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S u m m a r y -  Zusammenfassung 

Inflation Bending Extension and Azimuthal Shearing of a Fiber-Reinforced Elastic 
Sector of a Circular Tube. Universal solutions for the deformation of inflation, bending, 
extension and azimuthal shearing of a fiber-reinforced sector of a circular tube are obtained by 
inverse methods. The material is assumed to be isotropic and non-linear elastic, incompressible 
or compressible. The reinforcement consists of inextensible fibers along the R or ~9 or Z direc- 
tions or in one or two sets of helical path. The surface tractions and the corresponding forces to 
support the deformation are determined, A discussion is made about the strengthening of the 
material due to the reinforcement, the sign of the tension in the fibers and the deformed con- 
figuration of the fibers. 

Aufweitung, Biegung, Liingsdehmmg und azimutaler Sehub eines faserverstiirkte~: 
elastischen Sektors eines Kreiszylinderrohres. Allgemeine LSsungen dieses Problems werden 
durch Umkehrmethoden erhMten. Der Werkstoff wird isotrop und nichtlinear-elas~isch, 
kompressibel oder inkompressibe] vorausgesetzt, mit Faserverst~rkung in R- oder O- oder 
Z-Richtung oder in einer Schar oder in zwei Scharen schraubenf5rmig. Oberfl~chenspannungen 
und die der Deformation entsprechenden Kr~fte werden bestimmt. Diskutiert wird die Ver- 
st~rkung des K5rpers durch die Fasern, das Vorzeichen der NormMkraft in den Fasern und 
die verformte Gestalt der Fasern. 

1. Introduction 

Universa l  solutions,  t h a t  is solut ions of control lable  de format ions  i ndependen t  
of the  ma te r i a l  behav io r  for f iber- re inforced isotropic  elast ic  mater ia l s ,  incom- 
pressible  or  compressible  under  large elast ic  deformat ions ,  were o b t a i n e d  b y  
Beskos  [ i ] ,  [2]. I n  those  papers  on ly  the  f i rs t  four  families of the  non-homogeneous  
deformat ions  of Er icksen  [3] y ie ld ing  un iversa l  solut ions  for  incompress ib le  
unre inforced  elast ic  ma te r i a l s  were inves t iga ted .  However ,  i t  was found  l a t e r  b y  
Singh and  ~ i p k i n  [4] t h a t  there  exis ts  one more  such fami ly ,  n a m e l y  the  inf la t ion,  
bending  ex tens ion  and  az imu tha l  shear ing  of a sector  of a c ircular  tube .  F o r  th is  
de fo rma t ion  the  poss ib i l i ty  of exis tence of universa l  solutions,  for var ious  sys tems 
of re inforcement  and  for the  ma te r i a l  being isotropic  elast ic  incompressible ,  is 
i nves t iga t ed  in th is  paper .  

The f ibers  are  assumed to be thin,  f lexible  a n d  inextens ib le  fi l l ing the  ma te r i a l  
con t inuous ly  and  complete ly .  The  re inforced b o d y  is t r e a t e d  as  a ma te r i a l  sub jec t  
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to internal constraints according to the theory developed by E~ICXSE~ and I~IV- 
LIN [5] and also contained in T~]~SD~I~L and NeLL [6]. 

We prove, under these assumptions, that  for the incompressible case there 
exist universal solutions corresponding to reinforcement consisting of fibers along" 
the R, O, Z directions and in one or two sets of helical path, while no universal 
solution exists for the compressible case. 

The strengthening of the material due to the fiber reinforcement is of engineer- 
ing importance. The reinforcement is considered to be significant if the fiber 
tension is of the same order of magnitude with the maximum extra stress with 
respect to the constants of the deformation. 

For reasons of stability the fiber tension must be positive and this can be the 
case under certain conditions among the various constants of the deformation 
and the response coefficients of the constitutive equation of the material. Of 
course, satisfaction of these conditions, in conjunction with existence of solution 
of the boundary relations determining the constants of the deformation, depends 
on the nature of the response coefficients of the materiah 

2. Preliminaries 

The static configuration 
formation 

xi = xqX ~) ~. 

The deformation gradient F~ i is defined as 

F2 = G (2.2) 

and the right and ]eft Cauehy-Green deformation tensors are given by 

C ~  = g~jFjF~J ,  (2.3) 

B tj = G ~ z F j F ~  ~. (2.4) 

of a body is determined by the invertible trans- 

(2.~) 

Here G ~ and g~i are the metric tensors in the reference and present configuration, 
respectively. 

The stress tensor T for a homogeneous fiber-reinforced elastic material takes 
the form [6] 

T = s - N ,  ( 2 . 5 )  

where S is the extra stress given by the constitutive equation of the material 
and N is the stress due to the constraints. For a compressible material N is a 
reaction stress due to the reinforcement given by 

N ~i ~- qF~F~r (2.6) 

and for an incompressible material N is a reaction stress plus a hydrostatic 
pressure due to the incompressibility given by 

N i~ =- q F ~ F j e ~ e  ~ d- I)(5 ~i. (2.7) 

i Here and throughout, Greek indices refer to material coordinates X% Latin to the 
spatial coordinates x i, summation convention is used and a comma indicates differentiation. 
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In Eqs. (2.6) and (2.7) p and q are scalar functions of the coordinates and e is a 
unit vector in the reference configuration which is tangent at each point to the 
fiber passing from that  point. 

:For a compressible isotropic elastic material [6] 

S<~s> =: ~0a~s + ~B<r + ~_~(B-~)<~>, (2.s) 

while for an incompressible isotropic elastic material 

S<~j> = r + ~_~(B-~)<r (2.9) 

in physical components ~. 
In the Eqs. (2.8) and (2.9), the response coefficients fl0, fl~ and fl-1 a r e  func- 

tions of the three principal invariants of the tensor B satisfying the inequalities [6] 

fi0 ~-- 0 ,  ~1 > 0 ,  fi--1 ~---- 0 .  (2.10) 

The conditions of the constraints of incompressibility and inextensibility im- 
posed on the deformation are 

det [B<ij>] = 1, (2.11) 

C, pe~e~ = 1, (2.12) 

respectively. 
For our cylindrical deformation the equations of equilibrium in a cylindrical 

system, r, 0, z, for zero body forces, take the form 

aT<rr>~r @ rl ~T<rO>~o -4- DT<~Z>~z @ T<rr> --r T<oo> = 0 I 

I ~T<oz> 2 
~T<~~ r -t- rl ~T<oo>o0 4: - -~z  + --r T <r~ = 0 I (2.13) 

tT<rz> 1 tT<oz> ~T<zz> 1 T<rz > = 0 I 

3. Incompressible Naterials 

:By taking both the reference and present configuration of the body to refer 
to cylindrical coordinate systems R, O, Z and r, 0, z respectively and the con- 
stants A, B, C and D to correspond to inflation, azimuthal shearing, bending and~ 
extension, respectively, the following deformation of an incompressible elastic 
body is considered [4] : 

r = A R ,  0 = B log _R -b- CO, z = DZ.  (3.1) a 

The physical components of a tensor T, symbolized by  < > ,  are given in terms of 
its contravariant components by T <i]> ~ ~ T ij (unsummed). 

a It  is assumed that B-~ 0 because otherwise (3.1) becomes a deformation already 
studied in [1]. 

Aeta Mech. 26/1--4 1t 
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The body  in its undeformed state is bounded by  the curved surfaces R = R~, 
R = R2 (Re > R1) and the planes 0 = ~:O0 and Z = :~L ,  while in the present 
configuration the strained body  is bounded by  the curved surfaces r = r~ = A R t ,  
r = r~ = AR~  the planes z = 4 - D L  and  the surI~ces 0 ~- B log/~ ! COo. 

A simple computa t ion  based on (2.2)--(2.4) yields the deformation gradient  
and the Cauchy-Green tensors:  

E~ i = C , 

0 

(3.2) 

[ A ~ ( I + B  ~) A~B2C 2 O ]  

[C,~] - -  A2BeC 2 Cer ~ 0 , 

0 0 D e 

(3.3) 

[B<~j>] = A A2(B 2 + C e) 0 , 

0 D 2 

(3.4) 

1 
[(B-1)<ii>] - -  (A2CD) 2 

-DeA2(B 2 + C e) --A~D2B ~ ] 
-- A eD~B A ~D ~ �9 

0 0 A~C e 

(3.~) 

The incompressibility condition (2.11) takes the form 

A~CD =- 1. (3.6) 

The following types  of reinforcement are considered: 

a) Fibers Along the R Direction 

The inextensibility condition (2.12) takes the form 

B 2 = (1 - -  A2) /A  ~ (3.7) 

and the reaction stress (2.6) the form 

[N<~j>] = q  A~B A~B  ~ , 

0 0 

(3.s) 

[ r 2 -- 1 t directed along the tangents  indicating tha t  the fiber tension T I = qA2B ~ \ B2 + r 2 ] 
to  the deformed fibers. 
F rom (2.9), (3.4) and (3.5) we conclude tha t  S<,z> = S<oz> = 0 and the rest  
components  of the extra stress are constants.  Thus the equilibrium Eqs.  (2.13) 
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on account of (2.5), (2.7) and (2.9) take the form 

~P A 2 Oq 
~r Or 

l A 2 B ~ q  + 1 A 2 ( B  ~ _ 1)q 
r ~0 r 

+ __1 (S<~> - S<oo>) = 0 
9" 

1 Op 1 A~B2 eq ~_qq _ 2 A2Bq + 2 S<~o > = 0 
r ~0 r - ~  - -  A 2 B  ~r r r 

(3.9) 

~z 

By assuming that  p is a function of r only, we can integrate (3.9) and get 

S<ro> + K1, 
q -  A~B 7 (3.10) 

p = [S<~> -- S<oo> + ( B 2 -  1)S<~0>] l o g r -  K I A 2 ( B ~ +  1) 1 2r-- ~ + K2, (3.11) 

where K 1 and K2 are constants of integration. Thus deformation (3.1) case a) has 
a universal solution. The constants that  have to be determined from the boundary 
conditions are A, C, K1 and K2, since B and D can be determined in terms of A 

T and C from (3.6) and (3.7). We impose the following conditions: <rr>lr=~ 
T<rr>[~=~, --=- 0, T<zz>l~=~, = 0 and T<oo>lr=r~ =- O. 
The nonzero stresses of this deformation are 

T<~> = - - p  -- qA ~ + fllA 2 + fl_ID2A2(B ~ + Ca), 

T <oo> = - - p  --  qA2B ~ + fllA~(B ~ + C') + fl_IA~D ~, 

T<=> = - - p  + ~ID ~ + fl_lA4C 2, 

T<~o> = --qA~B q- f l lA~B -- fl_IA2D2B, 

with q and p given by (3.10) and (3.11), respectively. The deformation is supported 
by the traction P~ =-T<~z> on the planes z = 4 - D L  and the tractions 

Pr = 1 (T<rr>B + T<ro>r ) and Po -= 1 (T<~o> B + T<oo>r ) 
(B~ + 9,~ !/-~ + 9, ~ 

on the surfaces 0 = B log (r/A) :]: COo. The scalar q = fil --  fl-1 D2 -t- K l r  ~ ,  in 
view of (2.10), is positive provided K1 is positive. The reinforcement is significant 
here and the originally radially placed fibers change horizontal level and become 
curved in their horizontal plane. 

The above analysis includes the special eases of C = 1 (no bending) and D = 1 
(lao extension). 

b) Fibers Along the 0 Direction 

The inextensibility condition (2.12) takes the form A C  = 1, which combined 
with (3.6) gives 

C ~- D = 1/A.  (3.12) 

11" 
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The only nonzero component  of the reaction stress is 

N <oo> = q, (3.13) 

indicating tha t  the fiber tension T! = q along the 0 direction. The equilibrium 
Eqs.  (2.13) take the form 

~P + ! (q + S<,.> - S<oo>) = O, 
~r  r 

~p eq 
~0 oO + 2S<~~ = 0, (3.14) 

~ = O. 
Oz 

F r o m  (3.14)3 and (3.14)1 it is evident tha t  p and ~/are independent  of z. Thus we 
are able to integrate (3.14)1 and (3.14h and get 

f r  dr + K1, (3.15) p = 2S<~0> 0 --  l_r T(O) + (S<~> - -  S<oo> ) log r ~- r ~ 

i 
q = - -  [ ~ ( r )  + ~ ( 0 ) ] ,  ( 3 . 1 6 )  

r 

where ~(r), T(0) are arbi t rary  functions of r and 0, respectively, and Kt  is a con- 
stant.  Thus deformation (3.11) case b has a universal solution. 

I t  would be very  convenient  to impose the boundary  conditions T<,~> 1~=~, = 0, 
bu t  this would lead to S<~o> = ~IAaB --  fl-lB ~ 0, which is impossible in view 
of (2.10), unless B = 0,  a ease studied in [1]. This observation is also true for all 
the subsequent cases. The nonzero stresses of this deformation are:  

T <r~> -~ - - p  + fi lA ~ + fi-l(B 2 @ l IAr) ,  

T<oo> = - -P + q + iliA2( B2 ~- i[ A~) + E-i, 

T<zz> • --19 @ fil/A 2 @ fl-xA 2, 

T<~0> = filA2B --  ~-IB.  

Tile deformation is supported by assigning pressures P I ( O ) - ~ - - T < ~ > l  . . . .  , 
P2(O) = --T<r~>l~=~ and tractions P~, Po on the surfaces 0 -= B log (r/A) ~: Oo/A 
and Pz on the planes z = ~ L / A .  These conditions serve to determine the un- 
known functions ~P(0), q~(r) and the constants  K1, A and B. 

The contr ibut ion of the reinforcement and the sign of q depend on the solution 
of the above conditions. The fibers change level and experience a rigid body  ro- 
ta t ion remaining along the 0 direction. The above analysis includes the special 
case of azimuthal  shearing (A = i ) .  

c) Fibers Along the Z Direction 

The inextensibility condition (2.12) takes the form D = 1, which combined 
with (3.6) gives 

D ~ 1, C 1/A 2. (3.17) 
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The only  nonzero componen t  of the  reac t ion  stress  is 

N <zz> = q, 

165 

(3.18) 

ind ica t ing  t h a t  the  f iber  tens ion  Tf = q along the  z-direct ion.  The equi l ibr ium 
Eqs.  (2.13) t ake  the  form 

_ @ + ! ( S < ~ >  - S<oo>) = o ,  
~r r 

0p ~_ 2S<~0> = 0, (3.19) 
~0 

~z ~z 

The  general  solut ion of (3.19) is 

p = 2S<~o>0 " (S<~> - -  S<oo>) log r ~- q~(z), (3.20) 

q =- - - r  - ~ / ( r ,  0),  (3.21) 

where r and  ](r, 0) are  a r b i t r a r y  funct ions  of z and  r, O, respect ively .  Thus (3.1) 
for th is  ease has, in general ,  a universa l  solut ion.  

The nonzero stresses of th is  de fo rmat ion  are :  

T<~>  = - - p  A- fil A2 -~ f i - IA~(B 2 + 1/A2), 

T<oo> = - - p  -~- f l lA~(B 2 -}- 1 /A  ~) -~- fl_lA 2, 

T <zz> = - - P  - -  q + fil + fi-1 A~,  

T <~o> =- A2B(f i l  - -  ]~-1). 

As in case b) we assign surface t rac t ions  to suppor t  the  de fo rmat ion  and  the i r  
re la t ions  wi th  the  stresses serve to de te rmine  the  unknown  functions.  The con- 
t r i bu t ion  of the  re inforcement  and  the  sign of q depend  on the  values  of the  above  
funct ions.  The fibers exper ience a r ig id  b o d y  ro t a t i on  remain ing  s t ra igh t  a long the  
z direct ion.  The above  analys is  includes the  special  case of az imu tha l  shear ing 
(A = c - = n = l ) .  

d) One Set  o/_Fibers o / H e l i c a l  P a t h  Inc l ined  at an  Angle  a to the z Direct ion 
(Complete Tube)  

The inex tens ib i l i t y  condi t ion  (2.12) t akes  the  form C2A ~ sin 2 a ~ D 2 cos 2 a = 1, 
which combined  wi th  (3.6) gives 

C = D(1 --  D 2 cos 2 a) A = sin a (3.22) 
sin 2 a ' D ]/1 --  D 2 cos ~ a 
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The react ion stress (2.6) takes the form 

[i 0 [N<ii>] = q AeC~ sinu a 

A C D  sin a cos a 

o ] 
AC, D sin a cos a ,  , 

D 2 cos s a 

(3.23) 

indicat ing tha t  the fiber tens ion Tz = q(A2C ~' sin2 a + D 9' cos ~ a) directed along 
the t angen ts  to the deformed fibers. The equi l ibr ium Eqs. (2.13) take the form 

_ o~o + • (qA~C~ sin~ ,~ + S < . >  - -  S<oo>) = O, I 
Or r 

r - ~  + sin s a - ~  - -  A C D  sin a cos a O---z + --r S<~~ - -  O, (3.24) 

1 
A C D  sin a cos a oq Op D ~ cos ~ a = 0. 

r 00 Oz ~ z  

By assuming tha t  q is a cons tan t  we can integrate  (3.24) and  obta in  

q = Ks,  (3.25) 

p = 2S<ro>O 4:- (K1A2C ~' sin 2 a + S<~> --  S<oo>) log r + Ks,  (3.26) 

where/~1 and  K2 and  are constants,  indicat ing t ha t  the problem has a universal  
solution. 

The nonzero stresses of the deformat ion are: 

T<~>  = - - p  + f l lA ~ + fl_ID~AS(B ~ + Ca), 

T<00> = - - p  - -  qA"C ~ sin s a + ,b'iA~(B ~ + C 2) + f i_lAeD 2, 

Y<=> = - - p  - -  qD 2 cos ~ a + f i lD 2 + t~_IAaC 2, 

T<o~> = - - q A C D  sin a cos a .  

We assign the pressures P~(O) and  P2(O) on the surfaces r = r 1 and  r = r2, respec- 
t ive ly  and  the force F~ and  moment  M~ on the planes z = :J:DL,  given by  

2~t T2 

0 r l  

2~ ~2 

The relat ions of these assigned pressures and  forces with the stresses serve to 
compute  the constants  D, B, K1 and  K2. 

The  cont r ibu t ion  of the reinforcement  is significant  and  the sign of q depends 
on the  solution of the above relations. The deformed fibers remain  helicoidal 
bu t  have  different pitch and  radius. 
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e) Two Sets of Fibers of Helical Path and Symmetrically Inclined at an Angle 
a to the Z Direction (Complete Tube) 

The inextensibi l i ty  condit ion is t h a t  of case d) and  thus  C and A are given 
b y  (3.22). The only  nonzero components  of N are now N<oo> z 2qASC ~ sin e o~ and 
N<zz> ~ 2qD s cos ~ ~. Thus the equi l ibr ium Eqs.  (3.24) yield 

Op + 1 (2qA2C s sins a + S<r~> - -  S<oo> ) ~- O, 
0~' r 

1 (0p 0q) 2 S<ro> = 0 ,  (3.27) r -~  + 2A~CS s i n S a - ~  + r 

@ 2D 2cos s a  0q  = 0 .  
0z ~z 

B y  assuming t h a t  q is a constant ,  p and  q are given again by  (3.25) and  (3.26) 
with 2A2C 2 ins tead of A2C 2. The rest  of the  analysis follows tha t  of the prev ious  
case with the only  difference t ha t  T<o,> = O. 

4. Compressible Materials 

We  invest igate  the  possibil i ty of existence of universal  solutions of the de- 
fo rmat ion  

r = / ( R ) ,  0 = B l o g R  + CO, z = D Z  (4.1) 

of a compressible isotropic elastic mater ia l  reinforced with  var ious sys tems of 
inextensible fibers. The analysis  follows very  closely t ha t  of the  incompressible 
mater ia l ,  so t h a t  only  the results will be presented here. 

a) Fibers Along the R Direction 

The inextensibi l i ty  condit ion (2.12) takes  the form 

OR] @ Bs = 1. (4.2) 

The solution of the  above nonlinear equat ion is found as 

1 

r = B B cos q~ -- sin 4J ' qb = are sin B . (4.3) 

For  this ease the ex t ra  stress components  are funct ions of r and  the  equil ibrium 
Eqs.  (2.13) take  the  fo rm 

-- OrO (q[,2) + __eS<~r>~r " RB f, _~+0q --rl (S<rr> __ S<00>) 

) BZ 3q 
B 0 S < ~ 0  > / R 2 

~r q ~ / / '  + 0r 00 

where r : / ( R )  a n d / '  = ~r/~R. 

q/,2 + q B , 

/ -d / = ~  

2 E 2 S 
R /'q + r <~o> = 0  

4 The third equilibrium equation is identically satisfied. 

(4.4) 4 
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In t roducing  the variable qb defined in (4.3), into Eqs. (4.4.), the later equations 5 
take the form 

0q 0q 
[G(cot $ - -  1) --  2, sin 2r q + 2, cos 2 ~b ~-~ + G --~0 

0S<~r> = (S<~> - S < o o > ) ( c o t r  1) + 2, ~r , 

1 2 , s i n 2 ~ O q  ( 1  ) ~q [2G + 2" cos 24] q q- ~- ~ + sin 24) - -  sin 2 qb 

= 2S<~0> (cot ~b --  ~) OS<,o> 2,, 
0r 

where G = cos $(cos r - -  sin q~) and 2' ~ e~/~(1 - -  t an  r 
Eqs. (4.5) can be brought  into the general form 

(4.5) 

0_q 

gq 
(4.6) 

where A and A are functions of r and B and B are functions of ~b and the extra 
stress components  S<~>,  S<oo> and S<~o>. 

From Eqs. (4.6)1 and (4.6)2 we can obtain, in general, two different solutions 
for q, which have to coincide. Thus, in genes:a], we cannot  have a solution for q 
unless some conditions among the extra stress components  are valid. This means 

tha t  there is no universal solution. As an example, the r = R/V1 + B ~ is a so- 

2 8 lution of (r and leads to a solution for q ~ ~ <~0> + S<oo> -- S<~> under  

the condition S <~o> = (B/1 -- B 2) (S<~r> --  S <oo>). 

b) 2,ibers Along the 0 Direction 

The inextensibility condition takes the form 

r = R / C  (4.7) 

and thus  the equilibrium take the form 

S < ~ >  - -  S<oo> + g -= O, I 
a_s / (4.8) 
~0 + 2S<~~ = O. 

Because the extra stress components  are constants,  (4.8) are satisfied, only if 
S<~r> = O, indicating tha t  there is no universal solution for this case. 

5 B ~ 1 has been assumed for simplicity. 
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c) Fibers Along the Z Direction 

The inex tens ib i l i t y  condi t ion  s imply  gives D ~ 1 and  thus  the  func t ion  ], 
def ined b y  r -~ f i R ) ,  is no t  known.  This  means  t h a t  the  ex t r a  s tress  componen t s  
are  funct ions  of r in this  case and  the  equi l ib r ium equat ions  t ake  the  form 

0S<~>ar + r t  (S<~> - -  S<o~>) = 0,  

8S<~e> + 2 S<~o > = O) (4.9) 
8r r 

8q O, 

ind ica t ing  again  t h a t  there  is no universa l  solution,  since the  S<~i> have  to sa t i s fy  
cer ta in  condi t ions.  

d) One Set o /F ibers  o /Hel ica l  Path Incl ined at an Angle a to the Z Direction 

The inex tens ib i l i t y  condi t ion  gives 

]/1 -- D 2 cos 2 a 
r - -  R (4.10) 

C sin a 

and  the  equi l ib r ium equat ions  t ake  the  form 

S < ~ >  - -  S<oo> + qA2C 2 sin ~ a = O, 

�9 8q 2 
8q - -  A C D  sm a cos a - -  + - -  S<~e> = 0,  

- -  - -  A2C 2 sin S a --~ 8z r 

8q _ D ~  a ~ z  = 0 "  - -  - -  A C D  sin a cos a - ~  cos ~ 

(4.11) 

Because  S<rr> and  S<oe> are  cons tan ts  in (4.11)1 , q will be also a cons tan t  and  
thus  (4.11)= yields  S<r = 0,  ind ica t ing  t h a t  there  is no universa l  solution. 

e) Two Sets o /F ibers  o /He l ica l  Path Symmetrical ly  Incl ined at an Angle a 
to the Z Direction 

Fol lowing  the  same procedure  as in case d) we also conclude t h a t  there  is no 
universa l  solut ion for this  case. 

5. Conclusions 

F o r  a f iber- re inforced isotropic  elast ic  sector  of a c ircular  t ube  undergoing  
inf la t ion,  bending,  ex tens ion  and  az imu tha l  shearing,  universa l  solut ions were 
de t e rmined  for the  incompress ib le  case. The add i t i on  of the  re inforcement ,  even 
though  i t  makes  the  equi l ibr ium equat ions  more  compl ica ted  t h a n  those  of the  
unre inforced  ease, pe rmi t s  the  sa t i s fac t ion  of a g rea te r  number  of b o u n d a r y  con- 
di t ions.  However ,  the  surface t rac t ions  suppor t ing  the  de fo rmat ion  are,  in general ,  
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funct ions  of bo th  r and  0 and  thus  ve ry  compl ica ted ,  as t hey  were for the  un- 
re inforced case. F o r  the  compressible  case i t  was shown t h a t  there  are no uni-  
versal  solutions,  even though  i t  was found  in [2] t h a t  the  cons t ra in t  of inex ten-  
s ib i l i ty  creates un iversa l  solut ions for some deformat ions  w i thou t  such solut ions 
in the  uncons t ra ined  case. 
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