ACTA MECHANICA

Acta Mechanica 26, 159—170 (1977)
® by Springer-Verlag 1977

Inflation Bending Extension and Azimuthal Shearing
of a Fiber-Reinforced Elastic Sector of a Cireular Tube

By
E. C. Aifantis and D. E. Beskos, Minneapolis, Minnesota, USA

(Received December 2, 1975)

Summary — Zusammenfassung

Inflation Bending Extension and Azimuthal Shearing of a Fiber-Reinforced Elastic
Sector of a Circular Tube. Universal solutions for the deformation of inflation, bending,
extension and azimuthal shearing of a fiber-reinforced sector of a circular tube are obtained by
inverse methods. The material is assumed to be isotropic and non-linear elastic, incompressible
or compressible. The reinforcement consists of inextensible fibers along the R or ®@ or Z direc-
tions or in one or two sets of helical path. The surface tractions and the corresponding forces to
support the deformation are determined. A discussion is made about the strengthening of the
material due to the reinforcement, the sign of the tension in the fibers and the deformed con-
figuration of the fibers. '

Aufweitung, Biegung, Lingsdehnung und azimutaler Schub eines Iaserverstirkten
elastischen Sektors eines Kreiszylinderrohres. Allgemeine Losungen dieses Problems werden
durch Umkehrmethoden erhalten. Der Werkstoff wird isotrop und nichtlinear-elastisch,
kompressibel oder inkompressibel vorausgesetzt, mit Faserverstdrkung in B- oder ®- oder
Z-Richtung oder in einer Schar oder in zwei Scharen schraubenférmig. Oberflachenspannungen
und die der Deformation entsprechenden Kriite werden bestimmt. Diskutiert wird die Ver-
starkung des Korpers durch die Fasern, das Vorzeichen der Normalkraft in den Fasern und
die verformte Gestalt der Fasern.

1. Introduction

Universal solutions, that is solutions of controllable deformations independent
of the material behavior for fiber-reinforced isotropic elastic materials, incom-
pressible or compressible under large elastic deformations, were obtained by
Beskos[1], [2]. In those papers only the first four families of the non-homogeneous
deformations of Ericksen [3] yielding universal solutions for incompressible
unreinforced elastic materials were investigated. However, it was found later by
Singh and Pipkin [4] that there exists one more such family, namely the inflation,
bending extension and azimuthal shearing of a sector of a circular tube. For this
deformation the possibility of existence of universal solutions, for various systems
of reinforcement and for the material being isotropic elastic incompressible, is
investigated in this paper.

The fibers are assumed to be thin, flexible and inextensible filling the material
continuously and completely. The reinforced body is treated as a material subject
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to internal constraints according to the theory developed by Ericksex and Riv-
1IN {5] and also contained in TrRuEsDELL and Novw [6].

We prove, under these assumptions, that for the incompressible case there
exist universal solutions corresponding to reinforcement consisting of fibers along
the R, @,Z directions and in one or two sets of helical path, while no universal
solution exists for the compressible case.

The strengthening of the material due to the fiber reinforcement is of engineer-
ing importance. The reinforcement is considered to be significant if the fiber
tension is of the same order of magnitude with the maximum extra stress with
respect to the constants of the deformation.

For reasons of stability the fiber tension must be positive and this can be the
case under certain conditions among the various constants of the deformation
and the response coefficients of the constitutive equation of the material. Of
course, satisfaction of these conditions, in conjunction with existence of solution
of the boundary relations determining the constants of the deformation, depends
on the nature of the response coefficients of the material.

2. Preliminaries

The static configuration of a body is determined by the invertible trans-

formation
xt = ¥ (X)L, (2.1

The deformation gradient F ! is defined as

Fi =2, (2.2)

and the right and left Cauchy-Green deformation tensors are given by
Oaﬁ = gijFaiFﬁi, (2.3)
B = QF Ky, (2.4)

Here G*% and g;; are the metric tensors in the reference and present configuration,
respectively.
The stress tensor T for a homogeneous fiber-reinforced elastic material takes

the form [6]
T=8—-N, (2.5)

where 8 is the extra stress given by the constitutive equation of the material
and N is the stress due to the constraints. For a compressible material N is a
reaction stress due to the reinforcement given by

Nt = qF P F glesel (2.6)
and for an incompressible material N is a reaction stress plus a hydrostatic
pressure due to the incompressibility given by

N = gF 'F glevef - pd¥. 2.7

1 Here and throughout, Greek indices refer to material coordinates X%, Latin to the
spatial coordinates af, summation convention is used and a comma indicates differentiation.
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In Eqgs. (2.6) and (2.7) p and ¢ are scalar functions of the coordinates and e is a
unit vector in the reference configuration which is tangent at each point to the
fiber passing from that point.

For a compressible isotropic elastic material [6]

S<ij> = Podiy; + ﬁlB<ij> + ﬁ—I(B~1)<ij> s (2.8)

while for an incompressible isotropic elastic material

Scijs = BBy + BB ijss (2.9)

in physical components?.
In the Eqgs. (2.8) and (2.9), the response coefficients §,, f, and g_; are func-
tions of the three principal invariants of the tensor B satisfying the inequalities 6]

Be=0, p>0, B, ,=0. (2.10)

The conditions of the constraints of incompressibility and inextensibility im-
posed on the deformation are

det [B ] =1, (2.11)
Cpevef =1, (2.12)

respectively.
For our cylindrical deformation the equations of equilibrium in a cylindrical
system, 7, 6, z, for zero body forces, take the form

6T;n’> + __1_ aT<70> + 6T<7z> + T<¢r> _ T<96> — 0
> 7 o0 az r
Terg> | 1 P> | Tcpp> | 2 _
o T e T e T LTem =0 (2.13)
aT<12> 1 8T<Bz> aT<zz> 1
— — T —_
or T r o - o2 T po ST 0

3. Incompressible Materials

By taking both the reference and present configuration of the body to refer
to cylindrical coordinate systems R, @, Z and 7, 0, z respectively and the con-
stants 4, B, C and .D to correspond to inflation, azimuthal shearing, bending and
extension, respectively, the following deformation of an incompressible elastic
body is considered [4]:

r=AR, 6=BlogR- (@, z=DZ. (3.1)3

2 The physical components of a tensor T, symbolized by < >, are given in terms of
its contravariant components by 7' <ij~ = Vg,9;; T% (unsummed).

3 Jt is assumed that B == 0 because otherwise (3.1) becomes a deformation already
studied in [1].

Acta Mech. 26/1—4 11



162 E. C. Aifantis and D. E. Beskos:

The body in its undeformed state is bounded by the curved surfaces R = R,
R = R, (B, > R,) and the planes @ = +6, and Z = - L, while in the present
configuration the strained body is bounded by the curved surfaces r == r; = AR,
7 =r, = AR, the planes z = 4-DL and the surfaces 6 = Blog E 4- C6,.

A simple computation based on (2.2)—(2.4) yields the deformation gradient
and the Cauchy-Green tensors:

4 0 0
FS=|BR 0 0f, (3.2)
0O 0 D

A1 - By A:BRE O

[Copl = | A2B2C? o2 0 |, (3.3)
0 0 D2
42 AB 0
[Boijjs] = | A2B 4B+ C? O |, (3.4)
0 0 D2
. D2A2(B? 4 C?) —A2D*B 0
[(B'1)<z-,->]:(m)~2 — A2D2B Arpr 0 . (3.5)
0 0 A«

The incompressibility condition (2.11) takes the form
AC0D =1. (3.6)
The following types of reinforcement are considered:
a) Fibers Along the R Direction
The inextensibility condition (2.12) takes the form
B2 = (1 — 43)/4? (3.7)

and the reaction stress (2.6) the form

A2 A2B 0
[Noys=1=q|42B A42B* 0], (3.8}
0 0 0

indicating that the fiber tension 7', = q425? <£2 — 12) directed along the tangents
to the deformed fibers. o

From (2.9), (3.4) and (3.5) we conclude that S_,,. = 8_,. =0 and the rest
components of the extra stress are constants. Thus the equilibrium Egs. (2.13)
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on account of (2.5), (2.7) and (2.9) take the form
_® g0 1 o yepfa 1 gape
or 4 or rAB60+rA(B Dy

1
+ 7 (S<w> - S<06>) =0

(3.9)
Yo Y oepe ¥ gepl 2 4 2 _
r a6 . TAB ob AB&* TABQ+TS<TG>~O
o _
o

By assuming that p is a function of  only, we can integrate (3.9) and get

. S<'r(9> _Iil_
¢ =" 4= (3.10)

(B*— 1)

1
p= [S<w> - ‘S<09> + S<10>:} logr — K;A¥B? + 1) o + K,, (3.11)
where K; and K, are constants of integration. Thus deformation (3.1) case a) has
a universal solution. The constants that have to be determined from the boundary
conditions are 4, C, K, and K,, since B and D can be determined in terms of 4
and C from (3.6) and (3.7). We impose the following conditions: 7', |,
=T polier, =0, Topolrey, =0 and Ty |, =0.
The nonzero stresses of this deformation are

Tepy = —p — qA% + p142 4 p_ D2A2(B? 4- C%),
—p — qAZB? - BB + O 4 42D,

T<00> =
T<zz> = —p+ ,BI-Dz + ﬁ_1A402,
T<re> = "‘QAZB + ﬂ1A2B — ﬂ.lAzsz,

with ¢ and p given by (3.10) and (3.11), respectively. The deformation is supported
by the traction P,=1T_,. on the planes z = 4DL and the tractions

1 1
Po=——— (T B+ Tpr) and Py=——=—— (T B+ T 4.7)

VB2 - 7% VBE 4 2
on the surfaces § = Blog (r/4) + CO,. The scalar ¢ = f; — f_;D* + K2, in
view of (2.10), is positive provided K is positive. The reinforcement is significant
here and the originally radially placed fibers change horizontal level and become

curved in their horizontal plane.
The above analysis includes the special cases of ¢ = 1 (no bending) and D =1

(no extension).

b) Fibers Along the © Direction

The inextensibility condition (2.12) takes the form AC =1, which combined
with (3.6) gives
C=D=1/A. (3.12)

11"
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The only nonzero component of the reaction stress is
N po> = ¢ (3.13)

indicating that the fiber tension T'; == ¢ along the 6 direction. The equilibrium
Egs. (2.13) take the form

& i
- —azrl + -1”— (q + S<T’l‘> - S<09>) = O’

o o
— 5%’ — 6_(% + 28 6o =0, (3.14)
_ o

o

From (3.14); and (3.14), it is evident that p and ¢ are independent of z. Thus we
are able to integrate (3.14); and (3.14), and get

P =28 1050 — — WO) + (Scrs — Syns) log 7 -+ f 20 ar + Ky, (315)
¢ == [0() + PO)), (3.16)

where @(r), ¥(0) are arbitrary functions of r and 8, respectively, and K is a con-
stant. Thus deformation (3.11) case b has a universal solution.

It would be very convenient to impose the boundary conditions T s |-, =0,
but this would lead to S_,p.. = $,42B — §_,B = 0, which is impossible in view
of (2.10), unless B = 0, a case studied in [1]. This observation is also true for all
the subsequent cases. The nonzero stresses of this deformation are:

Teps = —p + Brd? + B (B2 + 1]42),
T = —p + q+ 5rAXB? + 1[/A%) 4 4,
T s = —p + Pu/42 + p1 4%,

T 95 = 4B — p,B.

The deformation is supported hy assigning pressures P(0) = —T o lrey,
Py(0) = —T s |py, and tractions P,, Py onthe surfaces 0 = Blog (r[4) & 0,/4
and P, on the planes 2 = 4-L/A. These conditions serve to determine the un-
known functions ¥(0), @(r) and the constants K,, 4 and B.

The contribution of the reinforcement and the sign of ¢ depend on the solution
of the above conditions. The fibers change level and experience a rigid body ro-
tation remaining along the 6§ direction. The above analysis includes the special
case of azimuthal shearing (4 = 1).

0) Fibers Along the Z Direction

The inextensibility condition (2.12) takes the form D = 1, which combined
with (3.6) gives
D=1, C=1/4%, (3.17)
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The only nonzero component of the reaction stress is
Ny =06, (3.18)

indicating that the fiber tension T; = ¢ along the z-direction. The equilibrium
Eqgs. (2.13) take the form

7 1
- —3]7'1 + T (S<'r'r> - S<96>) =0,
17
— ’a% +28_,. =0, (3.19)

op  9g _
oz %

The general solution of (3.19) is
P = 282020+ (Scprn — Suns) log 7 + $(2), (3.20)
9 = —¢@) + f(r, 0), (3.21)

where ¢(z) and f(r, ) are arbitrary functions of z and r, 8, respectively. Thus (3.1)
for this case has, in general, a universal solution.
The nonzero stresses of this deformation are:

Ters = —p + frd? + - A4B + 1/4%),
Tpo> = —p + B1AXB* + 1/4%) + B, 4%,
Tens = —0— g+ B+ 142,

Typ> = A2B(By — B-1).

As in case b) we assign surface tractions to support the deformation and their
relations with the stresses serve to determine the unknown functions. The con-
tribution of the reinforcement and the sigh of ¢ depend on the values of the above
functions. The fibers experience a rigid body rotation remaining straight along the
z direction. The above analysis includes the special case of azimuthal shearing
(Ad=0C=D=1).

d) One Set of Fibers of Helical Path Inclined at an Angle a to the z Direction
(Complete Tube)

The inextensibility condition (2.12) takes the form C242 sin? o + D?cos?a=1,
which combined with (3.6) gives

sin o

5 4d=———. (3.22)
DVl — D?2cos?a

_ D(1 — D?cos?a)

sin? o

C
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The reaction stress (2.6) takes the form

0 0 0
Wenl=q]|0 A2 gintg ACDsinacosa, |, (3.23)
0 ACDsinacosa D2cos?a

indicating that the fiber tension 7', = ¢(A4%C?sin? @ 4 D? cos? a) directed along
the tangents to the deformed fibers. The equilibrinm Egs. (2.13) take the form

1% 1 .
B _517'2 + T (!ZA202 sin? a + S<M> - S<90>) = O’

L garsing g B — - 9 2 -
" (66 + A*C?sin’ q 20 ACD sina cos a ol Sopes =0, % (3.24)

T

—iAC‘Dsinopcosaég~——a—1Z —choszaa—q =0.
r on 0z 9z

By assuming that ¢ is a constant we can integrate (3.24) and obtain
=K, (3.25)
P =28_,-0 + (K A%C?*sin?a 4+ S, — Sogpo) logr + Ky, (3.26)

where K, and K, and are constants, indicating that the problem has a universal
solution.
The nonzero stresses of the deformation are:

T = —p + A2+ B D2A3B + O2),
Ty = —p — G407 sinl 0 + fLANBE - OF) - iAo,
T oo = —p — qD?cos? a + ,D? +- §,4%C?,

Ty = —qACD sina cos a.

We assign the pressures P;(0) and Py(0) on the surfaces r = r; and r = 7,, respec-
tively and the force F, and moment M, on the planes z = 4~ DL, given by

F, = fnf“Tq»r dr do,
0

M, = fnszdz} % dr df.
0

The relations of these assigned pressures and forces with the stresses serve to
compute the constants D, B, K, and K,.

The contribution of the reinforcement is significant and the sign of ¢ depends
on the solution of the above relations. The deformed fibers remain helicoidal
but have different pitch and radius.
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¢} Two Sets of Fibers of Helical Path and Symmetrically Inclined at an Angle
a to the Z Direction (Complete Tube)

The inextensibility condition is that of case d) and thus C and A are given
by (3.22). The only nonzero components of Nare now N _,,.. = 2¢gA2C?%sin®x and
N = 2¢D? cos? «. Thus the equilibrium Eqgs. (3.24) yield

22>
w19 A202 sin2 S S =0
__677_7(!2 sinfa + S, — 8 ps) =0,
1 /0 L2, 0 2
—— (a_g + 2420%sin% a Eg‘) + " Spps =0, (3.27)

By assuming that ¢ is a constant, p and ¢ are given again by (3.25) and (3.26)
with 242C? instead of 42C2. The rest of the analysis follows that of the previous
case with the only difference that T'_,,. =0.

4. Compressible Materials

We investigate the possibility of existence of universal solutions of the de-
formation
r=fR), O6=DBlogR-+CO, =z=DZ 4.1)

of a compressible isotropic elastic material reinforced with various systems of
inextensible fibers. The analysis follows very closely that of the incompressible
material, so that only the results will be presented here.

a) Fibers Along the R Direction
The inextensibility condition (2.12) takes the form

or \2 r\2
— B {—}) =1. .
(i) + 2 (z) = 2
The solution of the above nonlinear equation is found as
1

__sing eB Bl . . r
r=-= [B———cos¢ 0 qﬁ] , ¢ = are sin (B R)' (4.3)

For this case the extra stress components are functions of r and the equilibrium
Eqgs. (2.13) take the form

7 B 1

y 08 < , O
—E;(sz)+_gr_.>*ﬁfg+7(8<1‘r>_s<09>)
o B, _ 4
Shagl =01 @4
O (B o\ Bew> (Bl 4B, 2 .
ar(quf)-i- 2 a2 S =0 |

where r = f(R) and f = or/oR.

¢ The third equilibrium equation is identically satisfied.
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Introducing the variable ¢ defined in (4.8), into Eqgs. (4.4.), the later equations®
take the form

L (CO'Wf)—1)—Fsm2¢]q—l—Fcosz¢§; +G@q

I8 <oy
= (Scps — Scpes) (cOtd — 1) - F —;ET?-,

1 prsin 29 2 4 (L o 26— sint ) 2L
[2G—|—Fcos2¢>]q—f—2Fs1n2¢8¢-}—<2 sin 2¢ sm2q5> "

—~ 28, (cobp — 1) — 5—88% 7,

where @ = cos ¢(cos ¢ — sin ¢) and F = e?/2(1 — tan ¢)2.
Eqgs. (4.5) can be brought into the general form

where 4 and 4 are functions of ¢ and B and B are functions of ¢ and the extra
stress components 8., 8_p- and 8. .

From Kgs. (4.6); and (4.6), we can obtain, in general, two different solutions
for ¢, which have to coincide. Thus, in general, we cannot have a solution for ¢
unless some conditions among the extra stress components are valid. This means

that there is no universal solution. As an example, the r = R/]/l 1 B?is a so-

2
'E S<re> -+ S<09> - S<'rr> under

the condition S_,,.. = (Bf1 — B*) (S5 — Scpe=)-

lution of (4.2) and leads to a solution for ¢ =

b) Fibers Along the © Direction
The inextensibility condition takes the form
r = R|C (4.7)
and thus the equilibrium take the form
Berrs — Scpp> +9=0,
2428 = 0.

Because the extra stress components are constants, (4.8) are satisfied, only if

S, = 0, indicating that there is no universal solution for this case.

5 B = 1 has been assumed for simplicity.
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¢) Fibers Along the Z Direction

The inextensibility condition simply gives D =1 and thus the function f,
defined by r = f(R), is not known. This means that the extra stress components
are functions of r in this case and the equilibrium equations take the form

8 <pr 1
_;._Z + . (S<rr> - S<09>) =0,
08 <r 2
=+ S = 0, (+9)
_a
o2 ’ )

indicating again that there is no universal solution, since the S_;;.. have to satisfy
certain conditions.

d) One Set of Fibers of Helical Path Inclined at an Angle a to the Z Direction

The inextensibility condition gives

r— Lo DPeoste p (4.10)

Csing
and the equilibrium equations take the form

Seps — Scpes + qA42C? sin? a =0, ]

—iAzOzsinza—az—AC’Dsina,cosa%—}—ESQb:O; l
r 4 r

20 4.11)

~1A0Dsinacosa?1—chos"a—a—q- =0.
r 20 oz

Because S_,,. and S_,,. are constants in (4.11),, ¢ will be also a constant and
thus (4.11), yields §_,,. = 0, indicating that there is no universal solution.

e} Two Sets of Fibers of Helical Path Symmetrically Inclined at an Angle a
to the Z Direction

Following the same procedure as in case d) we also conclude that there is no
universal solution for this case.

5. Conelusions

For a fiber-reinforced isotropic elastic sector of a circular tube undergoing
inflation, bending, extension and azimuthal shearing, universal solutions were
determined for the incompressible case. The addition of the reinforcement, even
though it makes the equilibrium equations more complicated than those of the
unreinforced case, permits the satisfaction of a greater number of boundary con-
ditions. However, the surface tractions supporting the deformation are, in general,



170  RE. C. Aifantis and E. D. Beskos: Fiber-Reinforced Elastic Sector of a Circular Tube

functions of both r and 0 and thus very complicated, as they were for the un-
reinforced case. For the compressible case it was shown that there are no uni-
versal solutions, even though it was found in [2] that the constraint of inexten-
sibility creates universal solutions for some deformations without such solutions
in the unconstrained case.
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