity 
flows of cohesionless granular materials and has mentioned the difficulties 
encountered in using what is called the Goodman-Cowin continuum theory 
of granular materials [31], [32], [33] to such flows. Jenkins and Cowin [34] have 
entensively discussed the various theories for flowing granular materiM and have 
elaborated on the need for acceptable constitutive relationships for the rapid 
flow of granular materials. Of interest are the works of McTigue [35], Blinowski 
[36], Ogawa [37], and Kanatani  [38], in which new theories for flowing granular 
materials have been proposed and seem to support Bagnold's observations and 
results. 

In the next  section we shall elaborate on such theories and we propose a 
constitutive equation for the rapid flow of cohesionless granular materials that  
would be consistent with the accepted observations and analytical results ob- 
tained for such rapid flows. Having proposed our model we shall apply the 
model to the problem of rapid Couette flow of cohesionless granular materials 
between two co-axiM rotating cylinders. The results obtained indicate that 
he behavior of such materials in Couette flow is ~nalogous to the behavior of 
a class of non-Newtonian fluids possessing a l%einer-lgivlin type of constitutive 
equations and infact certain Weissenberg effects [43] can be predicted. However, 
the free surface profiles are fundamentally different in nature from the ones 
considered in [40], [42], [43]. In order to test the validity of the proposed consti- 
tutive equations we conduct two simple Couette flow experiments with iodized 
tame salt to show some evidence supporting the proposed mathematical model. 

Proposed Constitutive Equations 

Jenkins and Cowin [34] have extensively discussed the various forms of 
constitutive equations that may be suitable for the rapid flow of cohesionless 
granular materials. However, their work is not quite conclusive and infact they 
conclude that in a theory for rapidly flowing granular materials the stress should 
t~pically have two parts. One part depends explicitly upon the deformation 
rate tensor Dij, i.e., 

i D~j -- y (V~. + Vj,~), (1) 

where Vi is the velocity vector of the granules and a comma here denotes co- 
variants differentiation with respect to a fixed curvilinear coordinate system 
XJ. The second part  of the stress need not vanish with D O. Bagnold [27] had 
concluded that for the inertia dominated regions in rapid simple shear flows 
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of granular materials in absence of gravitational effects the shear and normal 
stresses are proportional to the square of the rate of deformation/) i j .  McTigue 
[35] has employed analytical tools for the classical "billiard ball" problem in 
treating the shear flow of cohesionless granular materials. His analysis employs 
a collision frequency function to calculate the net momentum exchange in particle- 
particle interaction to essentially arrive at results similar to Bagnold's [27]. He 
concludes that  the gravity free parts of stresses are given by 

64y a~ ~2 du~ du e 
"r1"2 --  35~z dX, dX , '  (2) 

~*'- 35 \dx~]' (3) 

where X2 denotes the direction of motion while X 1 is perpendicular to the direction 
of motion, ?, is the particle density, a is its radius and v is the solid volume fraction. 

McTigue [35] has proposed that  constitutive equations compatible to the 
I~einer-i%ivlin type constitutive equations (l~einer [39], Rivlin [40]), may be 
suitable for the general case. However, he does not give clear interpretation 
of the pressure term that  appears in his proposed equation. Kanatani  [38] has 
presented a micropolar continuum theory for the flow of granular materials 
and in particular the fast flows. He has shown that  particle velocity fluctuations 
play a dominant role in such fast flows and, further, that  for inclined gravity 
flows 

= 3 

T~., 200 ,e, \4z,/ (4) 

~'~ = 4os--: c(o) ~d~/  (5) 

where r is occupation radius, C(~) is a given function of density, ,u is a kinetic 
friction coefficient, and a is the particle radius. Blinowski [36] has employed 
statistical methods developed for the turbulent flow of fluids to describe the 
granular media rapid flow irregularities and particle fluctuations. From his 
analysis it is clear that  a tensor Ki~ ~ {V~'Vj'}, i.e. statitical ensemble phase 
average of the square of particle velocity fluctuations Vi', plays an important role 
in the constitutive equations. In fact as shown by Jenkins and Cowin [31] the 
trace of Kij, i.e., Ku can be shown to represent a pressure like term in the equation 
for the stress tensor. Ogawa [37] 1, employing a two-temperature theory for 
granular materials has obtained constitutive equations which depend on the 
average of the square of the magnitude of the fluctuations in velocity, this being 
considered as a second temperature in the theory. Although, still no clear cut 
form for the constitutive equations for the rapid flow of granular materials seem 
to exist, however, it would seem useful to propose one, based on the available 
experimental and theoretical results, and to check whether it agrees with the 
experimentally observed results for a particular rapid flow problem. Thus, 

* Also see 0gawa, 0memura, 0shima [44] 
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we intend to t reat  the rapid Couette flow of granular materials. For this purpose 
we propose the following constitutive equations 

r~ i = --p(~i~ ~ oqv 2 ]I21~/2 D 0 q- ~v2DikDk~, 

[2 = T1 (D,n,,D,~, ' __ Dm,~Dnm) ' 

(6) 

(7) 

where p is a dynamic pressure term that  is assumed to be due to the statistical 
trace average of the square of particle velocity fluctuations, i.e., <Vi'Vi'> as 
well as pure hydrostatic effects due to gravitation, ~1 and a2 are constants, and 
v is the solid volume traction, i.e., ~ = yv, where ~ is the bulk density and y 
is the grain density. As can be seen the constitutive equations are compatible 
with the Reiner-Rivlin type constitutive equations except for the dependence 
on solid volume fraction ~ as well as the role of the ensemble phase trace average 
<Vi'Vi'> in the pressure term p. Equation (6) is also compatible with the ex- 
perimental results of Bv~gnold [27] although in his experiment the effect of 
gravi ty  was absent. We shall elaborate on this poin~ in the next section. 

Couette Flow of Cohesionless Granular Materials 

Using a cylindrical polar coordinate system, we seek a solution to 

dv~ (8) 
ri];y ~- oJi = o~ dt ' 

where/~ -~ (0, 0, --g), g being the gravitational acceleration, and 

VI : Vr  --  Va : Vz : O, V2 : Vo : re)(r),  R i <_ r ~ R o. (9) 

This corresponds to a steady Couette flow between two rotating co-axial 
cylinder. In  order for the considered solutions to be valid the gap between the 
coaxial cylinders, i.e., R 0 -  Ri should be sufficiently small to prevent axial, 
radial, and secondary flows. In this case 

[o !1 ta ~ 
0 , 1 [ 'r2c~ 0 0 

DO = -21 O0 , D,;Dj~. - -  --~ r2co ' (10) 

where c~' = dm/dr.  

Based on the above expressions the components of the stress tensor reduce to 

1 Z'll "t'22 = --jO 7- -~- ~2V 2r2r 

1 
T12 = "~- alV ~ ir(-'l rco', 

T13 T23 = 0~ T33 ~ :  - -~0 ,  

(11) 

02) 

(13) 
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Note that from the above equations there exist a relationship between the 
physical components of the normal and shear stress, i.e., 

1 
P 3 n  -1- p = "7 c~"v2r2(~ (14) 

1 
2" = rl~ = 7 ~*v2 lrm'l r~o', (15) 

which are in agreement  with both Bagnold 's  experimental  results [27] as well 
as McTigues's results [35], and  Kana tan i ' s  results [37]. The governing Eq. (8) 
now reduce to 

_~rr = 1 a 1 (16) 
7 O"'7 (?'311) - -  "7 322' 

1 d 
--- (r~r,2) = 0, (17) 
r 2 dr 

@ 
- ~og. (18) 

~z 

F rom Eq. (18) we obtain 

p = - o ~ g z  + l(r). (19) 

Note that we have treated o as a constant which means that in such steady 
flows the blak density is assumed to remain constant. As explained by Shahinpoor 
[41], in this case, the bulk density corresponds to the critical density, i.e., density 
for loose random packing. This is due to the fact. that in such rapid flows all 
"Voronoi Cells" have equal chance for being created and annihilated, thus giving 
rise to uniform distribution for "Voronoi Ceils" or characteristic void spaces 2. 
This constancy of o or its solid counterpart v in steady Couette flow is a crucial 
point in the present analysis. 

From Eq. (17) we obtain that 

312 = A r  -2 ,  (20) 

where A is a constant .  F rom Eqs. (12) and (20) we obtain  the following nonlinear 
differential equat ion for determining a)(r) : 

* 2 Ir~o'l roJ (21) .4r-2 = -~- cXlVcr 

where Ver is the critical solid volume fraetionL From Eqs. (11) and (16) we 
obtain  the following differential equation 

_ore)2 - -  

From Eq. (19) we obtain  tha t  

a~o = l ,  ' 
Or 

3p 1 2 d 
ar + 7 ~ ~ 0%'~)" (22) 

dz 
dp _ og ~- ]' (23.1, 23.2) 
dr ~r  " 

2 For random aggregates of equal spheres the critical void ratio e = (1 -- v)/v equals 
%r "~ 0.64 under 20 psi overburden pressure (Shahinpoor [41]). 
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From Eqs. (22) and (23), we obtain 

Thus, 

1 2 d ff = er09 2 ~- -~ "2Vcr'~r (T209'2). 

f 1 2 .2 ,~ , B 

(24) 

(25) 

where B is another constant of integration. We are now in a position to analyse 
two distinct eases. First, the case corresponding to the inner cylinder fixed 
- -  outer cylinder rotating and Second, the case corresponding to the inner cylinder 
rotating outer cylinder fixed. In both eases we assume no slip conditions for the 
velocity Vo on the boundary walls. This can be achieved in experiments if the 
contacting walls are made from rubber like materials or if they are covered with 
a thin layer of a transparent glue. 

C a s e  1 - -  I n n e r  C y l i n d e r  F i x e d  - -  O u t e r  C y l i n d e r  R o t a t i n g  at  a C o n s t a n t  S p e e d  (90 

In this ease co' > 0 and thus from Eq. (21) we find that  

o~(r) = - 2 1 / ~ - ~ 1  ~;lr-1 + c ,  (26) 

where C is another constant of integration. Surprisingly the above solution is 
different from the one obtained for the Couette flow of non-Newtonian fluids by 
Serrin [42]. Applying the no-slip boundary conditions 

~(Ri) = 0,  ~(R0) = O~o, (27) 

where Bi and/~0 correspond to the inner and outer radii, we obtain from Eq. (26) 
that  

C =  2V'~/~lP~-riJ~i -1, f f ~ -  ~r ( ~  --  ~00) 1 . (28.1,28.2'  

Thus, 

From Eqs. (28.1, 28.2) we note that 

C ~___ O>oV;1Ri_l ( ~ ~00) -1 A - -  > 0 ,  - -  > 0 .  ( 2 9 . 2 )  
2r 1 

Shape o/the Free Sur/ace: Case 1 

Considering Eq. (23.2) and simplifing that  for the free surface, for which 

f~.z = / '  (3o) 
dr O~ crg 

/9 = constant, we obtain 
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Substituting for / ' ( r )  from Eq. (24) in the above equation yields 

l a y  ~ d - 
d~ = O~,~co~ + 7 ~ ~,-s (r~'~) 
dr 

~ e r g  

(31.~) 

l 2. 2 . , ' 2  Oc~.gz = ~cr rco 2 dr + --~ c~2~.r r @ B .  (32) 
,J 

This equation can further be simplified to 

ffcrgZ=Ocrcoo2(--~i - - - - 1  t-2( r ~ R o ]  \2R12 @lnr--___R~.]2r~-]-4-1 2or - 2 r - 2 @ B "  

(33) 

Thus, generally, in this case one winds up with a nonlinear free surface profile 
which could be tested against experimentally obtained surface profiles for various 
granular materials to check the validity of the proposed constitutive equations. 

Of interest is also the slope of the free surface ~ which is given, generally, by 
Eq. (31.1) and, specifically, for this case by  

b~r 

dz 2 r 1 1 1 -2 

At r = R i we obtain from Eq. (34) that  

d~ ~=R, =-T1 ~71g 1~2,,~coo~ ( ~-~a)-~ R~-~. (35) 

Thus, depending on the sign of ~2 the fluid tends to climb up or down the inner 
cylinder, accordingly, if c~2 > 0 01' zr < 0, respectively. 

Suitable experiments of this kind can be performed to determine the sign and 
the value of ~2 for any  particular granular material. Our experimental result with 

L b  s e e  2 
iodized salt (Figs. 1 and 2) indicate that  ~2 > 0, and in fact ~ ~ 0.087 ft-------7--- 

In  fact one can easily show that  generally for the slope of the free surface to be 
zero at some distance from the center, c~2 must  be a positive constant. This can be 
proved by  setting the general expression (31.1) equal to zero and calculating a r 

at  which dz is equal to zero. 
dr 

We here present some specific results for this ease. For a particle size distri- 
bution between 100 to 300 microns, the average diameter was about  189 microns 
with a s tandard deviation of about  9~o. We randomly created a loose packing of 
these particles to obtain a Vcr ~ 0.5 according to [41]. The particles weight 
density was measured to be Y8 ~ 119 L b / f t  3. For an co o = 2~ radians per second, 
and R i = 1", R 0 = 3", we measured 01( 0 ~ --11 ~ and 01(0) ~ 17 ~ �9 In  order to 
check the validity of our theory we calculated the value of ~2 from expression (35) 
and plugged in expression (34) to find the corresponding 01(0) to see whether it 
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• 
7hea/'e//vo~/ 

..~'4-e.:'~ ,-~.',, 

:'-'X:~-:kR~ 
: : ' , q  . . . .  -.3 

~ ~'..'r C';2:a.. 

I 
Fig. 1. The shape of the  free surface corresponding to case I, i.e., inner  cylinder fixed 

curer  cylinder rotat ing,  co o = 2= rad/sec.,  R i = 1%/~0 = 3"  

Fig. 2. Pho tograph  of the  exper imenta l  set  up corresponding to case 1 

m a t c h e s  t h e  e x p e r i m e n t a l l y  m e a s u r e d  v a l u e  of 17 ~ T h u s  

- - t a n  11 ~ ~ - - 0 . 1 9 4 3 8  ~ - -  7~-1~2eOo  ~ Ri  -~ 
T r=R, /~o 

0 . 5 • 2 1 5 2 1 5  1 - -  ~ 2 . 2 3 9 3 ~ 2  
o r  q- 0 . 19438  ~ 2 • 119 

0 .086 8 L b  sec2/f t  2 ] o~ 2 ] 
O F  
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Substituting this value of c~2 in expression (34) we find that  

dz r=~t ~ ~Bo 1 2 )  1 ] (~// ~oo)-2 + -  0.299  

  o01 o, 1 
which checks with the experimental results. The location for the minimum z to 

dz 
occur (Fig. 1) is obtained by setting -~r equal to zero with ~2 being 0.087 Lb sec2/ft 2 

and is found to be at r ~ 1.071 5" which is different from the experimentally 
found location as shown in Fig. 1. 

We note that  the above predictions are entirely different f'rom the ones 
obtained by Serrin (42) for the Couette flow of a simple non-Newtonian fluid 
corresponding to this case. 

I t  is interesting to note that  the slope at r -- R0 depends on the sign of the 
following expression 

A *  - ~  ~o~ - -  1 - -  - ~  o r  0 . 

Obviously, for sufficiently large Ro/Ri the above expression could be positive as is 
the ease for our experiments (Figs. 1 and 2). However for smaller values of Ro/Ri 
the above expression could be negative unless 

Case 2 -- Inner Cylinder Rotating -- Outer @ylinder Fixed 

Since in this case c~' < 0, we find from Eq. (21) that  

1 2 -2~,,~ (3S)  At-2  -- 40r co  . 

Thus, this can be integrated to  yield 

oJ(r) = - -2  l / ~ v ; I r  -1 ~- C, (39) 

where C is a constant of integration. Again this solution is different from the one 
obtained by Serrin [42] for a simple non-Newtoniall fluid corresponding to this 
special case. Applying the no-slip boundary conditions 

o~(R~) = ~ ,  ~ ( R o )  = 0 ,  (40)  

we obtain from Eq. (39) that  

C = 2 V -  A/cr v - l R  -1 Cr 0 , 

Thus, in this case: 

A = --a,~oi Vcr . (41.1, 41.2) 

-R i 

13 A c t a  M e c h .  42/3-4 
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F r o m  Eqs. (41.1, 41.2) we note  tha t  

C : ~o~vJRo_~ ( l o  _~)-2 - -  < 0 ,  

Shape  o/ the Free Sur /ace:  Case 2 

Considering Eq.  (23.2) again and  simplifying it for the free surface, for which 
p = constant ,  we obta in  

d'-~ = ~ r l ~ - i  Ocrr~ -~ ~ ~2~Vcr d'~ (r2(D'2) " (31.2) 

F r o m  Eqs  (31,2) and (42) we obta in  tha t  

Z : ~ ; l g - l [ @ c r 0 3 i 2 ( ~  0 - -  ~/)-2 ( r2-~o 2 @ l n r  - -  /--~2r) 

(44) 
_ _ - -  r - 2 + B  . ~-  --~ O; 2 ?~cr(9i R i  

dz which is given exac t ly  by  Of interest  again is the slope of the free surface, i.e., dr 

dr  ~ l g - 1  ~cro)i2 __ r _1_ . ?. 
(45) 

2 Or - -  r -~  " 

At r = R0 we obta in  f rom Eq.  (4:5) tha t  

(~/ I ) - ~ R - ~ o  - L - I  (46) dz  1 2 2 1 __ K o y ~cr 
~r ~=Ro = - -  "~ ~2~oJi 

and again depending on the sign of ~2 the fluid tends to climb up or down the 
outer  cylinder wall, accordingly,  if cr 2 > 0 or ~2 < 0, respectively.  Our experi- 

men ta l  results with iodized salt  (Figs. 3 and  4) indicate  again t ha t  a2 - -  0.087 L~ts:c"--_ 

Again we here present  some specific results concerning this second case. We use 
the same part icles for  which v~ ~ 0.5, 7~. ~ l l 9Lb / f t a "  For  an o9i ~ 20~ 
radians/second,  and  Ri = 1", R 0 : 3", we measured  02(0 ~ 43~ and 02(o) ~ - -36  ~ 
In  order to check the val id i ty  of our  theory  for this second ease we calculate the 
value of cr f rom expression (46) and subs t i tu ted  it in expression (45) eva lua ted  a t  
r = R~ to find the corresponding 0e(i) so see whether  it matches  the exper imenta l ly  
measured  value of 02(i). Thus 

dz = tan36O _0 .72654  1 (~_~ ~ ) - 2  r=Ro = ----~ }'S 1~r -- R0 -3  

or 0.72654 : 0.5 x 0.5 x 400zr ~ x 9 x 12 or - -  8.29380r 2 
4 x 27 x 119 

o r  [ 0.0871 Lb  sec2/ft 2 1 
i 

0 r  
I 
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wh ich  is close to  t h e  v a l u e  f o u n d  f r o m  t h e  e x p e r i m e n t a l  r esu l t s  of  t h e  f i r s t  case, 

S u b s t i t u t i n g  t h e  v a l u e  of  0,(~) in  express ion  (45) we f ind  t h a t  

t~n  43 ~ ~ 0 .9325 

o r  
Lb sec 2 

10.216982 - -  223.932c~2 ~ 0 .9325 ~ ~2 := 0 .0415 
f t  ~ 

wh ich  is n o t  cons i s t en t  w i t h  ou r  p r e v i o u s  resul ts .  H o w e v e r  t he  o rde r  of m a g n i t u d e  

of  ae is t h e  s a m e  as before .  Aga in  t h e  l oca t i on  for  t h e  m a x i m u m  z to  occur  (Fig.  2) 

. , . ~  . .  ,,,~ . ~ . - - ~  ..., .;~.-:..~LL;.,. . . . .  : . . ~ . . ~  

t / t / l i P / l / I l l / / / / ~ l [ / / / I / / ] / / ~ / / / / /  

Fig. 3. The shape of the free surface corresponding to ease 2, i. e., Inner eylindnr rotating --  
outer cylinder fixed, mi = 20~ rad/see, R i = 1" ,  R o = 3 "  

Fig. 4. Photograph of the experimental set up corresponding fo ease 2 

13" 



194 M. Shahinpoor and S. P. Lin: 

dz 
is ob t a ined  b y  se t t ing  ~rr equal  to zero wi th  c~ 2 being 0.087 L~t%~e2_ and  is found  to 

be a t  r ~ 2.88" which is d i f ferent  f rom the  expe r imen ta l ly  found  loca t ion  as 
shown in Fig.  3. 

Again  we no te  t ha t  the  above  pred ic t ions  are  di f ferent  from the  ones ob ta ined  
b y  Serr in  [42] for  the  Couet te  flow of a s imple non-Newton ian  f luid corresponding 
go this  ease. The slope a t  r ---- Ri depends  on the  sign of the  following expression 

(/~o )2 1 2 -2 (47) 

Therefore,  for  suff ic ient ly  small  ]~i//~0 the  above  expression Could be pos i t ive  as 
is the  case for our  expe r imen t  (Figs. 3 and  4). 

F o r  larger  values  of R i / R  o the  above  expression (47) can be nega t ive  unless 

c ~ <  2~cr%r2 (R~ - -  1)2R~ 2. (48) 

F u r t h e r  expe r imen ta l  resul ts  are  needed  for var ious  g ranu la r  mate r ia l s  to es tabl ish  
the  va l i d i t y  of the  above  conclusions. 
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