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Summary 

The similarity equations for combined forced and free convection flow over a horizontal 
plate when the wall temperature is inversely proportional to the square root of the distance 
from the leading edge are solved by introducing a scaling similar to that for the Blasius 
equation. The technique is also applied to the local similarity equations for the case of a 
constant wall temperature. 

1. Introduction 

Different authors have investigated the effect of buoyancy forces on the steady, 
laminar plane flow over a horizontal plate in the f ramework of first order boundary 
layer theory taking into account the pressure variation normal to the plate. 

I n  [6] similarity equations to the boundary  layer equations are derived 
for a wall temperature  tha t  is inverse proportional to the square root of the 
distance f rom the leading edge. The similarity equations depend on two param- 

eters: The Prandt l  number  Pr  and the buoyancy parameter  K = Arlene, 
where Ar und Re are the Archimedes number  and the Reynolds number, re- 
spectively. In  the process of obtaining a numerical solution to the similarity 
equations it was observed in [6] that,  given a fixed value of Pr, there appear 
to be more than  one solutions for a specific range of K ;  but  only a par t  of the 
branch of solutions was actually computed. 

In  this paper  we propose a method to compute the complete branch of solutions 
of the similarity equations. This is achieved by  a sealing of the similarity equa- 
tions which essentially reduces the boundary value problem on the half line 
to an initial value problem. 

Numerical approximations for the boundary layer equations in the case 
of a constant temperature  of the plate were obtained in [1] by  applying a shooting 
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technique to the local similarity equations, and the local nonsimilarity equations 
corresponding to the second level of truncation. We will demonstrate the use 
of our scaling procedure in this situation by computing the complete solution 
to the local similari W equations. 

2. The Similarity Equations 

In [6] the following form of the boundary layer equations was derived: 

oo 

Cr~xr -- Cx~xY -- K f Ox d Y  = ~ r r r  (2.1) 
Y 

1 
~rOx - q~xOy = "-fi-[r Orr (2.2) 

where # is a stream function, 0 is a (scaled) temperature, K = Ar/r is the 
buoyancy parameter and Pr  is the Prandtl  number. Eq. (2.1)is valid for the 
flow above the plate. For the flow below the pate K must be replaced by --K. 

Eqs. (2.1), (2.2) must be satisfied for 0 < X, Y < ~ ,  with the boundary 
conditions 

q J = ~ r = O ,  O = O w ( X )  on Y = 0 ,  X > 0  (2.3) 

~ y  = 1, 0 = 0 as Y =-. cx~, (2.4) 

where Ow(X) is the (scaled) temperature of the plate. 
When 

the similarity transformation 

-= yX-II~,  

Ow(X) = X -~12, 

r = x ~ / ( v ) ,  o = ow~(v) 

yields the system of ordinary differential equations 

2/'" -~ / /"  -}- K ~  = 0 

2 
- - ~ "  + / ~ '  + / ' ~  = o 
Pr 

From (2.3), (2.4) the boundary conditions 

are obtained. 

0 ~ < ~  

1(0) - - - / ' (0)  : 0 ,  / ' (c~)  • 1 

8 @  = 1,  ~ ( ~ )  = 0 

(2.5) 

(2.6) 
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Using the exponential decay of 8, Eq. (2.6) can be integrated once, leading 
to the final form of the boundary value problem 

2/"'  A-//"  + K~(~ = 0 (2.7) 

2 0 _ _ < ~ < a r  
a' + 18 = 0 (2.8) 

Pr  

1(0) ----/'(0) = 0, / ' (~ )  = 1, 8(0) = 1. (2.9) 

To analyze the case when Ow is constant, in [1] the transformation 

= K JOwl X112, ~ : yX-1/2  

F(~, 7) = ~)(X, Y)  X -I]2, ~ 0(~, i)) ----- O(X, Y)/O W 

-is applied to (2.1), (2.2) yielding 

2F '"  -[- F F "  =]= ~ ,10 -Jr- 0 d~ Jr- ..,I 32 d*l ~ .F' - -  --  F "  (2.10) 

[ 2 O " + F O ' = ~  F'--00 - -O '  , (2.11) 
i)r 0~ ~ 

for 0 < ~, ~ < ~ .  The boundary conditions (2.3), (2.4) become 

F(~, 0) ---- F'(~, 0) =- 0, 0($, 0) -= 1, (2.12) 

F'(~, 7) -=- 1, O(~, 7) ---= 0 as ~ --~ ~ .  (2.13) 

Here . . . . .  denotes differentiation with respect to 7. Regarding the sign in (2.10) 
we have: + for the flow above the plate when Ow is positive and for the flow 
below the plate when 0w is negative, and -- otherwise. 

To facilitate the solution of the problem, the integral term in (2.10) is re- 
moved by differentiation with repeet to 7, which leads to the following boundary 
value problem: 

2F .... + ( F F ' "  + F ' F " )  -4- ~*10' ::]= ~q5 = $[F'G" - -  F"'G] (2.14) 

2 
O" + FO' = ~[F'r  -- O'G], (2.15) 

Pr  
(30 

2F'"(~, 0) =- =F~f O d~ ~= ~ f q~ d~ (2.16) 
0 0 

F'($, ~ )  : 1, O(~, or _~ 0, (2.17) 

where G =-OF/O~, q~ = aO/O~. The integral boundary condition (2.16) was 
obtained by evaluating (2.10) at V = 0. 
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When terms involving G, G" and q~ are neglected in the above equations, 
the following boundary value problem in the variable 7, with ~ as a parameter, 
is obtained: 

2F .... § F F ' "  § F ' F "  ~ @O' = 0 (2.18) 

2 0 ~ < ~  
0 "  § FO'  = 0 (2.19) 

Pr  

~(0)  = F'(0) = 0, O(0) = 1 (2.20) 

0 

2F'"(0) = T~: f O d U (2.21) 
co 

Note that  by (2.18), 

F ' ( ~ )  = 1, 0 ( ~ )  = 0.  (2.22) 

2(r'"(0) - F ' " ( ~ ) )  + ( F F " ) ( 0 )  - -  (FF") (o~)  

~ 0  0 

whence (2.21) is equivalent to requiring that  F"(~) tends to zero exponentially 
as ~ -> ~ .  Itence, we will replace (2.21) by 

F"(c~) = 0. (2.23) 

A discussion of the solutions of the boundary value problems (2.7), (2.8), 
(2.9) and (2.18), (2.19), (2.20), (2.22), (2.23) comprises the remainder of the 
paper. 

Results on the asymptotic behaviour of solutions to (2.7), (2.8) satisfying 
/'(cr -= 1, vahd for large 7, are given in [4], essentially generalizing the well 
known results on the asymptotic behaviour of the Blasius equation, [2]. The 
techniques used in [4] can also be applied to resolve the asymptotic behaviour 
of solutions to (2.18), (2.19) with F ' ( ~ )  = 1, F " ( ~ )  = 0, 0 ( ~ )  = 0. 

3. The Scaling Procedure 

With (2.7)--(2.9) we associate the initial value problem 

2I'" + / / "  + K~](~ = O, 0 ~ U < ~  

2 
- - ~ '  + / ~  = o 
Pr  

1(0) = 1'(0) = 0, i"(0) = s, ~(0) = 1, 

(3.1) 

(3.2) 

(3.3) 



A Numerical Study of Similarity Solutions for Convection 143 

where ~ is a real parameter .  Set t ing 

l (v)  = ~ ( ~ ) ,  ~(v) = T ( ~ v ) ,  e > 0 (3.4) 

Eqs. (3.1), (3.2) yield 

2s~b ' " (~ )  + s4q~(~) q~"(~) + KeY T ( ~ )  = 0 

2e 
Pr T'(~v) § ~O(s~) T(sV) = O. 

With  ~ = s~] we obta in  

K 
2 ~ ' " ( ~ )  + ~(~) ~"(~) + -~- ~ ( ~ )  = 0 

2 
p--~- ~'(~) + ~(~) ~(~) = o 

and the initial conditions (3.3) become 

/" (o)  s 
q~(0) = q~'(0) = 0 ,  q~"(0) = sa s a ,  

0 ~ v < ~  

T(0) = 1. 

(3.5) 

(3.6) 

(3.7) 

Given some values K,  ~ consider the curve in the K - -  s plane, 

K = K s  ~, s = ~e a, s > O. (3.8) 

All values K,  s on this curve lead to one and  the same solution O(v), T(v). By  (3.4) 

we have for K, s satisfying (3.8) 

/(v) = so(sv), ~(v) = w(sv), 
whence 

/ , (~)  = ~ 2 ~ , ( ~ ) .  

So, provided ~b'(~) defined via the initial value problem 

2 ~ ' " ( ~ )  -4- ~ ( ~ )  q~"(~) + K:~T(~)  = 0 

2 0 < ~ < o z ,  
p-)- ~'(~) + ~(~) k,(~) = o 

(8.9) 

(8.10) 

~b(0) = ~'(0) = 0, ~b"(0) = ~, T(0) = 1 (3.11) 

exists and is positive, then there is a unique s > 0 sat isfying 

1 = e2q}'(~), (3,12) 

implying tha t  on  the curve (3.8) there is a unique pair  of parameters  

K g~,(~)-5/~, s = ~ r 1 6 2  (3.13) 
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such tha t  the solution of the initial value problem (3.1)--(3.3) satisfies the bound- 
ary  value problem (2.7)--(2.9). 

I t  is easy to show that  the boundary value problem has no solution in the 
fourth quadrant  of the K - - s  plane, i.e. for K ~ 0, s ~ 0: From (3.2) and the 
initial condition for ~ we have 

( / )  Pr  
d(~) = exp -----~- fit) dt) , 

0 

and hence by  (3.1), 

( r )  Pr  
2/ '" + / / "  = --K~ exp - - - - ~ -  /(t) dt . 

0 

This implies that  /"(~) ~ 0 when ["(0) = s ~ 0 and K -->_ 0. Consequently 
/'(~/) ~ 0 for ~ / ~  0, and the cond i t i on / ' (~ )  = 1 eanndt be satisfied. 

To use the sealing introduced above as the basis of a computational procedure 
for the remaining three quadrants of the K - - s  plane, we must  choose in each 
quadrant  a curve of K, ~ values such tha t  when K, ~ vary,  the family of curves 
(3.8) covers the whole quadrant.  For the computations reported in the next  

section we have chosen straight lines 

= aK + b, a, b E R ,  (3.14) 

with K C [--b/a, 0] if b/a > 0 a n d / s  C [0, --b/a] otherwise. This is illustrated in 

Fig. 3.1 for the third quadrant  (a = - - ] ,  b ~ --0.1). 

-0~ E=-O.05 
' ! K 

~=-0.05 

-O.t 

Fig, 3,1 
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We now briefly discuss the application of the sealing technique to the problem 
(2.18), (2.19), (2.20), (2.22), (2.23). Replacing only the condition F ' ( ~ )  -~ 1 by  the 
initial condition F"(0) ~ s, and not changing the second condition in (2.22), we 
obtain 

F(0)  ---F'(O) = 0 ,  F " ( 0 )  = 8 ,  O(0) = 1, F " ( ~ )  = 0, 0 ( ~ )  = 0. 

Setting 

F(~)  = ~ ( ~ ) ,  0(7)  = T(~) ,  ~ = zV, 

we get (on taking the positive sign in (2.18)), 

2~'"'(~) -b O(v)O'"(v) ~ O'(v)r  -]- ~vT'(v) = 0 ,  

2 
P-7 ~" (~)  + ~ u , ( ~ )  = o 

0 ~ < ~ ,  (3.15) 

(3.16) 

~b(O)-----~'(O)---=O, ~ " ( 0 ) = ~ ,  ~ ( 0 ) =  1 (3.17) 

0"(co)  = 0, T(cr = 0, (3.18) 

where ~ : ~/e 5, ~ ~ s/e  a. Note that  this is a boundary value problem, so it is not 
clear if the sealing has brought any gain. However as discussed in the next  sec- 
tion, it is advantageous to use this problem rather than the original one for the 
purpose of numerical computation. 

4. Numerical Results 

We restrict our at tention to the second and the third quadrant of the K - - s  
plane, since the first quadrant is well understood, [6], [1]. We first discuss the 
problem (2.7), (2.8), (2.9). For a discrete set of points (_~, ~) on the line segments 

---- K ~ 0.1, K C [--0.1, 0] and ~ ---- --~: --  0.1, _K E [--0.1, 0) the initial value 
problem (3.9), (3.10), (3.11) was solved using the initial value solver D V ERK  
of IMSL. The computation of the initial value problem was terminated when the 
magnitude of qS"(T) reached 10 -~. By computing with different error tolerances we 
made sure that  the numerical solution was correct to four digits after the comma. 
The initial value problem becomes very sensitive when _K approaches zero in the 
third quadrant, as is illustrated in Fig. 4.1, where ~b'(co) is plotted versus K. 
The initial value solver fails for _~ very close to zero. 

Then K and s were determined according to (3.13), leading to the curves 
depicted in Fig. 4.2. For K and s on such a curve the solution of the initial value 
problem (3.1), (3.2), (3.3) is also a solution of the original boundary value problem 
(2.7), (2.S), (2.9). 
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J 

l~'(oo) 
gO 

-3g.61 

.20 

-0.1 -0.05 - K 

Fig. 4.1 

01 Kr 

0.3 

-Q2 

-0.1 

-~K 

Fig. 4.2 

The intersection of the solution branch with the line s = 0 is also of interest 

(separation point). Our value for K in the case Pr  = 1 agrees well with tha t  given 

in [6]. 
I n  Figs. 1.3 and 4.1 we give for P r  = 1 the veloci ty and temperature  profiles 

corresponding to the points in Fig. 4.2 labeled, 1, 2, 3 with the following co- 

ordinates. 1: K = - - 0 . 0 6 7 6 ,  s = 0 . 0 2 9 1 ;  2: K = - - 0 . 0 t l l ,  s = - - 0 . 0 1 3 4 ;  

3: K = --0.0110, s = --0.0277.  
Each  of the curves depicted in Fig. t .2  has two "critical poin t s" :  
Firstly,  there is a turning point  (for P r  = 1 its abscissa is denoted b y  K~,), 

such tha t  there is no solution to the left of K r  and there are two solutions to  the 



A Numerica ! Study of Similarity Solutions for Convection 147 

f'(~/ 
J 

,q  
/5 

Fig. 4.3. Pr = 1 

5 10 
~q 

/5 

Fig. 4.4. Pr = 1 

right of Kr .  The method of parametric  differentiation as used in [6] fails when a 
turning point is approached, tIowever,  this method can be rescued when techniques 
along the line of [3, 5, 7] are incorporated. 

The second critical point is K ---- s ~ 0, which, of course, does not lie on the 
curve. When this point is approached, e defined by  (3.8) tends to zero very rapidly, 
and according to (3.4) the structure of f and ~ is shifted further and further to- 
wards infinity. Here a shooting method, or any  other boundary value technique, 
is bound tO run into trouble for two reasons: The boundary value problem is 
extremely sensitive to perturbations,  and the finite interval to replace [0, ~ )  must  
be a very long one. I t  is here tha t  our approach is of particular advantage. 

We now briefly discuss our computations for the problem (2.18), (2.19), (2.20), 
(2.22), (2.23). The boundary value problem (3.15)--(3.18) was solved by  the shooting 



148 F.R.  de ttoog, B. Larninger, and R. Weiss: 

method for a set of discrete values ~, ~ on the line segments ~ =- ~" -}- 0.15, 

E [--0.15, 0] and ~ = - -~  - -  0.15, ~ E [--0.15, 0). This boundary  value problem 
becomes very  sensitive when ~ = 0 is approached in the third quadrant ,  as is 

apparent  f rom Fig. 4.5, where O'(oo) is p lot ted versus ~. For  different Prandt l  

numbers  the curves 

: ~ ' ( o o )  -512, 8 : 8~i~'(oo) -812 

representing solutions of the original boundary  value problem are plot ted in 
Fig. 4.6. Note  tha t  e = ~/i'(oo) -1/2 tends to zero rapidly as the point  ~ = s = 0 is 

approached.  Hence, a very  long interval  would be needed for the solution of the 

I i I 
-0 .15  -0.1 - 0 . 0 5  

/ 

i'(~,9 
k5315 
-5  

"3 

2 

Fig. 4.5 

~s 

0.3 

0.2 

0.1 

- - " t  

Fig. 4.6 
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or iginal  b o u n d a r y  va lue  p rob l em close to th is  poin t .  On the  o the r  hand,  the  

compu ta t i ons  have  shown t h a t  the  s t ruc tu re  of the  so lu t ion  of (3.15)--(3.18) is  

no t  sh i f ted  towards  c~ when ~ -~ 0 is app roached  on the  l ine segment  in  the  t h i rd  

quad ran t .  
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