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Summary. Plastic yielding of anisotropic metals can be either described by a macroscopic constitutive 
relation or assessed by means of a model which correlates single and polycrystal behaviors. The 
mathematical identification of the plastic work rate derived from the two approaches, for all strain 
rate tensors, leads to a fit of the polycrystal yield surface by an analytical function. When a quadratic 
form is assumed, the macroscopic anisotropy parameters become explicit functions of the texture 
coefficients. This identification method is applied to calculate yield surfaces and R-values of rolled 
and annealed steel sheets: the R-values and in general the flow rule, are more significantly modified 
by the fitting than the yield surface. Thus, it is worth extending the method to more general consti- 
tutive reIations which may be given by the form of their work function: alternative forms of the 
work function for plastic materials are explored, especially in the bearing of convexity and homo- 
geneity where quadratic forms have a distinct advantage. Finally, it is shown that the identification 
of the work function allows to express the phenomenological coefficients as analytical functions 
of the texture parameters for many forms of the work function; in the other cases, these coefficients 
may be obtained by linear or non-linear regression. 

1 Introduction 

Two approaches are generally used to describe the plastic anisotropy of polycrystals.  

The crystallographic approach takes explicitly into account  the texture  of the material  

by  considering the polycrystal  as a collection of grains, each of one having a specific 

orientation. Plastic properties of the aggregate are then calculated from the response 

of each of its consti tuents to a given loading. This approach lies on several levels of as- 
sumptions:  the microscopic deformation mechanisms, the microscopic hardening law, 

the link between the imposed boundary  conditions and stress and strain rate in each 

grain. The Taylor  [1]/Bishop and Hill [2] model belongs to this category and is iuteresting 

for several reasons: i) first, the calculated yield surface is an upper  bound of the real 

response of the material,  ii) the agreement  between calculated and experimental  properties 

is quite sat isfactory and iii) among  the polycrystal  plast ici ty models, it is one of the simplest 

to use. For  all these reasons, this model has been widely employed bu t  it seems still im- 

possible to introduce it in FE M calculations because of prohibitive computer  times. The 

s i tuat ion is even worse for more complex and more exact  models. 
Cont inuum mechanics, on the other hand, considers the material  as a whole and 

describes the anisotropy of the aggregate by  phenomenological  expressions such as Hill 's  

quadrat ic  [3] or non quadratic [4] criteria. Because of the relative simplicity of such ex- 
pressions, they  have been widely used in metal  forming applications. However,  the Hill  

quadratic criterion has been restricted to orthotropic textures,  i.e. to  the sheet symmet ry ,  
which disappears during the usual forming processes. The homogeneous (non necessarily 
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quadratic) Hill criterion, in its most convenient form, is subject to additional restrictions. 
]?ur~hermore, the phenomenological approach does not take explicitly into account the 
first source of anisotropy of the material, i.e. the crystallographic texture, which evolves 
with strain. 

I t  seems then interesting to develop a method which combines the advantages of 
both approaches: the simplicity of continuum mechanics together with the account of 
the texture of material. Montheillet et al. [5] (see also [6] and [7]) and Arminjon [8]--[10] 
have presented such methods. The first work proposes an approximation of the single 
crystal yield surface by a Hill type criterion (quadratic or not) but  reduces the texture 
of the material to its principal components. The second one takes into account the whole 
texture (described by the orientation distribution function) but  the approximation of the 
polycrystal behaviour is limited to a quadratic yield criterion, although a possible way 
of extension was briefly outlined in [10]. 

The aims of the present paper are: 

i) to recall in a more geometrical way the principles of the Arminjon method [8]--[10], 
underlining some differences in the analytical presentation and some recent improvements 
in the numerical treatment,  

ii) to discuss its application to yield surfaces and R(~) values calculations in the ease 
of steel rolling textures, 

iii) and last but  not least to propose several extensions of this method to calculations 
of yield surfaces for different types of criteria. In doing so, some general considerations 
are delivered, regarding the possible analytical forms of the work function and yield 
criterion in plasticity. 

2 Principle of the method 

The method used here provides a fitting of the polycrystal yield surface calculated through 
a crystallographic approach by  an analytical expression. The originality of the method 
consists in fitting, not the conventional yield surface, but  the associated work function. 
This leads to analytical calculations in important  eases. The fitting process will be described 
for the ease of a Hill quadratic criterion and the Taylor-Bishop and Hill model: the ex- 
tension to other types of functions and to other polycrystalline models will be discussed 
in some detail in the discussion part  of this paper. 

The crystallographic approach 

All the grains in the polycrystal are supposed to be plastically deformed, hence the for- 
mulation is not valid during unloading or at the first stage of loading. Only the per- 
manent  part  of the strain-rate is considered, which derives from the velocity of the per- 
manent  displacement: this latter is the displacement which would be measured after 
a total unloading from the current macroscopic stress. Thus the "plastic" (or permanent) 
strain-rate of a grain, D g, contains the rate of the residual elastic strain in this grain and 
we admit that  the maximum work principle 1 holds with this phenomenological definition 
of D g. This is consistent with the nature of the Sehmid law [11]. 

i 6,:Dg =< 6g:Dq for any 6, not exterior to the yield surface of the grain 
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If we designate by D the macroscopic plastic strain rate, the assumption of strain 

rate homogeneity [i], [2] can be written: 

D ~ = O (1) 

where D g designates the strain rate tensor in grain g. We assume furthermore that de- 

formation is accommodated by slip (of the pencil glide type, for steels) and that this 

slip mode obeys the Schmid law. The critical resolved shear stress ~c will be taken the 

same for all slip systems in all the grains. Having thus characterized the microscopic 

behavior, and knowing the strain rate in each grain, it is then possible to calculate the 

plastic work rate I~g(D ~) in each grain (for simplicity, the letter g is used to designate 

the grain as well as its orientation) which is defined as2: 

W~(D ~) = S~. D~i = S~: D ~ (2) 

where S a, the deviatoric stress tensor in grain g, is determined through the maximum 

work rate principle associated with the Sehmid law. This stress tensor can be normalized 

by vc and D g can be also normalized by a certain norm Dn, which will be defined later. 

Having done that, I~a(D g) can be rewritten as: 

lzfg(D g) = D,,vc Sij Dig -- DnTcM g (3) 
Tc Dn 

where Ma(Da/Dn) is the well known Taylor factor. To define D~, we use here the 5 
dimensional notation introduced by  Lequeu et al. [6] to transform stress and strain rate 
tensors into vectors: 

(4) 
D =  ' 

which are work-conjugate, i.e. : 

Wa : Si ~ .. n i  ~ _ Sic. D~g. (5) 

To avoid heavy notations, the same symbol is (abusively) employed for the deviatoric 
tensor and the corresponding vector in lR 5. Thus, the components will depend on one 

or two indices. The norm D~ of the vector D in this 5D space is simply: 

D .  : II-II : (6 )  

In  this way, M g corresponds to the plastic work rate associated with a unit vector D a 
and with a stress vector normalized by  Tc. (In [8]--[10], the direct representation of 
general stress and strain-rate tensors by  six-dimensional vectors is used. Incompressi- 
bility and the associated pressure-independency of the yield criterion leave only five 
independent components. A different norm is also used.) The average plastic work rate 
for the aggregate, W(D), can then be calculated from: 

W(D) : f I;Vg(D g) ](y) dff. (7) 
g 

The Einstein convention of summation on repeated indices i and j (but not on if) is used 
troughout the paper 
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Under the general conditions of macro-homogeneity [12] for the stress field and the per- 
manent strain-rate field (the latter deriving from a continuous velocity field), the average 
(7) of the product S g : 1) g equals the product of the averages S : D. Thus (7) is also the 
macroscopic rate of plastic work, independently of the Taylor assumption. In this equation 
/(f]) designates the orientation distribution function (ODF) which describes the texture 
of the material [13], [14] and the integration is performed over the whole orientation 
space. Using the series expansion method, Bunge [14] has shown that  this function can 
be written as: 

/max M(l) iV(l) :. 

/(g) Z Z Z , , ~ . j .  (s) 
l=O g = l  v = t  

:o 
The Tt ~ functions form a base of harmonic functions on which the texture of the material 
can be expressed and described by the C y  coefficients. The chosen formalism assumes 
cubic symmetry of the crystal and orthotropie symmetry of the deformation process. 
This choice has been made because the method is applied in the following pages to rolling 
textures of steels but is by no means compulsory [10]. For more details concerning this 
series expansion method, the reader is referred to the original work of Bunge [13], [14]. 

Since the l~ 7 function is homogeneous of degree one with respect to positive multipliers 
(i.e. I~(),D) = 2W(D) for 2 ~ 0), it is sufficient to work only with unit vectors D and/or 
D g and normalized stress vectors S/Tc and replace the average plastic work rate I~(D) 
by the average Taylor factor M(D) which is calculated in the same manner as W(D) by: 

M(D) = f M~(D ~)/(g) dg. (9) 
g 

Combining Eq. (8) and (9) leads to the following expression for M(/)): 

Ittv g 

S1/'~c 

52/~c 

Fig. 1. The mean Taylor factor ~r(D) averaged over the whole orientation distribution function 
is represented by the distance to the tangent hyperplane associated with a given applied strain 
rate (unit vector). 2D schematic representation. The stresses are normalized by r c 
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or more simply: 

iraax 

M(D) = ~ C F M y ( D )  = X C~M~(D) (11) 
l # v  i = 1 

using a single index notation. When lm~ is taken equal to 22, which is usually the case 
in texture calculations, i ~ x  is equal to 125. Here the coefficients C~ describe the texture 
of the material and the Mi(D) terms depend only on the macroscopic strain rate. Under 
Taylor's model and isotropic strain hardening assumptions, these strain rate functions 
can be easily calculated a priori and saved into a file for several values of D [8], [15]. 
I t  is worth noting that  M(D) can also be written as: 

3I(0) = Si .  Di/~ (12) 

where S is the macroscopis stress vector and M(D) is equal to the distance from the origin 
to the tangent plane of normal D, since D is a unit vector (see Fig. 1). In  this way, the 
yield surface is defined as the inner envelope of all the hyperplanes H~ obtained by varying 
the direction of D in the 5D space. 

The phenomenological approach 

Here, the yield surface of the polycrystal is described by a Hill quadratic criterion which, 
in the case of orthotropic symmetry, is written as: 

/ ( s )  - F ( s ~  - &~)~ + G ( S .  - -  S ~ )  ~ + H ( S ~  - -  S,~)~ 

~- 2{LS~a + MS~3 + 2VS~2} = T~ 2 . 03) 

Thus, the amount of isotropic hardening is given by the value of ~c, the CRSS defined 
previously and not by the flow stress in uniaxial tension as it is usually the case. The 
method may also be applied to a general (non-orthotropic) quadratic criterion, which in 
the case of incompressibility contains 15 independent coefficients [10]. 

The associated flow rule isa: 

2 can be calculated from. 

a/ 
!~r. = Sij" Dij = Sij2 ~ -- 2;,re ~ (15) 

where the index h stands for Hill. Since/(S~j) is a quadratic function of the Sq components, 
it is possible to eMeulate these components as functions of 5 independent components 
of D and using (15), to write: 

Wh2(D) _ (F + H) D~I + 2HD11D22 + (G + H) D22 2D~a 2D~a 2D~ (16) 
%2 FH + GH + GF + ---if- + Y + 

where F, G, H, L, M and Ar characterize the anisotropy of the material and thus depend 
strongly on its texture and of course the D~jDkt terms depend only on the imposed strain 
rate. Here again, it is sufficient to consider unit vectors D and l~(D)/~c can then be replaced 

a To calculate the partial derivative, S~j has to be distinguished from Si~ 



X~ ~ D~I, 

X~ = DllD~2, 

:q = D~2, 

X~ = D~3, 

X 5  : D ~ ,  

thus : 

Mh2(D) : ~kXk 
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by Mh(D). Equation (16) takes a simpler form if the following notation is introduced: 

~, = (F + H)/ (FG + F H  ,~ GH) 

~2 = 2H/(FG + F H  -? GH) 

~ = (G + ~)/(F~ + FH + GH) 
(17) 

~4 = 2/L  

~5 = 2 / M  

~ = 2 / N  

( i s )  

where the ak's depend only on the anisotropy and the Xk depend only on the strain rate. 
Mh(D) can be used to represent the yield surface by the inner envelope of tangent planes, 
even if this procedure is rarely used in this case since we have an analytical expression 
of this surface (Eq. (13)). 

Principle o/ the identi]ication procedure 

I t  has been seen that  in both crystallographic and analytical approaches, it is possible 
to express M(D) or MZ(D) as functions of the same variable D and to separate texture 

(or anisotropy) and imposed strain rate. Both expressions contain some coefficients (on 

one hand, the Ci coefficients and on the other, the ~k) which depend only on the anisotropy 

(here the texture) of the material. 

It has been seen also that the quantity M(D) is equal to the distance from the origin 

to the yield surface. If we denote by Me(D) and Mh(D) the normalized macroscopic plastic 

work rates as calculated in the two previous paragraphs (c stands for crystallographic 

and h for Hill), a good approximation of the crystallographic yield surface by a quadratic 

criterion can be obtained by minimizing the function (Fig. 2) : 

1~ = ~ { M e ( D )  - -  M , ( D ) }  2 = M i n .  (19)  
D 

with respect to the coefficients ~k introduced in Eq. (18). 
However, due to the square root sign present in the expression of Mh(D) (Eq. (18) 

defines the square of this quantity), this minimization does not correspond to a linear 
regression problem and should then be performed for each texture. Having noticed that,  
it was decided to replace (19) by the following minimum: 

/2 = ~ {Me2(D) -- Mh2(D)} 2 = Min. (20) 
D 

which can be rewritten as: 

/2 = ~ {CiCjMi(D) M~(D) - -  o~kX~} 2 -~ Min. (21) 
D 

In Eqs. (19) to (21), the sum is performed on unit vectors D, uniformly distributed in 5D 
space. Differentiating/2 with respect to ak leads to a set of 6 linear equations with 6 un- 
knowns from which we can easily get the coefficients F,  G, H, L, M and N with the aid 
of Eq. (17). Arminjon [8] has also shown that  minimizing the function /2 as defined by 



On plastic potentials for anisotropic metals 225 

S 2 l'~c 

Crystal lographic 
YS 

Adjusted Hil l  
c r i te r ion  

Mc(o) - Mh(O) 

5c/ D / 

~1/~C 
Fig. 2. Fitting of the crystallographic yield surface by a quadratic criterion. The minimization 
is performed with respect to the distance between tangent planes to the two surfaces for varying 
D vectors. The stresses are normalized by Tc 

Eq. (21) was equivalent  to minimizing the  functions Gij: 

G~j : ~ {Mi(D) M j ( D )  - -  fikqXk} 2 (22) 
D 

for each pair  (i, ]). These functions depend only on the strain rate D and this minimization 

can be done independent ly  o / a n y  texture. Again Eq. (22) leads to a set of 6 equations with 

6 unknowns  flk ij, which can be easily solved and the fik ii stored into a file. For  a given 

texture  the ~ can then be obtained f rom:  

~ : ~ fik i j .  CiC~. (23) 
i,1 

I t  has been shown by  several authors [8], [13]--[15] t ha t  a development of the texture 

funct ion /(y) up to lm~x : 8 is sufficient to calculate average plastic properties with 

sat isfactory accuracy  even though  this value is too low to describe the texture.  When  

/max = 8, imax : 13 and only 91 X 6ilk ii coefficients need to be calculated once (i and ] 
va ry  from 1 to 13 and k varies f rom 1 to 6). 

3 Numerical procedure 

The first step is to choose the distr ibution of D vectors necessary to perform the mini- 

mizat ion of Eq. (22). I t  was decided here to sweep the 5D space uniformly. A uni t  vector  

D can be described in a 5D space by  4 angles 01, 02, 03 and 04 such tha t  [16] : 

D1 = cos 01 sin 0~ sin 03 sin 04 

D2 --  sin 01 sin 02 sin 02 sin 04 

D~ ~ cos 0~ sin 08 sin 04 :: (24) 

D4 = cos 0s sin 04 

D5 = cos 0~. 



226 5I. Arminjon and B. B~croix 

01 ranges from 0 to 2~ and the other angles from 0 to z. The element of area on the unit 

hypersphere is consequently equal to: 

dS -= dOld cos 02d 03 --  -i- sin 203 d (2 + sin ~ 0~) cos 04 (25) 

which leads to 8~2/3 for the surface area of the unit sphere. Because of the orthotropic 
symmetry  of the texture,  it is possible to reduce the domain of variation of the different 

angles as follows: 01 varies between 0 and 2z, cos 02 between --1 and 1, (1/20~ --  1/4 sin 203) 
between 0 and z/4 and {1/3(2 + sin 2 04) cos 0~} between 0 and 2/3 in regular intervals. 
In  this way, only a quarter of the sphere is described. In  what follows, we have considered 
in our calculations 40 • 20 • 10 • 10 unit vectors D. 

The second step is to calculate the functions M~(D) for all the vectors D considered. 

Let  us recall first that  MdD ) is equal to:  

M d D )  = f Mg(D) T~(ff) dff (26) 
g 

which can be regarded as the series expansion coefficients of the Taylor factor on the 
base of harmonic functions [14]. Theses coefficients can be calculated for every direction 
D but can also be calculated for specific forms of the strain rate tensor only and then 
approximated by  polynomial forms. This procedure has been explained in details by 
Bunge et al. [15] and is recalled in Appendix 1, since the coefficients published by  these 
authors were used in this work. 

Once the functions M~(D) �9 Mi(D) are calculated for all vectors D uniformly distributed 
in 5D space, it is then possible to calculate the coefficients flk ij. ] t  is worth mentioning 
at  this point tha t  this procedure varies from the one originally proposed by Arminjon 
[8] who selected a different distribution of strain rate vectors which were unit vectors 

with respect to the other norm he introduced. The procedure described above has the 
advantage of better  reproducing the possible symmetries of the textures which are con- 

sidered. 
I t  can be useful as this point to compare several minimization conditions: 

- -  /1 versus/~, i.e. the minimization performed on distances rather than on the squares 
of these distances. 

- -  /~ versus Gij, i.e. the direct minimization performed on the yield surface of the 

polycrystal  rather  than  the one performed on the mathematical  functions M d D )  �9 Mj(D). 

These different procedures were compared for 3 different textures:  i) a texture com- 
posed of only one ideal orientation {100} (010} with a Gaussian spread of 7 ~ around it, 
ii) an isotropic polycrystal and iii) the experimental texture of a rolled mild steel. For 
each of these 3 textures, the minimizations performed on/1  and /2  (Eqs. (19) and (20)), 
with or without the aid of Eqs. (22) and (23) (direct or non-direct minimization). The 
results are presented in Table 1 and speak for themselves: the minimization carried out 
on the M I M  i functions leads to completely equivalent results as the so-called "direct"  
minimization (this has already been shown by Arminjon [8]). On the other hand, a slight 
difference can be observed when comparing the results obtained with M or M e. This 
difference is too small to be relevant here, and only the minimization on M 2 achieved 
with the aid of the M i M j  functions will be performed in what follows, since it has the 
advantage of considerably reducing the computing time. 

The average quadratic difference d between the Taylor factor M~(D) and the obtained 
fitting Mh(D) was also calculated, for ideal and for experimental textures, l~'or the cube 
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Table 1. Calculated values of the Hill criterion coefficients for 3 textures and 3 minimization pro- 
cedures 

Texture Minimization of 

s {Me(D) -- Mh(D)} 2 Z {Me2(D) --  Mh2(D)}2 s {Mi(D) Mi(D)  --  fliiXk} ~ 

Single crystal 
{lOO} <010) 
Gaussian 
spread 7 ~ 

F = 0.1528 L = 0.1449 
G =0.1625 M = 0 . 1 4 6 6  
H ~ 0 . 1 6 2 3  N =0.1496 

F =0.1744 L =0.1420 
G = 0.1741 M = 0.1445 
H = 0 . 1 7 4 0  N =0.1484 

F = 0.1744 L = 0.1420 
G =0.1741 M = 0 . 1 4 4 5  
H = 0.1740 ~Y = 0.1484 

Isotropie F ~ 0.0684 L = 0.2078 F = 0.0693 L = 0.2077 
polyerystal G = 0.0684 M = 0.2078 G = 0.0693 M = 0.2072 

H = 0 . 0 6 8 4  N =0.2078 H = 0 . 0 6 9 3  N =0.2072 

iV = 0.0693 L = 0.2077 
G =0.0693 M = 0 . 2 0 7 5  
H = 0 . 0 6 9 3  N =0.2075 

Rolled and 
annealed 
mild steel 

~v =0.0591 L =0.2319 
G ~ 0.0597 M = 0.2306 
H = 0.0769 ~V = 0.1909 

F =0.0592 L =0.2319 
G = 0.0597 M = 0.2302 
H = 0.0768 N = 0.1909 

F = 0.0592 L = 0.2319 
G = 0.0597 M = 0.2302 
H = 0.0768 N = 0.1909 

or ientat ion,  ~ reached its m a x i m u m  value, namely  0.17, whereas ~ -= 0.09 for the {111} 

fibre. For  exper imenta l  textures,  6 increases from 0.02 to 0.06 when going from a weakly 

to a s t rongly t ex tu red  steel. These values are worth to be compared with the average 

value of Me which is approximate ly  3. Thus, the f i t t ing of the crystallographic work 

func t ion  by  the phenomenological  one (derived from the Hil l  criterion) is quite satis- 

factory, even for ideal orientat ions.  

4 App l i ca t i on  to yield sur faces  a n d  R ( a )  c a l c u l a t i o n s  

The ident if icat ion method described above has been applied to several " ideal"  and  

exper imenta l  textures  of rolled and  annealed  steels. Yield surface sections as well as 

R(a) values have been calculated using both  the Taylor  model and  the adjus ted  Hil l  

criterion. The " ideal"  textures  are composed of one of the principal  components  of tex- 

tures  usual ly  found in steels with a Gaussian spread t aken  equal to 7 ~ a round the principal  

component .  

A measure of the anisotropy of a rolled sheet can be gained by  carrying out  a tensile 

tes t  on a flat  specimen cut  in  the rolled sheet a t  an  angle ~ of the rolling direct ion and  

by  calculat ing the so-called Lankford  coefficient (or s t ra in  rate ratio) which is by  de- 

f in i t ion  equal to :  

R(~) == D2~(~x)/D33(a) (27) 

where D~(a)  and  Da~(~) are components  of the s t ra in  rate tensor  expressed in the reference 

system l inked to the tensile test.  The bounda ry  condit ions generally used to characterize 

such a test  in a Taylor  approach can be described by  the following tensors (expressed 

in the tensile test  axes): 

,0'Di~ lii 1 i 
0 D~a 0 
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which can be considered to be rigorously valid only for short samples (because of the 
condition D~ ~ 0, which would not be true in the middle of a long sample). The deri- 
vation of R(~) from these boundary conditions is explained in Appendix 2. 

Ideal textures 

Most of the ideal orientations belonging to the c~ = {hkl} (110} and )J = {111} (uvw) fibres 
have been examined here. Sections of yield surfaces have been calculated for ~c ---- 1 in the 
closed sub-space (Sn, S~, $12) [17]. The expression "closed sub-space" refers to the fact 
that  when a strain rate state with D13 : D23 = 0 is imposed to the material, the resulting 
deviatoric stress state has the special form $13 ~ $23 -- 0 due to the orthotropic symmetry 
of the sheet. The section of yield surface obtained in this way is called the "tricomponent 
plane stress yield surface" [18] and can be represented as these authors did (see also [19], 
[20]) as sections (in the stress space) with planes parallel to the (an, a22) plane for various 
values of at, (with the additional condition ~33 = 0). 

Such sections are shown in Fig. 3 for 6 ideal orientations as well as a fibre texture and 
the isotropic case. The yield surfaces calculated with the Taylor model have been drawn as 
the inner envelope of 800 tangent planes (which is in fact a too small number to obtain a 
precise description and sometimes gives to the sections presented in Fig. 3 an exaggeratly 
"angular" shape). The corresponding R(~) variations are presented in Fig. 4. Looking at 
Figs. 3 and 4, the ideal textures can be classified into several groups, depending on the 
quality of the adjustment of both yield surfaces (YS) and R(~) variations: 

i) For "single crystals" such as {110} (001} and {110} (110), the 2 predicted R(~) curves 
are very close to each other whereas the YS sections are quite different. 

ii) On the contrary, ~or the {111} (uvw) orientations, the YS sections are reproduced 
quite satisfactorily, whereas the R(~) variations calculated with the aid of the Taylor 
model can by no means be predicted by a Ilill criterion: it is well known that  a quadratic 
Hill criterion cannot predict more than 4 ears (associated with the maxima of the R(a) 
curve) whereas the variations shown in Fig. 4 for these components correspond to 6 ears. 
Similarly, the component {11 11 8} (4 4 11) (located at 7 ~ from the {111} (112} component 
in orientation space) has to be placed also in this category, since it produces 6 ears of 
different heights. 

iii) The isotropic texture illustrates the case of a perfect agreement in terms of R(a) 
(R = 1 ~ Cst in both cases) and of a good adjustment of the ITS. In this case, only the 
first Ci coefficient is non-zero and thus only the Gn(D) function (see Eq. (22)) plays a role in 
the minimization: this function is in fact almost quadratic and thus the adjustment is 
quite acceptable. 

iv) finally the {11.2} (110} component represents the more general case: the sharp 
"corners" of the crystallographic YS are rounded whereas the variations of the strain rate 
coefficient are somewhat attenuated by the quadratic criterion. 

I t  is worth mentioning that  since these textures are synthetic, nothing is known about 
the real shape of the YS or of the R(a) curve. In particular, it is difficult to establish 
experimentally whether a single crystal of orientation {111} (110} produces 6 ears or not. 

Experimental textures 

22 experimental textures of rolled and annealed mild and stainless steels were then studied. 
They have been selected for the wide variety of experimental R(cr they represent: the 
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~=22 

3t (110)[110] 
'~22 

j 3  

( 1 1 0 ) [ 0 0 1 ]  3 

o'22 '22 

Fig. ~. Tricomponent plane stress surfaces obtained for ideal textures with the Taylor model (left) 
and adjusted Kill criterion (right). The different sections correspond to al~ = 0., 0.5, 1.0 and 1.5 
(• and the number writ ten in the center is the value of az.2 on the axis (i.e., for ~lz = ae~ = 0) 



230 M. Arminjon and B. Bacroix 

~ ~ "22 
(11 11 8 ) [ 4  4 1 1 ]  

3- 3 

, '::r11 , ':711 

�89 

2 

j : .  ,J 
(111)[11o] 

, ~/ 
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3, 

~ ~ 

~ '/~/ o .  

Fig. 5. Trieomponent plane stress surfaces for a a rolled and annealed steel and b a partially 
reerystMlized stainless steel 

high R values found in mild steels indicate a good drawability of these steels whereas the 
low R values found sometimes in annealed stainless steels correspond to a partially re- 
crystallized structure and are thus an indication of a bad selection of annealing para- 
meters. This last point was not relevant for our s tudy but  has to be kept in mind, since the 
inhomogeneity of the microstructure could be linked to the inhomogeneity of the texture 
through the thickness of the sample. In  order to better  compare experimental R values to 
predictions, this texture variation should have been taken into account, which was not the 
ease in our investigation. 

Two examples are presented in Figs. 5 and 6 : one rolled and annealed mild steel and one 
partially reerystallized stainless steel. In  the first case, the texture presents a high pro- 
portion of {111} (uvw} fibre, resulting in rather high R values whereas in the second ease, 
the R values are very low and the AR (equal to 1/2(R(0 ~ - -  2R(45 ~ ~- R(90~ parameter  
is negative. In  both cases the adjustment  of the YS is acceptable and the variation of R is 
also well reproduced even if the values found with the adjusted Hill criterion are lower than 
the experimental ones. 

The R and AR values calculated for the 22 steels with the 2 models are compared with 
experimental  values in Figs. 7 and 8 (R = (R(0 ~ @ 2R(45 ~ @ R(90~ is a "mean"  value 
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of R in the sheet plane). These figures call for 2 general comments: 

i) the anisotropy, as measured by the (R --  1) values, is systematically overestimated 
by the Taylor model and underestimated by the adjusted Hill criterion. 

ii) in both cases, a linear correlation between calculated and experimental values can be 
established: the correlation coefficient is close to one for R, which is an indication of a 
reliable correlation. 

Discussion 

I t  could be argued however that  a reliable correlation is not sufficient and that  the equa- 
tions of the linear correlations obtained here do not speak in favor of the adjusted Hill 
criterion. Some remarks are worth mentioning: 

i) The worst case was in fact investigated here, i.e. most of the experimental textures 
contain a proportion of the {111} fibre which is badly described by a quadratic criterion 
(see Figs. 3 and 4). Even for steel sheets, the experimental R(c~) values are, genera]ly 
speaking, close to the arithmetic average of the two calculated R-values [11]. Hence, the 
proposed method generally gives as accurate predictions as does the classical Taylor model, 
with the considerable advantage of being derived from an easy implemented yield criterion. 
Furthermore, when a calculation of the R-values from the texture is the unique aim, the 
joined use of the classical method and this method provides thus more accurate predictions 
than does the classical one alone. On the other hand, this method should be also tested in 
the case of recrystallization textures of A1 sheets for example which contain a high pro- 
portion of the cube texture (which is nothing else than the {110} <100) single crystal, 
rotated 45 ~ around the normal direction, described in Figs. 3 and 4). 
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ii) More realistic polycrystal models than the simple Taylor model may also be used in 
the identification procedure (21), (22), e.g. the "inhomogeneous extremum-based model" 
[9], [21]. However, the obtained Hill coefficients and the corresponding R(c~) values are very 
close to those obtained using the Taylor model in the identification procedure [9], [11], 
although the predicted deformation textures, and also the R-values obtained by the 
classical minimization described in Appendix 2, are quite different [11], [21]. 

iii) Though the yield surface predicted by the classical Taylor model is more angular 
than our fitted Hill yield surface (whence the observed differences in the R(c~)-values), 
these two surfaces are close to each other, except for some ideal textures. Thus, if one looks 
at the predicted stresses, the two models should exhibit smaller differences. This is confirmed 
for industrial steel sheets [11] ; moreover, the theoretical stresses obtained with our texture- 
adjusted Hill criterion have been found to be in a better experimental agreement than the 
stresses corresponding to the Taylor yield surface. 

iv) The two preceding remarks seem to imply that  the very stable adjustment which is 
performed by the present method, is not far from being the best fitting of the experimenlal 
yield surface by a quadratic criterion. Now, the less precise description of the R-values 
(deduced from the yield surface by the normality rule) simply means that  the ellipsoidal 
shape of the quadratic criterion is too poor to describe simultaneously the yield stresses and 
the flow rule within the experimental accuracy. Moreover, as noted by Stout et al. [22], the 
normality flow-rule is unstable with respect to small perturbations of the yield surface (see 
also [9] in the ease of the R(~) calculations). In the classical adjustment of the Hill coef- 
ficients from uniaxial tension tests, this shortcoming of the quadratic criterion appears 
differently, since the R(cr values (R(0~ R(45 ~ and R(90~ are usually the input data 
(e.g. together with one yield stress, as far as plane stress states are considered); then, the 
observed discrepancies concern the values of the yield stresses [22], [23] but also the strain 
ratios for other loading paths [22]. 

In view of these remarks, the most important  limitation of the proposed method is 
confirmed to be the use of the Hill quadratic criterion. The extension to a non-orthotropic 
quadratic criterion [10], theoretically necessary, could be a first praeticM improvement [24]. 
The possibility of extending this method to non-quadratic yield criteria has now to be 
examined separately. 

5 Extension to non-quadratic criteria 

In classical plasticity, the yield condition is usually expressed as function of the stress 
tensor : 

r = r .  (29) 

I t  is then rarely possible to express I?V(D) as an explicit function of the D tensor, due to the 
difficulty of inverting the normality rule. This is why the previous work has been limited to 
a quadratic criterion which is the only case where this inversion can be easily performed. 

I t  is worth mentioning that  the above mentioned difficulty can be overcome by re- 
membering that  the W(D) function completely describes the yield surface (Fig. 1). If the 
function ~ is taken as homogeneous of degree one with respect to positive multipliers and 
is symmetrized in ~ii and ~ii, the normality rule uniquely determines: 

W(D) = a~jDii =: z~b(D) (30) 
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where ~b is convex, symmetrized and similarly homogeneous [11], [25]--[27]. The rule itself 
can now be written as: 

~4 
Dii = ~(/)) �9 - -  (31) 

from where it follows that  [11], [25]--[27]: 

aij =: ~ ~Dij (32) 

showing that  the function ~ acts as a "work function" or potential for the stress tensor. 
Equation (32) can be more simply rewritten as: 

aS 
6 . . . .  (33) 

0D 

The function ~f~(D) is a "dual"  function of 4(o) [26], [27]. The concept of a dual surface 
allows us to describe the plastic behaviour of a material with the aid of W(D), and to 
deduce the stress from W(D), using Eqs. (30) and (33). There is now a complete corre- 
spondence between the analytical and crystallographic approaches: in both cases, the 
strain-rate D is imposed and the stress tensor is deduced from W(D). 

On analytical/orms o/the work/unction and yield criterion 

Let  us examine the restrictions to be imposed to the W(D) function. First, it must be 
convex. From the flow rule and the volume invariance during plastic deformation, it follows 
that  l?( depends only on the deviatoric part  of D. I t  must also obey the material symmetries. 
Finally, the W function must be positively homogeneous. Conversely, any function W(D) 
satisfying these four requirements defines a unique yield surface (~w') of a standard, 
incompressible plastic material obeying the imposed material symmetries: (Zw') is the 
inner envelope of the hyperplanes HD (Eq. (30)). Here we notice that  any function r 
satisfying the four requirements provides also the direct expression of a different yield 
surface (Z4) (Eq. (29)), when it is taken as the yield function, depending on the deviatoric 
stress tensor. The homogeneity of 4 is not necessary in the definition of the yield surface 
(29); it means that  the parameter T is a scalar measure of the stress magnitude i.e. an 
equivalent stress naturally associated with the shape of the yield surface (Zr [27]. More- 
over, any closed convex surface (Z) defines naturally a homogeneous and convex func- 
tion 4: for any deviatoric tensor 6, 4(6) ::: v is the unique positive number such that  ~/v 
belongs to (X) [28]. Thus, the search of a general analytical expression for the work function 
or the search for the yield function are completely equivalent. Any possible form of the work 
function may also be used as an analytical form of tile yield function 4(~) and conversely 
(but not for the same material, since the duality correspondence between the work function 
and the yield function of a given material [27] generally alters the analytical form). 

The most expedient way to satisfy the material symmetries is to assume that  the 
material has no particular symmetry (at the macroscopic scale), i.e. to develop the model 
for the most general anisotropy. Once the coefficients of the IY function are expressed as 
functions of the texture coefficients, the material symmetry affects these coefficients [14] 
and thus transmits automatically to the l~ function. In applications however, it is generally 
better to take into account the largest possible symmetry group since it considerably 
reduces the number of coefficients in the formulae. Then, the incompressibility constraint 
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is directly accounted for if one defines the W function in the 5dimensional strain-rate 
space. The essential point here is thus to/ind an analytical/orm o/lie'(D) ensuring that the 
requirements o/convexity and homogeneity are simultaneously satis/ied. 

When the analytical expression of 1)r is directly given as a homogeneous function of 
five variables, the convexity of W is easier to recognize. A general method is to express 
I~(D) as follows: 

W(D) = L(D) + [P(D)] l/n, (31) 

where L(D) = 60: D is a linear form which allows to take into account the Bauschinger 
effect and P is a positive function, homogeneous of degree n (i.e. P(2D) = [2in. P(D) for 

any 1) [10]. The problem is now to explore the possible forms of P. I f  P is a quadratic form 
(which is a particular ease of the case n = 2) : 

P(D) = c~k~D~Dl with 1 =< k, l =< 5 (35) 

then the associated yield criterion r is also a (shifted) quadratic form, whose coefficients 
are proportional to the inverse matr ix  B = c~ -1 [11] (the "shift" is (~0). In  contrast, if the 
work function of a given material is assumed to have the form (34) with n @ 2 (or with 
n ~- 2 but  P not quadratic), then the yield criterion has no simple analytical expression; 
obviously, the converse is also true : if one assumes a n-homogeneous yield criterion (shifted, 
if desired), the work function can only be obtained numerically. The quadratic case has one 
still more essential particularity: a bounded quadratic surface (in the deviatoric plane) is 
necessarily an ellipsoid, and thus is convex. Hence, any reasonable fitting of a yield surface 
by  a quadratic one saves automatically the desired convexity. Dually, this applies to work 
functions as well; these are fitted on the unit sphere, as we have seen. I t  is easy to verify tha t  
a quadratic form is convex if and only if it has a positive lower bound on the unit sphere. 
Obviously, the work function of a real mat3rial (e.g. the average Taylor factor) must have 
this latter property:  thus, when fitted by  a quadratic form, the work function remains 
(or even becomes) convex. This is not true in general for non-quadratic expressions, e.g. it 
is wrong for quartics, as these have been proposed by Gotoh [29] for the yield criterion. 

Identi]ication procedure and analytical/ormulae 

An "analytical expression" of the I?V(D) function involves a finite number of coefficients c~k 
and writes most generally: 

~b(D, ak) = Wa(D), (36) 

where qb might depend non-linearly on the cck coefficients. In  this case, an iterative identi- 
fication procedure might be used, providing the bast fitting values of the ak for a given 
texture, i.e. for a given "crystM]ographic work function" (Eq. (11)). We can now restrict q5 
to the following expression (since all known expressions are particular cases of this ex- 
pression): 

[ s pin 
~V~(D) = L(D) ~- I A  a,~,(D)~ , (37) 

where L is a linear form and the ~bk linearly independent, positive and n-homogeneous 
functions of the (deviatorie) tensor D. The linear form would be of interest if the "crystallo- 
graphic" work function We(D) is unsymmetrical  as a result of different critical shear stresses 
in the two different slip directions of some glide systems [8]. The fitting procedure has then 
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simply to be applied separately to  ~[7c,1(~) ) = 1/2[We(/)) -- We(--/))], giving L, and to 
I?V~,2(/) ) = 1/2[lYc(/)) -~ l)g~(--/))], giving the symmetrical sum in (37). Hence, we can 
restrict the discussion to "unshifted" expressions (L = 0). Van Houtte  et al. [30], [31] 
propose the following form for W: 

~V(D) = apqDpDq @ bpqrsDpDqD~Ds @ cpqrstuDpDqDrDsDtDu + ... (38) 

when []DII = 1. Expression (38) falls into the category represented by Eq. (37) if n = 1 and 
~k are the functions obtained by the homogeneous extension of the independent terms in 
(38), thus : 

DpDq DpDqDrD 8 (39) 

~ q -  IIDII' ~ q ~ s -  [IDll ~ 
If n is some positive number, any expression of the form (37) may be used as a fitting 

function for the crystallographic work function and the ~ coefficients are then obtained by 
a linear regression, i.e. a least square procedure applied to the nth power, We. 2. Thus, we 
have extended our identification procedure to a very wide class of anisotropic constitutive 
relations, given by their work function. Moreover, if n is an integer (which does not imply 

�9 n that  the n-homogeneous term in (37) is a polynomial), the identification of W~, 2 becomes 
analytical, as well as in the ease of the quadratic criterion. Indeed, we have for IIDII = 1 : 

Vv" /3  " . . .  M ~ . ( D )  (40) ~,~, o = Mc",~ = X q~ . . .  q M ~ , ( D )  

so that  the ~k coefficients in (37), as obtained by the direct least square procedure applied to 
�9 n fit W~. z by (37), are exactly: 

O~k ~- 7;c n ~ f l~ ' " i~c i l . . .  Ci, ~, (41) 
{1,.-.,in 

where the fi are obtained by the same least square procedure, applied to fit the function 
M~(/)) ... Mi,(D), instead of (40), by expression (37). In particular, analytical formulae of 
the form (41) are obtained for the expression (38) used by van Hout te  et al. [30], [31] 
(although this has not been noticed by these authors). This is also true for Hill's new ex- 
pression [4] (when m, our n, is an integer) and Gotoh's quarries [29], provided that  these are 
used as a work [unction depending on D. 

6 Conclusions 

1) In  this paper, the identification method of the work function, initially proposed by 
Arminjon [8]--[10], has been presented afresh. The obtained analytical adjustment of a 
quadratic yield criterion from the texture coefficients has been reassessed and experi- 
mentally checked: whereas the yield surface and above all the work function itself are 
satisfactorily fitted, the associated flow rule of the fitted yield surface differs much more 
from the flow rule which is associated to the ':crystallographic" yield surface (i.e. the yield 
surface derived from the texture function by using the classical Taylor model). Thus the 
theoretical values of the Lankford coefficient, as deduced from the "crystallographic" or 
"f i t ted" yield surface, differ significantly. The experimental values turn out to be close to 
the average of these two calculations. The quadratic yield function results in much simpler 
calculations and may be implemented in FEM codes. Moreover, the simple analytical 
relationship between the coefficients of the quadratic criterion and the texture coefficients 
enables to take into account the texture evolution when simulating forming processes. 
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2) Since the constitutive relationship derives from the work function, the phenomeno- 
logical expression of this latter may  be a priori set (instead of postulating the form of the 
yield function). The general restrictions which must be imposed to the work function have 
been discussed. I t  turns out that  these are exactly the same for the work function and the 
yie]d function. The way to build analytical expressions satisfying the requirements has been 
examined: this is hence valid for yield functions as well. Here we focused on the require- 
ments of convexity and homogeneity. As regards the convexity, the quadratic forms have 
a robust behaviour. 

3) The identification method of the work funetio~ might be used for any analytical 
form of the latter: the corresponding "phenomenological" parameters would then be 
deduced from the texture coefficients by an iterative regression. However, all the expres- 
sions examined here lead to a linear regression. Furthermore, the analytical relationships 
between the phenomenological parameters and the texture coefficients, previously obtained 
in the quadratic case, have been extended to the case where the phenomenological ex- 
pression of the work function is the linear combination of linearly independent, a priori 

given functions, when all of these are homogeneous of degree n with the same integer n. 

Appendix 1 

Calculation o/the M~(D) /unctions /or an arbitrary tensor D 

For any tensor D, it is possible to find the orientation go and the quantities K and q such 
that  in the reference system: 

i ~176 D = K g o .  - - q  0 �9 tgo (A1.1) 

0 q - - 1  

go is nothing else than the orientation of the principal axes of the strain rate tensor with 
respect to the external reference system and K and q are calculated from the eigenvalues of 
the tensor (it has to be remembered that  the tensor D is defined from a unit vector D and 
consequently the largest eigenvalue is not necessarily equa] to 1). The diagonal tensor is 
called Do. Bunge et al. [15] have shown that  the plastic work rate associated with this strain 
rate tensor D for a grain of orientation g could be calculated from: 

1 K :. 
- -  - -  �9 ~ ~ '  n b  u ~ t  , . St (D)  = r g)g~ K .  z ,  ~ ~q~g0 TrY(g) (A1.2) 
TC TC l,uv 

with : 

l 

"" = �9 T~ (fro), (A1.3) mt (q)g. ~ ml~(q) " ~ 
s--0(2)  

where the coefficients mF(q) are the series expansion coefficients of the plastic work rate 
associated with the strain rate Do = Do(q) : 

1 r176 = Z '  m y ( q ) .  ~z~(9). (A1.4) 
TC l#v 

The coefficients my(q)  can be ca]culated for any value of q. Bunge et al. [15] have calcu- 
lated these coefficients for q equal to 0, 0.1, 0.2, 0.3, ..., 1 and various slip modes, and pro- 
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posed interpolation formulas for the intermediate values: 

5 
m F ( q )  = Z m~.~ �9 qi. (A1.5) 

] - 0  

Combining Eqs. (A1.2) to (A1.5) leads to the following expression for M y ( D ) :  

M F ( D )  = K -  I ~ " j .  qJ �9 ~F'(~0),  (A1.6) 
s=0(2) ]=0 

In  this expression, K, Y0 and q characterize the imposed strain rate, the Tt sn terms are 
mathematical  functions which are easily calculated and the coefficients m ~s l,i are known 
from Bunge et al. [15]. Similar formulae have been obtained independently by Arminjon [8]. 

Appendix  2 

Calculation o/R(cr 

In  its principal axes, the strain rate tensor has the following shape: 

i ~176 
D = - - q  0 (A2 .1 )  

0 q - - 1  

and we want to determine q such tha t  the corresponding stress tensor is a tensile stress state 
along the 1 axis. In  other words, the stress tensor has the special form: 

0 Gll G12 ! 
6 - -  ~1~ 0 . (A2.2) 

0 

Geometrically, we have to find the normal to the yield surface at  the point characterized by  

D12 ~ 0 and r ~- 0 in the sub-space a13 = 028 ~ 0 [6]. The plastic work rate associated 
with such a strain rate, expressed in the tensile reference system, is equal to : 

W(q,  o~) = ( ~  = 6 :  D .  (A2.3) 

Let  us consider now another value of q, named q* which does not correspond to the tensile 
test  and thus is associated with another stress tensor o*. The plastic work rate W(q*, ~x) is 
then equal to:  

_ _  $ $ $ $(q*, ~) = ( ~ ,  - ~3"~) q (~ - ~3~) = 6 " :  D * .  (A2 .4 )  

The principle of maximum work rate allows us to write now: 

(r : D* < 6"  : D* (A2.5) 

using the fact tha t  W(q, ~) = 6 : D = 6 : D* due to the special shape of 6, we can write: 

W(q, ~) <= Vv(q*, ~). (A2.6) 

I t  has thus been demonstrated tha t  the value of q associated with a tensile test  is found by 
minimizing IJV(q *, c~) with respect to q*. Then, R(a)  is calculated from: 

R(a)  : q/(1 - -  q). (A2.7) 
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