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Summary-  Zusammenfassung 

Dynamic Expansion of a Compressible Hyperelastic Spherical Shell. This paper is 
concerned with the finite spherically symmetric motion of a compressible hyperelastic spherical 
shell, subjected to a spatially uniform step function application of pressure at its inner surface. 
A method, given in a previous paper [1], for the determination of the field of characteristics, 
for expansion of a spherical cavity in an unbounded solid is adapted to consider the spherical 
shell problem. Results are presented graphically for a particular strain energy function and 
are compared with results obtained for an incompressible material and from linear elasticity 
theory. 

Dynamische Auiweitung einer kompressiblen hyperelastisehen Kugelschale. Diese 
Arbeit befaBt sich mit der endlichen, kugelf6rmig-symmetrischen Bewegung einer kompres- 
siblen hyperelastischen Kugelschale, die auf der Innenseite durch eine r~umlich gleichfSrmige 
[Druek-Sprungfunktien belastet wird. Eine Methode, wie sie in einer friiheren Arbeit [1] zur 
Bestimmung des Charakteristikenfeldes fiir die Aufweitung eines kugelfSrmigen Hohlraumes 
in einem unendlich allsgedehnten FestkSrper gegeben ist, wird ffir die Behandlung des Kugel- 
sehalenproblems erweitert. [Die Eesultate werden graphisch fiir eine besondere Verzerrungs- 
energiefunktion angegeben und mit l%esultaten fiir inkompressibles Material und ~esulr 
der linearen Elastizit~tstheorie verglichen. 

I. Introduction 

The finite spherically symmetr ic  mot ion of a spherical shell is considered in 
this paper.  ]it is assumed tha t  the shell is composed of an isotropic compressible 
hyperelastic material,  homogeneous in the undeformed state, and tha t  it is 
expanded by  a spatial ly uniform step funct ion application of pressure at  the inner 
surface. In  previous papers [1], [2] the authors  considered the expansion of a 
spherical cavi ty  in an unbounded  compressible hyperelastic solid. The governing 
equations in Lagrangian form for the method of characteristics and a numerical  
procedure for the determinat ion of the field of characteristics and shock pa th  in 
the characteristic plane are given in [1] for a spatially uniform step funct ion 
application of pressure at  the cavi ty  wall. An approximate  method  based on a 
discrete model is proposed in [2] and this method  appears to have some com- 
puta t ional  advantages  over the method  of characteristics for certain problems of 
spherically symmetr ic  mot ion of an unbounded  hyperelastic medium. However,  it 
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was found that  the method of characteristics is_ more easily adaptable to consider 
the motion of a spherical shell and an extension of the method of characteristics 
described in [1] is given in this paper. 

I t  was shown in [1[ that  a shock is initiated at the cavity wall when a step 
function application of pressure is applied if the strain energy function satisfies 
certain physically reasonable conditions. When a step function application of 
pressure is applied at  the inner surface of a spherical shell the response before the 
shock reaches the outer surface, is the same as for the expansion of a spherical 
cavity in an unbounded medium. After the shock is reflected from the outer 
surface of the shell it propagates radially inwards into deformed material in 
motion and undergoes further reflections front the inner and outer surfaces. 

The corresponding problem in linear elasticity theory has been considered by 
t~ose, Chon atld Chou [3] who presented numerical results obtained by  the method 
of characteristics. These results show that the lllOtion of a thick wailed con> 
pressible I tookean spherical shell due to a step function application of internal 
pressure is not periodic. The spherically symmetric motion of an incompressible 
dast ie  spherical shell has been considered by  Guo and Solecki [4], Eringen and 
Snhubi [5] and for a thin wailed shell, by  Wang [6]. I t  follows from the analyses 
given in [4], [5], and [6] tha t  if a radial oscillation results from a step function 
application of internal pressure this oscillation is periodic. The response of an in- 
compressible spherical shell to a sudden application of internal pressure is, in a 
sense, qualitatively different from tha t  of a compressible shell since the effect of 
the pressure is felt instantaneously throughout the shell whereas for a com- 
pressible shell a shock wave propagates back and forth. Nevertheless, it is reason- 
able to expect tha t  the response of a compressible shell should approximate  tha t  
for an incompressible shell if the compressibility is small. Numerical results 
presented in this paper  confirm this expectation. 

II. Governing Equations 

Notation used in this paper is the same as in [i] with the radial coordinate of a 
point in the sphere denoted by (R, r) in the (undeformed, deformed) state and the 
motion is given by 

r = r(R,  t). 

The strain energy per unit undeformed volume is expressed as a function 

w - w ( ~ ,  )4 

of the radial stretch 5 = dr/dR and the circumferential stretch 2 = r /R  and the 
nominal radial and circumferential stresses are given by  

P = W~/). z and Q = Wa/(252) 

respectively, where the subscripts denote partial  differentiation. Governing 
equations in Lagrangian form are given in [1] and are summarized as follows, 

aP 2(P -- Q) av 
a-~ + R = ~o a t  (5) 
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which is the equation of motion and 

~P W~ Ov W v 

Ov W v 2 ~ -  = We~. - ~  ~- ~.~ -~-. (3) 

In Eqs. (1), (2) and (3) ~0 is the density in the undeformed state, t is t ime and 
v = ~r/~t is the particle velocity. Eqs. (1), (2) and (3) are a set of totally hyper- 
bolic quasi-linear first order partial  differential equations with dependent vari- 
ables P,  Q and v and independent variables R and t. The characteristics in the 
(R, t) plane are given by  the differential equations 

dR dR ~+, ~- and dR = ~o 
dt dt dt 

where 

and 
~+ = c(,~, ~), ~- = - c ( L  ~), ~o = o 

I t  follows that  the ~0 characteristics are straight lines parallel to the t axis but  the 
~+ and ~- characteristics are not in general straight lines and must  be determined as 
par t  of the solution. 

I t  is convenient to introduce the following non-dimensional quantities 
= _~/A, W = W/~, P = P/~,  (2 = Q/~, p = p/~,  

V = = v  , U = C  = W ~ ,  i =  7 n =  

where A and B are the inner and outer radii respectively in the undeformed state, 
# is the modulus of rigidity for infinitesimal deformation from the undeformed 
state and p is the spatially uniform pressure applied at  R = A. The non-dimension- 
al relations along the characteristics are 

{ -~  W ~  :~ 2 ( ~ )  C i  dft  + C 2 d~ -+- C dP  = O along ~ (4) 

and dP  --  W ~  ~ -  di W ~  --  2dQ --  W~. --~ dt = 0 along . (5) 

t~elations along the characteristics, given by  Chou and Koenig [7], for the corre- 
sponding spherically symmetric problem in linear elasticity can be obtained as a 
limiting case of Eqs. (4) and (5) by neglecting terms 0(e ~) where e 2 = (~ - -  1) 2 
+ 2(2 - -  1) 2. The ~+ and ~- characteristics are straight lines in the linear elasticity 
problem since C is constant and, unlike the finite deformation non-linear problem, 
the field of characteristics does not have to be determined as par t  of the solution. 

III. Strong Discontinuities 

In  the problem considered a shock moves radially outwards into undeformed 
material  at  rest after the sudden application of pressure occurs at  R = A. When 
this shock reaches the outer surface _R = B it is reflected and after this first 
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reflection moves into deformed material in motion. Consequently the relations 
across u shock or strong discontinuity propagating into deformed material  in 
motion must be eonsidered. The stresses P and Q, particle velocity v and the 
radial stretch ~ are discontinuous across u shock but  the circumferential stretch 2 
is continuous since the displacement is continuous. The isentropic approximation 
is adopted consequently only two relations across the shock are required, the 
momentum equation 

- - [ P I N =  ~ooV[v ] (6) 

and the compatibili ty equation 

[v] + v[d  - 1 ] N  = o ,  C) 

where V is the speed (Lagrangian) of propagation of the shock and N = 1 for 
outward propagation and N = - -1  for inward propagation, in  Eqs. (6) and (7) 
the square brackets have the significance [A] = A+ --  A_ where A+ and A_ are 
the values of A just behind and ahead of the shock respectively. I t  follows from 
Eq~. (6) and (7) tha t  

V = ~ [i~ ~/-+ 
Lo0[~]/ 

or in non-dimensional form 

t S V j  " 

In  the linear elasticity problem V is constant and V = U so that  the path,  in the 
(R,/)  plane of a strong discontinuity, thug is u discontinuity of radial stress, 
coincides with a ~+ or r characteristic. 

Numerical results are obtained for a spatially uniform application of pressure 
at R --  1 given in non-dimensional form by  

~(i) = ct~(~), (8) 

where H(t) is the unit step function and ~ is a constant. The stress boundary 
conditions are 

P(1,~) : --  (-J7/2 ~H(i) (9) 

and 
P ( ~ ,  i) = o ,  ( lo )  

where a = a(t) is the inside radius in the deformed state and a/A is the circum- 
ferential stretch at R ~ 1. I t  is assumed that  the strain energy function satisfies 
the conditions 

(W~):.=I > 0 and (Wo~):.=I < 0, 

and as indicated in [1] a shock is initiated at J = 0, R = 1 for a spatially uniform 
application Of internal pressure given by Eq. (8). 
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IV. Consideration of Reflected Shock Waves 

In  [l] a numerical procedure is given for the determination of the shock path 
and field of characteristics in the (_R, i) plane for the expansion of a spherical 
cavity in an unbounded medium. An extension of this procedure to consider a 
thiek-wMled spherical shell is given in this section and reference is made to ~ig. l 
which gives a diagrammatic representation of the (R, ~) plane. 

E" 

C 

D 
r 

B I, 

A 
1 n n + E  

Fig. 1. Schematic representation of field of characteristics and the extensions required to 
determine the path of reflected shock at R = n 

The shock which is initiated at R = 1 and i = 0 propagates radially outwards 
into undeformed material at rest until it undergoes the first reIleetion at J~ ~ n 
and iB, where subscripts reler to points in Fig. 1. Until the first reflection occurs 
the response is identical to that for an unbounded medium and the shock path A B  
and the field of characteristics in region A B C  are obtained as described in [1]. I t  
may be deduced from the boundary condition (10), the jump relations (6) and (7) 
and the continuity of 2 that  the value of V for the reflected shock at B is the same 
as for the incident shock and that  V < C at B where C is evaluated just behind 
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the incident shock or just ahead of t he  reflected shock at  B. I t  follows that  the 
reflected shock pa th  BD lies above the ~- characteristic BC. These conclusions 
are also valid for subsequent reflections of the shock at  R = n. The shock pa th  BD 
and the field of characteristics in the region B D E  can be determined by  the 
numericM procedure described in [1] if the particle velocity and stretches (or 
stresses) ahead of she shock are known since the slope of BD at B and the stress 
boundary condition (10) are known. This means the field of characteristics in 
BCD must  be determined. This is done by  extending the field of characteristics in 
ABC  into BB'C'C and for the first reflection the field in ABB'C'  is the same as 
for the unbounded medium. When this field in BB'C'C has been obtained the 
shock pa th  BD and field of characteristics in BD E bounded by  BD, the ~0 line 
B E and the ~+ line through D is found from the numerical procedure. The extension 
e in the R direction must  be sufficiently large tha t  to, > tD. After the field in 
B D E  has been determined the par t  B'C'DB of the originM field obtained in 
BB'CC' is discarded. An extension B B " E " E  of the field in BD E is required and 
this is easily obtained by using the data along B E  and noting that  B B "  is an 
extension of the ~- P B  through 5/ with P(n  q- e, tB,,) = 0. This extension into 
region B " B E E "  represents the response of a sphere with the ratio of undeformed 
outer radius to undeformed inner radius equal to (n q- e)/n with zero prescribed 
stress at the inner radius and particle velocity at inner radius given by  data 
along BE. At, t ime te the shock front is reflected from the inner surface. I t  may  be 
deduced from the boundary condition (9), the jump relations (6) and (7) and the 
continu{ty of 2 that  V for the reflected shock is the same as for the incident shock 
and that  V > C at  D where C is evaluated just behind the incident shock at  D or 
just ahead of the reflected shock. I t  follows tha t  the reflected shock pa th  DE lies 
below the g+ line DE. These conclusions are also valid for subsequent reflections 
of the shock at  R = 1. Consequently the shock pa th  D F  and the field of charac- 
teristics in DFG can be obtained by  the numerical method since initial slope of 
D F  is known and the stretches and particle velocity ahead of the shock are known. 
When the field in DFG is obtained the original field in Dt~E is discarded. 

The procedure for further reflections is the same as for the first two reflections 
except for a minor difference for reflections at R = g. For example for the second 
reflection at  R = g the extension of field in DFG into FF' IG requires the data 
in the extension into B " B E E "  of the field in BDE whereas for the first reflection 
at B the extended field in BB'CD is the same as for the unbounded medium. I t  is 
necessary that  the extension s be sufficiently large tha t  t1 > tn and this can only 
be insured by  tr im and error. 

V. Numer ica l  Results  

N u m e r i c a l  results  were o b t a i n e d  from a Fortran  IV program in double  prec i s ion  
m o d e  for the  strain energy  f u n c t i o n  

W = -1~ (11 - -  3) @ v I3 ~'T-1 - -  1) , (11) 
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where ~ is Poisson's t~atio for infinitesimal deformation from the undeformed state 
and 

11 = 222 @ (~ and I~ = 248 ~' 

for spherically symmetric deformation. This is the strain energy function for 
which results were presented in [1] for the expansion of a spherical cavity in an 
unbounded medium. The neo-Hookean strain energy function is obtained as a 
limiting case of Eq. (11) as ~ approaches 0.5. 

I t  is well known that  an equilibrium state for a neo-ttookean spherical shell 
subjected to non-dimensional internal pressure ~ is possible only if ~ doe~ not 
exceed a critical value which depends on B/A. For example the critical value of q 
for B/A = 2 is qcrit --  0.8164. A compressible spherical shell with strain energy 
function (11) also has a critical internal pressure above which there is no equilibrium 
state and this pressure, obtained from a numerical method due to Haddow and 
Faulkner [8], is ~ c r i t  = 0.6456 for B/A = 2 and u = 0.3. I t  is clear that  a necessary 
but not sufficient condition for an oscillatory response when a spatially uniform 
step function application of pressure is applied at the inner surface is that  this 
pressure be less then qcm. Necessary and sufficient conditions for the periodic 
oscillation of an incompressible walled shells have been given Guo and Solecki [4]. 
The results presented in this paper are for pressures which are sufficiently low 
that  an oscillation occurs about the equilibrium state. 

I~esults for neo-Hookean spherical shells are presented for comparison purposes 
and these results were obtMned from numerical integration of the governing non- 
linear differential equation obtained by Guo and Solecki [4]. 

Results obtained for n = 2, ~ = 0.001 and ~ -- 0.3 indicate that  this non- 
dimensional pressure produces small deformation. These results are almost 

1.0 

< >  
< >  

0 5  

1 R n 

Fig. 2. Field of character is t ics  for n ~ 2, ~ =- 0.3, ~ ---~ 0.25 
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identical to those for linear elasticity theory  and this provides a check on the 
procedure since the response of an isotropie hyperelastic solid approaches tha t  for 
an isotropie linearly elastic solid as the deformation approaches zero. 

I n  Fig. 2 the field of eharacteristi~s and shock front  path ,  obtained by  the 
procedure described in section IV  is shown for n - -  2, ~ - -  0.25 and ~ = 0.3. The 
points let tered in Fig. 2 correspond to those in Fig. 1. 

1.20 ~ - - L i n e a r  elastic theory 
Non-linear theory 

1.15 

X 1.1o 

1.0 5 ~ / 

1.00 
1.0 2.0 3.0 4.0 

T 

Fig. 3. lgesponse o~ inner and outer surfaces for n : 2, v : 0.3, ~ = 0.25 

The  stretches at  the  inner and outer  radii along with the  quasi-static or equi- 
librium stretches obtained f rom an extension of the numerical  method  described 
in [8] are shown graphically in Fig. 3 for n = 2, q = 0.25 and  v = 0.3. Cusps in 
the curves correspond to reflections of the shock. Also shown in Fig. 3 are results, 
for linear elasticity, obtained by  the method  of characteristics described by  Chou 
and  Koenig [7], adapted  to consider a spherical shell. I n  Fig. 3b denotes the outer  
radius in the deformed state. 

The response of a neo-Kookean  spherical shell with n = 2, ~ = 0.25 is shown 
for comparison in Fig. 4~. 

120, 

1.15 

X 1.10 

1.05 

1.00 J '~  
0 1~0 2.0 3.0 

T 

Fig. 4k l~esponse of inner and outer surfaces for neo-I-Iookean she|l wittl n = 2, ~ = 0.25 
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I n  Fig. 5, stretches a t  the  inner  radius are shown graphical ly  for n = 2, 
= 0.1, ~ = 0.45, ~ = 0.48 and  the  neo-Hookean solid. These results indicate  tha t  

as ~ approaches 0.5 in  s t ra in  e n e N y  func t ion  (11) the response of the shell ap- 
proaches t ha t  of a neo- I tookean  shell. I-Iowever, as ~ approaches 0.5 difficulties 
arise in the numericM method  since V and  C approach inf in i ty  a nd  it  was no t  
possible to ob ta in  results for ~ > 0.48 because of numerica l  difficulties. 

1.07 - -  Neo- Hookean 

~----v =0.45 
. . . . . . . . . . . . .  ~ :0,48 

1.06 ~ ~ ' N  

1.05 

'~.03 

1.02 

0/ %,/ 
1.00 1.0 2.0 3.0 

Fig. 5. Response of inner surface for n ~ 2, ~ = 0.1, ~ = 0.45, ~ = 0.48 and neo-I-Iookean 
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