
Acta Mechanica 58, 19--31 (1986) 
A C T A  iVIECHANICA 
�9 by Springer-Verlag 1986 

The Poynting Effect 

By 

E. W. Billington, Groombridge, Great  Britain 

(_Received November 26, 1984; revised February 11, 1985) 

Summary 

The predictions regarding the Poynting effect, obtained by way of the constitutive 
equation of a simple elastic solid expressed in terms of the spatial description using the 
Cauchy stress are compared with those obtained by way of the constitutive equation 
of a simple elastic solid expressed in terms of the referential description using the second 
referential stress tensor. I t  is shown that the quantitative predictions of the constitutive 
equation of a simple elastic solid expressed in terms of the referential description are in 
good accord with the observations of experiment. 

1. Introduction 

For  many  solids, in particular rubber-like solids, polymeric solids and metals, 
the mechanical response of a rod or tube twisted in simple torsion is charac- 
terised by  the Poynt ing effect. This effect relates to the observation [1], [2] that  
the lengths of various steel, copper and brass wires increased when twisted in the 
elastic range, and that  the elongation was proportional to the square of the twist. 
The development of a nonlinear theory of finite elasticity which predicts the form 
of  the Poynt ing effect is one of the outstanding successes of modern nonlinear 
continuum mechanics. The development of the appropriate  class of simple elastic 
material  has been directed almost exclusively to rubber-like solids, thus rec- 
ognising tha t  this type  of material  displays the Poynt ing effect to a marked 
extent,  (see for example [3]). The present paper  is concerned with the extent  to 
which the quant i ta t ive predictions of theory are in accord with the observations 
of experiment.  The discussion is restricted to isotropic, incompressible solids, no 
account being taken of thermodynamic restrictions, the proposed constitutive 
equation being purely mechanical. Furthermore,  no a t t empt  is made to take 
account of the subcontinuum, that  is the micromechanics of the material. 
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2. Constitutive Equat ion  

geferential  coordinates, denoted X: (0~ = 1, 2, 3), and spatial coordinates, 
denoted x ~ (i = 1, 2, 3), are set up in space by adjoining to the separate origins O 
and o the bases G = {G~, G~, Ga} and g = {gl, g~, g3}. Using standard notation 
and conventions [4], the deformation gradient tensor F = grad x, has the 
component form ~" = F~f lp  @ G ~ where Fi~ = xi~. 

The constitutive equation for a simple elastic solid in the spatial description 
will be taken to be, 

(2.1) 

where T is the Cauchy stress, B the left Cauchy-Green deformation tensor, and 
where the response coefficients fl~ (a = 0, ~ 1) are scalar functions of the principal 
invariants I B, I I  n and I I I  B of B. 

I t  has been shown [5] that  the constitutive equation for a simple elastic solid 
can be expressed in the referential description in the form 

where 

= O~oI ~- ~1C -t- 0c113-1, (C ----- FTF), 

~? = JUI/21~-IT(F-1) T U1/2, 

(2.2) 

(2.3) 

is the second referential stress, J = det F > 0, U the right stretch tensor, 13 ( =  P )  
the right Cauchy-Green deformation tensor, and where the response coefficients, 
~ (k = 0, i 1) are scalar functions of the principal invariants I c, I I  c and I I I  c of 13. 

Using the Cayley-Hamilton theorem, the constitutive equation (2.2) can be 
rearranged into the alternative form 

= c~oI -k ~1~ + ~2~ 2, (2.4) 

where, 

= (c 13-1)/4, (2.5) 

and where the response coefficients, 

[0~1(~ "~- IIc) - -  ~-1(~ JF IC)] 
(2 + / c  + He) 

16(oh ~- ~X_l) 

(2 + x~ + go)" 

(2.6) 

Equation (2.2) can be expressed in the form, 

(2.7) 
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where a prime denotes a deviator, and where ~ ---- O(K2', K3') is a non-negative 
factor of proportionality, it being noted that,  

1 
K 2 ' =  ~ tr  ]~,2, K3' = det ]g', (2.8) 

and that  the response coefficients, 

~0o = - 5  ~ ~ '  ~0, - -  ~ + -ff I ~ S ,  ( 2 0 ) ,  ~ = ~/(20), (2.9) 

use having been made of the CayleyoHamilton theorem. 
I t  has been shown [6] that  the biaxial stretching of a thin rubber sheet ean be 

described by  the ground state form of the constitutive equation (2.7) which is 
characterised by  having f2 = ~2 = 0, which limiting eonditions give ~o ---- 1. Setting 
f~ = 1, ~2 = 0 in Eq. (2.7) gives the ground state form of the constitutive equa- 
tion: 

~ ' . =  201~'. (2.10). 

Alternatively, noting from Eq. (2.6) that  the condition ~2 ~--~2 = 0 gives al 
--~_1, the ground state form of the constitutive equation can be expressed in 

the reduced form of Eq. (2.2) : 

( 2 . n )  

3. Extension and Torsion of a Solid Rod 

Consider a right circular solid rod of incompressible material. Let  (R, O, Z) be 
the cylindrical referential coordinates in the initial state of a particle that  is 
located in the deformed configuration by  the cylindrical spatial coordinates (r, 
O, z).  

For a twisted rod with its principal axis aligned with the Z axis, the simple 
deformations to be considered are: 

= o = o + D Z ,  : = P Z ,  (3.a)  

where F ~ l/L is the ratio of the current length 1 to the undeformed length L of 
a solid rod. Using Eq. (3.1), 

1 0 

[ F ~ ]  = 1 ' (3.2) 

0 
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and hence the non-vanishing physical components B(i]>, (B-X)(i]> of B and its 
inverse B -1 can be obtained in the form, 

[B(q>]---- 

"1 
--~ o o 

1 
0 ~ (1 + R2D ~) rDF 

0 rDF  F ~ 

E!~176 1 [(B-l) (O>] -= F - - rD 

- - rD  (1 + R~D e) 

(3.3.1, 2) 

Similarly, the physical components of C and its inverse C -1 can be obtained in the 
form: 

- 1  
- ~ o  o 

1 R D  
0 - -  

F F 

R D  (F a + R~D ~) 
0 

F F 

[c<~>] = [(o-~) <~#>1 = 

- F  0 0 - 

0 ( F  + R~D2~ R D  
\ F~ ] - - V  

R D  1 
0 

F ~ F2 

(3.4.1, 2) 

The non-vanishing physical components T(ij> of the Cauchy stress T and the 
non-vanishing physical components ~(~//> of the second referential stress tensor 
are : 

a~, 0 0 ~ 0 ~  0 0 

[T<ij)]= aoo ~ o , ,  [~'(o~fl)]=- #oo ~;oz �9 

TzO qzz ~ZO ~ZZ 

(3.5.1, 2) 

For zero applied traction on the curved surface at r = %, such that [a,r]r=r, 
= 0, the stress relations in the spatial description follow from Eqs. (2.1), (3.3), 
(3.5.1): 

a .  =: f [(aoo -- a.)/r] dr = - - D  ~ f fl~r dr, (3.6) 

aoo = a .  + fl1#D 2, (3.7) 

~= = a,, + ( F 3 -  1) ( 1 ) R2 
fil - - - ~  fl_, + fi_~ ~ D ~, (3.8) 

~o~ = fil - -  -~ fl-t F rD  = V~o. (3.9) 
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The  stress relat ions in the referent ial  descr ipt ion follow f rom 

(3.4), (3.5.2) : 
(F 2 -  1) 

~'~n = ao - -  ~1 - - ,  (3.10) 
F 

.R~D ~ 
~so = ~RR - -  ~, - - ' ~ ,  (3.11) 

(F  + 1) (F 3 - -  1) R~D ~ 
~zz  = ~nn -F ~x, F z ~ ~, - - - f - ,  (3.12) 

Eqs. (2.11), 

( F +  1) 
+oz---- eq ~ R D  -= +zo, (3.13) F2 

it being no ted  t h a t  ~1 ---= ~/2. 
Equa t ion  (2.3) can be rearranged,  using the  r ight  polar  decomposi t ion F = RU,  

in to  the  form, 

T ---- F ~ R  T , (3.14) 

where  R is the ro ta t ion  tensor.  Not ing t ha t  B ---- RCR T , it follows f rom Eqs.  (3.3.1) 
and  (3.4.1), t ha t  R mus t  be  of the  form,  

I: 1 
1 0 0 

[ R ] =  cos~b sin~b , 

- - s in  ~b cos ~b 

where, 

(3.15) 

cos ~b sin r 
c~oo = }/----~-- (~oo -~ kD+zo)  + - ~  (+oz -}- R D ~ z z ) ,  (3.18) 

az~ ---- F cos ~ z z  - -  F sin ~b+zo, (3.19 

cos ~b sin ~b 
~o~ = ]/-"~ (+oz + RD~zz )  - -  ]/---~ (~eo -~ RD+zo) = %0, (3.20) 

~0 = F cos +r + F sin q'~zz = ~o~, (3.21) 

F o r  s imple torsion,  (F  > I for  D > 0), Eq.  (3.13) can be expressed in the  form 

+ez = d~ (F  + 1) 2F------ ~ R D ,  (~, = 1/2 ~ ) ,  (3.22) 

En te r ing  the  fo rm for  R given b y  Eq.  (3.15) into Eq.  (3.14) gives: 

1 
a,,  = ~ 0aR, (3.17) 

R D  
t an  ~b = ~ . (3.16) (~/~ + 1) 
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where, using the form for ~ given in Eq. (6.1) of [6], that  is, 

4 = Go .ln (1 -+- 6~") 
r  , (3 23) 

and where, from equation (6.2) of [6]. 

r = 1 - ( r  
(324.1, 2) 

it being noted that  for simple torsion, 

3~'  (F -- 1) [(F 2 if- iv q- 1) (iv -b 1) q- R2D 2] 
-- ~3' -- ~----------'z -- (F -ff 1) {4R2D 2 -q- [(W 3 -- 1) q- R~D2]Z} 1/~' (3.25) 

the G' (~ : 1, 2, 3) being the proper numbers of J~'. As F --> 1, ~ --~ 0, and hence 
from Eq. (3.24.1), r 1 which condition, when entered into Eq. (3.23), gives 

--> Go. Hence for W --> 1, ~ -> Go and Eq. (3.22) reduces to, 

( F +  1) 
~ez : Go 2F---- ~ RD.  (3.26) 

From Eq. (3.26) it follows that,  

nl 1 
12" : 2zr f R2r dR : - -  ~GoR~ 4 - -  

o 4 

(F q- 1) D. (3.27) 
F2 

where R~ is the outer radius of the undeformed solid rod. 

4. Resul tant  Longi tudinal  Force on Plane End of Solid Rod 

The identity, 

4.1 The Spatial Description 

r l  T1 

f 1 1 1 r  [dCrrr ~ 

r r 

can be rearranged using the condition of equilibrium in the radial direction, 

to give, 

~6r (~00 - -  g r r  

3r r 

r l  

f r(~rr + aso) dr = rl2[a~r]r:r 1 --  rear,. 
r 

(4.1) 

(4.2) 

(4.3) 
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The right-circular solid rod is to be deformed by  simple torsion into a right- 
circular solid rod, the deformation being achieved with zero applied traction 
on the outer curved surface at  r ---- r~, such that  [ar,]~=,~ = 0 for all D. This con- 
dition reduces Eq. (4.3) to, 

T1 

f r(at,  -[- aao) dr ~- --r2arr, (4.4) 
t 

which applies to the annular region bounded by  the outer curved surface at  
r = r~ and the surface at  some arbitrary r. The condition of equilibrium in the 
radial direction must still apply in this annular region, and hence it follows 
from Eqs. (4.2) and (4.4) that  at any arbi t rary r, must have, 

art  -]- aoo ~ 0 ,  

for all values of D. 
Entering the condition of Eq. (4.5) into Eq. (3.7) gives, 

(4.5) 

at, = - - - ~  fllr*D ~ = - - D  ~ f ~,r dr, 
T 

(4.6) 

which can be expressed in the form, 

2 (4.7) 

where use has been made of Eq. (3.9). Eqs. (4.6) and (4.7) give the following 
conditions for fll : 

tilt2 = 2 f tilt dr,  [fl,]~=,, = 0 ,  (4.S) 
T 

subject to the conditions 

[fl-1]r=r, =4 =0, [~0z]r=rl =4 =0. (4.9) 

The condition of Eq. (4.6) can be entered into Eq. (3.8) to give: 

~ = ~ ~ - N ~-~ - 7 ~ - ~- ~-~ ~'D~. (4.1o) 

The resultant longitudinal force on the plane end of a solid rod, 

r l  

N, = 2= f ra , dr. 
0 

(4 .1])  
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Entering the form for a= given by Eq. (4.10) into Eq. (4.11) gives 

0 

(4.12) 

I t  follows from Eq. (4.8) that, 

F1 

f fllr dr -~ O, 
0 

(4.13) 

which condition can be entered into Eq. (4.12) to give, 

T1 FI N~=_2~e=(F*+F+l)ffl_lrdr_xD~f(fl, 2) F2 - -  -~  fl-1 r a dr ,  

0 0 

where the axial strain, 

(4.14) 

e= ---- F -- 1. (4.15) 

Eq. (4.12) can be expressed in the form, 

F1 F1 r l  

D F  2 To, dr - -  7i -~  vo,r ~ dr + - - ~  fl_tr a dr ,  (4.16) 

0 0 0 

where use has been made of Eq. (3.9). In the limit of infinitely small strains, 
(for which F--> 1 as D--> 0), use can be made of the theory of infinitesimal, 
linear elasticity, to give to a first approximation, 

FI r l  F1 

f f(' f ' ~oz dr = F D  1 - -  I r dr ~_ GoD r dr = -~  Gorl~D, 

0 0 0 

and the resultant torque, 

(4.17) 

F1 FI T1 

F = 2~ r2voz dr = 2 ~ D F  1 - -  --~ fl-1 ra dr "~ 2~GoD r a dr = -~  ~OoDrl 4, 

0 0 0 

(4.18) 

where Go is the classical shear modulus. Substituting in Eq. (4.16) from Eqs. (4.17) 
and (4.18) gives, 

Nz 1 D 2 ; 
g R 1 2  - -  3Goe= - -  --~ GoRI~D 2 + ~ fi_ir 8 dr. (4.16) 

1 , ]  
o 
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4.2 The Re]erential Description 

Eq. (3.19) can be rearranged using Eqs. (3.10), (3.12), (3.13) and (3.16) to 
give, 

fizz = F (~/tR -~- ~1 F 2 ~- (F 3/2 -~ 1) F 2 ]J cos ~'. (4.20) 

Using Eq. (4.5), the sum of Eqs. (3.17) and (3.18) can be rearranged to give: 

(F 3 ~- F 2 -~ F 31a ~ 1 -~ RSD 2) RSD a 
8"R_~ = --~1 F{(F3/2 _j_ 1) -~- [(F 312 -~ 1) -~- R2D 2] cos ~b} cos ~b. (4.21) 

The form for ~aR given by Eq. (4.21) can be entered into Eq. (4.20). The resulting 
form for a~ can be entered into Eq. (4.11) to give hrs. 

For infinitely small strains, (D ---> 0, F ---> 1), Eqs. (4.20) and (4.21) reduce to, 

1 
azz -~ 3Goe~ - -  ~ GoreD 2, (r ~_ R) ,  (4.22) 

1 
~RR ~- - - - -  Go r2D2, (r ~_ R) ,  (4.23) 

2 

where use has been made of Eq. (3.23) and the condition that  a~ ~ 1/2 ~. 
Entering the form for azz given by Eq. (4.22) into Eq. (4.11) gives, 

2v~ 1 
~R1------ ~ --- 3Goezz - -  ~ GoR12D ~, (rl ~ R1), (4.24) 

which is to be compared with Eq. (4.19). 

5. The Poynting Effect 

The Poynting effect is characterised by an axial elongation, 

e~ = F -- 1 ( ~  e(p)), (5.1) 

which is observed for the condition that  the resultant longitudinal force on the 
plane end of a solid rod is zero. 

Setting hr~ ---- 0 in Eqs. (4.19) and (4.24) gives, 

(a) Spatial  description: 
T1 

1 D 2 ; 
e(p) ~ ~-2 RlSD 2 3GoR12 ~ fl_lr 3 dr, (5.2) 

0 
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(b) Re/erential  description: 

1 
e(~,) = ~-~ R~2D ~. (5.3) 

For sufficiently small strains, the constitutive Eqs. (2.1) and (2.2), if com- 
patible, should give the same relation for Nz, and hence for the ratio e(p)/R~2D ~. 

I t  is evident from Eqs. (4.19) and (4.24) and Eqs. (5.2) and (5.3) that  this con- 
dition implies that either fl_~ ---- 0, or 

r l  

f f l_ l r  3 dr -~ O, (D --> O, E --> 1). (5.4) 
0 

Eq. (4.17) implies, 

Go ~ fl~ --  fl_~ ----- const., (D --> 0, E --> 1), (5.5) 

for infinitely small strains. The condition fl-1--~ 0, /~1 = Go, reduces Eq. (2.1) 
to the constitutive equation for a neo-Hookean solid [7]; these conditions, 
however, arc not in accord with Eqs. (4.8) and (4.9). 

6. Material  Response 

The prediction of Eq. (3.27) is in good accord with the experimental studies 
of Rivlin and Saunders [8]. 

With Nz adjusted to give e~, ~- 0 for all D, the prediction of Eq. (4.24) in 
the form Nz ~ --~GoR14De/4 is in good accord with the experimental studies 
of Rivlin and Saunders [8] for small strains. However, for large strains, [3], 
the relation between N~ and D 2, (with e~ ~ 0 for all D) is no longer linear, an 
observation in accord with Eq. (4.19). 

The results of the experimental studies of Poynting [1], [2], Foux [9], and 
of Lenoe et al. [3] are in accord with the prediction that  in simple torsion, the 
associated axial extension e(p) is proportional to 2 ~ in the elastic range of de- 
formation, it being noted that,  

= R I D .  (6.1) 

Although the weight of the apparatus may be very small, it is of interest 
to approximate its effect by  assuming the existence of a small tensile force h~ 
which is constant for all D. With Nz ~ const., for all D, Eq. (4.24) is of the 
form 

e(p) ~-- eo -~ b22, (b ~-- 1/12), (6.2) 

where 

eo : ~ : const. (6.3) 
3Go,R1 ~ 
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The presence of the term e0 necessitates a slightly different interpretation 
of the measurements given by  Foux [9] in his table 2. The positive and negative 
cycles have been independently analysed to give two values of b; the average 
of these two values of b is given in the present table 1 for wire numbers 4, 6, 
7 and 9, in the as-drawn state and after  heating. Also given in table 1 are the 
corresponding values of (RILL) 2 where R~ is the radius of the wire and L its 
undeformed length. Wire numbers 2, 5 and 8 are not shown because they are 
from a different source. From an examination of the dependence of the values 
Of b on the quant i ty  E and the ul t imate tensile strength given in table 1 of [9], 
it is concluded tha t  wire numbers 1 and 3 are in a significantly different material  
s ta te  and are therefore also omit ted from the present table 1. Wire number  10 
is omit ted because the effect of reversing the direction of shear of the as-drawn 
specimen is to reverse the direction of the change in length of the wire. This 
is taken to imply that  for this radius of wire, the material  properties are markedly 
different, and hence there is the possibility that  heat  t reatment  will not necessarily 
produce the required change in material  properties. 

I t  is evident f rom table 1 tha t  the values of b are dependent  upon the cross- 
section of the wires. There are two possible explanations for such a dependence 
u p o n t h e  cross-section. This type  of measurement  is subject to an error arising 
from an apparent  strengthening by  the material  nearer the longitudinal axis 
of the specimen. A second contributing factor is the linear dimension of the 
grains which for some materials may  approach that  of the diamter  of the wire. 

The variat ion of the average values of b given in table 1 with (R~/L) 2 can 
be represented to a good degree of approximation by  the linear relation, 

b = bo + c(R1/L) 2, 

Table 1. Values o/the parameters ]or the Poynting e]fect 

Wire (/~I/L) 2 b* bt 
No. • 10 s 

4 0.098 0.555 
0.099 0.253 

6 0.122 0.650 
0.122 0.259 

7 0.142 0.756 
0.145 0.307 

9 0.154 0.806 
0.157 0.355 

* As-drawn state 
-~ After heat treatment 
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where, 

--~ / 0.104 { as-drawn state 

b0 [ 0.069 for after heat t reatment 

and c is a constant characteristic of material properties. These values of b0 are 
in general accord with the value b ---= 0.0833, their average value b0 = 0.0865 
being, (within the limits of experimental accuracy), in good accord with the 
value of b predicted by  Eq. (5.3). 

The non-linear mechanical response of polyurethane rubbers with a high 
volume percentage of inorganic filler has been studied by  Lenoe et M. [3]. A 
value of b ---= 0.095 at  a strain rate of 0.0013 s -x, using a solid-rod specimen 
for which (.R1/L) 2 = 0.04, is in good accord with the value b = 0.0833 predicted 
by  equation (5.3). For a strain rate of 0.00013 s -1. Lenoe et M [3] give b = 0.14. 
There are two possible explanations for the significant difference between this 
value of b and the value predicted by equation (5.3). Examination of their results 
for this strain rate show what appears to be a significant value for e o Also, the 
scatter in the experimental results for this strain rate is much greater than 
for the measurements at  the higher strain rate. At this much lower strain rate, 
the axial elongation could be affected by  the onset of the phenomenon of creep. 
That  this is the most likely explanation can be inferred from the discussion 
given by  Lenoe et al. [3] of their torsion creep tests with a free end. 

With regard to the use of the generally non-symmetric second referential 
stress tensor, it is to be noted that  in the context of Eq. (2.2), it is symmetric 
for isotropic materials. I t  is also of interest to note that, in the context of Section 
3, the Cartesian components of the referential stress tensor have been introduced 
by  Blot [10], (see also [11], [12]). Its symmetric part  is called the gaumann 
stress tensor, (see Koiter  [13]). The conjugate strain measure associated with 
the Jaumann stress is the right stretch tensor, in terms of which the strain energy 
density can be expressed directly as a function. 

7. Conclusions 

The available measurements of the X3oynting effect for both metals and 
rubber-like solids are in good quantitative agreement with the prediction of the 
proposed constitutive equation for a simple elastic solid, as formulated in the 
referential description using the second referential stress tensor. 
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