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Summary 

Using the method of wavefront analysis the paper presents an analysis of shock wave 
formation in a two-dimensional steady supersonic flow of a radiating gas past plane and 
axisymmetrio bodies such as a beak and sharp edged ring. Transport equations are derived 
which lead to the determination of the shock formation distance and also to conditions 
which insure that no shock will ever evolve on the wavefront. I t  is assessed as to how the 
shock formation distance is influenced by the presence of thermal radiation, the initial 
body curvature and upstream flow Mach number M 0 ~ 1. 

1. Introduction 

The general behaviour and, in particular, the steepening of waves are de- 

scribed by  quasi-linear hyperbolic system of equations. During the past two 

decades there has been considerable theoretical and experimental research in this 

field and several methods have been used for the analysis of wave-propagation 
processes. In  recent years the formation of shock waves has received considerable 

attention in the literature with the shock formation time or distance being used 

as important parameters characterizing the relative importance of convective 

nonlinear steepening and flattening, and setting a limit for the use of certain 

approximate theoretical approaches. 
The nonlinear breaking of wavefronts and its analysis within the context of 

unsteady radiating gasdynamics have received considerable attention in the 

past (see, for example, Schmitt [4], Srinivasan and Ram [6], and Sharma et al. [5]). 

I-Iowever, the corresponding analysis for two-dimensional steady supersonic 

flow has not been treated until now. The main academic interest of the present 
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paper is to study the analysis of shock wave formation in a two-dimensional 
steady supersonic flow past  a plane beak or a sharp edged ring in radiative gas- 
dynamics, and to assess as to how the shock formation distance is influenced by  
the presence of thermal radiation, the initial boundary curvature and the up- 
stream flow Maeh number. The medium is taken to be sufficiently hot for effects 
of thermal radiation to be significant, which are, of course, treated by  the optically 
thin approximation to the radiative transfer equation. 

2. Basic Equations and Characteristics 

The basic equations for a two-dimensional steady axisymmetric flow of a 
radiating gas near the optically thin limit, assuming that  the gas is inviscid, 
optically grey and in thermodynamic equilibrium, can be written down in the 
familiar form (see, Pal [2], Penner and Olfe [3]). 

u ~  ~- v~, ~- ~(u~ + v~ + mv/r)  - -  O, (1) 

(2) 

(3) 

up,~ + vp ,  - a2(uo~ + ve,)  + (~, - 1) F = O. (4) 

Here, x is the distance along the axis of the symmetry  from the body tip in the 
direction of oncoming flow, and r the radial distance from the x-axis; u and v 
denote respectively the velocity components along the x and r axis; ~o the density 
of the gas, p the pressure, a the speed of sound given by  a 2 ~- yp /e  with y as the 

adiabatic index; F is the rate of energy loss by  the gas per unit volume through 
radiation, which is given by, 

F : 40r 4 - -  Tb4), (5) 

where c~ is the Planck mean absorption constant depending on the density and 
temperature T of the gas, a is the Stefan-Boltzmann constant and Tb is the uniform 
body temperature.  The letter subscripts in Eqs. (1) to (4) denote partial  differen- 
tiation, unless stated otherwise. Here m is a constant, which takes values 0 and 1 
for plane and axisymmetric flows resprectively. 

Using matr ix  notation, Eqs. (1) to (4), can be written in the following form, 

u .  + AU, + B = 0, (6) 
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where U, A and  B are  as follows 

- V ( U  2 - -  a 2) V - 
- -~v ~ou - -  

U U iJ v 
0 ~ V  - - ~ t  2 

U =  , A = ( u  "~ -1 ~ , 

0 0 v(u2 - -  a2) u2 - -  as 

u ~u 

0 --o~va 2 oua ~ uv 

--mva2] r - - ( 7  - -  1) F/O I 
B = ( ~  - -  a2)  - 1  0 " ! 

+ - 

L e t  2 (i) be the  e igenvalues  of A and  L (i) the  cor responding  lef t  eigen vectors.  W e  

then  have  

2 (''2) --= (uv 4- a2(M ~ - -  1)1/2)1(u 2 - -  a2), ,~(3,4) = v /u ,  

L <1) = [0, 1, - -u /v ,  - - ( M  ~ - -  1)'/2/r 

L (~) = [0 ,  1, --u/v ,  (M~ --  1)~a/~v], 
(7) 

L (~) = [1, 0, 0, --1/a2], L (4) --= [0, 1, v/u, 1/qu]. 

Here  M = q/a, with  q --  (u ~" ~- v2) 1/~, is the  u p s t r e a m  flow Mach number .  

I t  is ev iden t  f rom (7) t h a t  the  sys tem (6) possesses, excep t  a long s t ream l ine 

on which ~ : v/u,  two famil ies  of charac ter i s t ics  a long which dr/dx : 2 (1'2) ; these  

charac ter i s t ics  represen t  waves  p ropaga t i ng  in oppos i t e  d i rect ions  wi th  charac-  

ter is t ic  speeds  2 (1"2). I t  m a y  be  no ted  t h a t  these  charac ter i s t ic  velocit ies are  real  

if, and  on ly  if, the  flow Maeh number  M > 1, i.e., the  flow is supersonic.  

3. Transport Equations for the Discontinuities 

L e t  us suppose  t h a t  ),(1) descr ibes  the  in i t ia l  wavef ron t  $(x, r ) - - - -0 ,  which 

passes t h rough  (x0, ro). The  m e d i u m  ahead  of ~ = 0, is a ssumed  to have  a uni form 

t e m p e r a t u r e  To = Tb and  a uni form veloc i ty  uo in the  x d i rec t ion  wi th  v0 = 0. I n  

t he  res t  of the  paper ,  we shal l  use  the  mfffix-0 to  deno te  a q u a n t i t y  in the  region 

ahead of ~ =- O: 
W e  now der ive  the  t r a n s p o r t  equa t ions  for j u m p  discont inui t ies  in U as t h e y  

move  along the  wavef ron t  ~ - -  O. As in [1] we in t roduce  new curvi l inear  coordi-  
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nares ~, r '  defined as 

$~ + ~(1)~, = 0, (8.1) 

~ ( x ,  t o )  = x - -  X o ,  (8.2) 

and r ~ r ' .  Then $ has the required coordinate p roper ty  tha t  $ is positive (nega- 
tive) behind (ahead of) the leading characteristic on which ~ ---: 0. 

I n  terms of these new coordinates, Eq.  (6) on premult iplying by  L (~) becomes 

Lti) Uc + (~(1)~(i,/(~(1) ~,i,))x~L(~)Ur, § ()j,)/(,~(~) _ ~(~)))z~L(i,B = 0 
(9) 

( i -  unsummed) ,  

where x c = 1/~x is the Jacobian  of the t ransformat ion and the index i takes 
values 1, 2, 3 and 4. 

Across the wavefront  ~ ~ 0, U and Ur, are continuous and have their sub- 

scripts - - 0  values whilst Uc and x c are discontinuous. I n  view of (7) and the flow 

conditions ahead, the evaluat ion of (9) at  the rear side of ~ ~ 0 for i =: 2, 3 and 4 
yields: 

v, = ((M0  - -  1)1  /Oo o)pc, 

o~ = ( l / a J )  Pc, 

u~ = --(1/OoUo) Pc. 

(10) 

(11) 

(12) 

We now set i = I in Eq. (9), differentiate the resulting equation with respect to $, 

and then evaluate it a t  the rear of ~ = 0, we get  

aoe(Mo 2 - -  1) 1/2 P~r, § ~oaoeuovct , + (m/r ')  ooao2UoVc § Uo(y - -  1) F c ~ 0. (13) 

I n  view of the equation of state p --  ~ R T ,  Eq. (5) on differentiating with 
respect to ~: and evaluat ing it a t  the rear of ~ = 0 yields: 

F~ = (16~c~Tb~(r - -  1)/o~oao 2) Pc. (14) 

Equat ion  (13), in view of (10) and (14), becomes 

p~r, + p d ( m / 2 r ' )  + A}  = O, (15) 

where A = { 8 ( y -  1)MoOC/fl(Mo ~ -  1) 1/2} > 0 is a measure of importance of 

thermal  radiation with fl = {(~ - -  1) aTb4/~ooaoa} -1, the Bol tzmann number,  rep- 
resenting the rate  of convective energy flux. 

Also, along ~ = constant  we have 

x , ,  = (u  2 - a2)/{uv + a~(M 2 - 1)1/~}, 

which, when differentiated with respect to $ and evaluated at  the rear of ~e = 0, 
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yields on using the foregoing result t ha t  

M02(7 -~- 1) 
X~r, = 2~oao~(/0 ~ _ 1)1/~ (ro/r') m/2 exp (A(r0 - -  r')) P~o. (16) 

Equat ions  (15) and (1,6) are the required t ranspor t  equations for the disconti- 

nuities p~ and x,, which we have been seeking. 

4. S teepening  of  W a v e s  

Equat ion  (15) on integrat ion yields: 

p~ = p~o(ro/r') m12 exp (A(ro -- r')), (17) 

where P~0 - -  lira p$, taken along ~ = 0. 

Subst i tut ing (17) into (16) and integrat ing we get :  

r 

Mo2(7 ~ 1) roml2eA~op~ o f 
x~ = 1 -- ~oa~(Mfi-~-- l - -~ ,] s -m /2exp ( -As )  ds' (18) 

t* o 

where we have used the fact  tha t  x~0 = x~l~=0- = x~l~=0+ = 1; this follows from 

the bounda ry  condition (8.2). Le t  r = R(x) be the equat ion of the b o d y  contour  
with tangent ,  being parallel to  the velocity of the s t ream line, at  the leading 

body  edge. We, thus,  have dr/dx = v/u, which on differentiating with respect to 

and evaluat ing it a t  the  rear of ~ = 0 yields 

V~o = u0R0", (19) 

where R0" is the b o d y  curvature  at  the  tip. 
B y  vir tue of Eqs. (10) and (19), Eq.  (18) reduces to the following form:  

x~ = 1 - -  (y + 1) MoaeA~oro'n/2Ro '' ( s_m/2 exp (--As) d8. (20) 
2(M02 - -  1) q /  

T0 

The left hand side of Eq. (20) is the Jacobian  of coordinate t ransformat ion in the 

region immedia te ly  behind ~ --~ 0, so tha t  if for some r = r8 this Jacobian  vanishes, 
the  neighbouring characteristics of the family  ~ = constant  mus t  intersect on the 

wavefront  ~ --~ 0 and a s trong discont inui ty  known as shock wave then occurs in 

the solution vector  U. This will be the case if Us is finite at  r = rs as x~ = 0, for 
then,  just  behind the wavefront  $ - -  0, Ux = Udxe becomes infinite ; this describes 

the phenomenon of the steepening of the wavefront.  Significance of the result (20) 
for plane (m ----- 0) and axisymmetr ic  (m = 1) flow configurations is discussed in 

the following section. 
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5. Results and Discussion 

In this section we shall deal with a supersonic flow past a plane beak (m = 0) 

and a sharp edged ring (m = 1). The described phenomenon is sketched in Fig. 1. 

In  ease bf a plane beak (m = 0) with body contour r = Rb(x), the initial 

disturbance is released by a sharpe edge of the contour with a vanishing small 

initial tangent (beak). For the present case, Eq. (20) becomes 

x~ = I - -  (Rb"(O)/d) {1 -- exp [ - - A ( r  - -  to)]}, (21) 

where d - -  2A(M02 - -  1) {(7 + 1) M04} -1 > 0, and Rb"(O) is the radius of cur- 

vature of the body shape at the tip where the body contour begins to bend. 

As mentioned earlier, the formation of shock is characterized by the vanishing 

of the Jacobian xe, i.e., when the characteristics begin to coalesce. Since A > 0, 

it is evident from (21) that  the Jacobian can vanish on the leading wavefront for 

r > r0 only when Rb"(0) > 0 (which corresponds to the situation when the body 

shape has a compressive corner at x = 0) with Rb"(O) > d. For Rb"(0) ~ d, the 

Jacobian remains positive for finite r > r0 and consequently a shock will not 

form on the leading wavefront. Thus, the parameter d represents a critical level 

such that when this level is exceeded by the radius of curvature Rb"(O) at the 

body tip, a shock will form at a finite distance away from the body. This is in 

contrast with the corresponding case of a non-radiating gas, where one always 

finds a shock after a finite length of run, no matter how small the initial body 

curvature may be. I t  may  be recalled that at the wavehead ~ = 0, vx and v~ are 

related according to v~ = v~/x,; it is therefore immaterial whether we seek an 

expression for ve or v~ at the wavehead. Since vz has a slightly more direct physical 

interpretation we shall opt to work in terms of that  quanti ty and note from 

it / l , 
I I I lll~ 

r I I i I i I/,~ 

i I I I iI Ii,.#/~ 

o i-- 
Fig. 1. Flow field and convergence of characteristics for a plane and axisymmetrie  super- 

sonic flow 
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Eqs. (10), (17) and (21) that  for the plane (m = 0) case 

a o M o R b " ( O  ) exp [ - - A ( r  - -  r0)] 
v~ = 1 - -  (Rb" (O) /d )  {1 --  exp [ - - A ( r  - -  ro)]}" (22) 

A criterion for the tendency of the wave to steepen or to flatten follows from (22). 
I t  is evident from (22) that  when Rb"(O)  is positive and has a magnitude greater 
than d, there exists a finite length of run, rs, given by  

r, = ro + A -1 In { R b " ( O ) / ( R b " ( O )  - -  d)}, (23) 

such tha t  at  r = r~, the denominator of (22) becomes zero whereas numerator  
remains finite, i.e. the velocity gradient at  the wavehead becomes unbotmded at 
r = r,, thus signifying the steepening of tl~e wave into a shock wave; the coin- 

cidence of this behaviour with the vanishing of the Jacobian xe is clear from (21). 
In  the event that  Rb"(0) =< d the wave is still compressive but  the steepening of 
the velocity gradient does not occur. On the contrary v~ either diminishes out 
along the wavehead or it remains stat ionary according as Rb"(O)  < d or Rb"(0) = d 
respectively, and no shock wave will ever form on the leading wavehead ~ == 0. 
Moreover, when Rb"(0) < 0, which corresponds to the situation when the body 
shape has an expansive corner at x = 0, then for IRb"(0)l >~ A, Eq. (22) implies 
tha t  

v ,  = - - { u o ( M o  2 - -  1) A exp [ - - A ( r  - -  ro)]}/{(7 ~- 1) M04(1 - -  exp [ - - A ( r  - -  r0)])}, 

which is an expression for the velocity gradient at the head of a Prandtl-Meyer 
expansion flow. 

For an axisymmetric case (m = 1), we consider a ring shaped body r = Rs(x )  

with sharp edged inlet releasing the initial disturbance which runs both inwards 
and outwards along characteristic lines. Equation (20) describes both the phenom- 
ena as can be easily understood. For r > ro, a similar behaviour occurs as in the 
case of a plane flow; indeed, for m = 1, Eq. (20) can be written as 

erfe (Ar )  11~ [ 
x~ = 1 - -  R,"(0) 1 ~ ( ~ . ]  A0, (24) 

where Ao = [(7 -l- 1) Mo4eAr~ d2 erfc (A ro )d~ ] / (2A1 /~ (Mo  2 - -  1)) and erfc (x) 
oo 

= (2/l/E) f exp I t  may be noted that  for r > ro the ent i ty  wi th in the 
X 

curly bracket in (24) is always positive and less than unity. Thus the left hand 
side of (24) will vanish, leading to the formation of shock, provided R~"(0) is 
positive and exceeds the critical value A0-1; when Rff(0)=< Ao -1 the Jacobian 
x~ is always positive and hence no shock wave will ever form on the leading wave- 
head. We, thus, infer that  the shock formation will take place only when the radius 
of curvature at the body tip exceeds the critical level 1 /Ao ,  and consequently for 
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the ordinate r ~ re of the beginning of shock, we get  

erfe (At,) at2 = [1 - -  (AoRs"(0)) -1] erfc (Arc) 1[2, (25) 

We notice from (23) and (25) t ha t  the shock format ion distance rs depends on the 

upstream flow Mach number  M0, the initial body  curvature  k being either (Rb"(0))-1 

or (R/'(0)) -1, and the parameter  A, which represents the importance of thermal  

radiation. The  dependence of r0 on k and A is quite s traight  forward in the  sense 
tha t  both  ~rs/~k and ars/~A are positive, which means tha t  an increase in the 

initial body  curvature  or a decrease in the Bol tzmann number  both  cause the shock 

formation distance to increase. However  the dependence o f  rs on M0 is somewhat  
less s traightforward ; indeed, we find tha t  as the velocity of the approaching flow 

increases beyond sonic speed, the shock format ion distance first increases and then 

decreases in the supersonic region exhibiting a unique maximum.  I t  can be seen 

from (23) t ha t  for Mo ~-- 1, the shock format ion distance r~ is given by  r, --~ r0 

+ 4(M0 --  1)/{(y + 1) Rb"(0)} , whereas for M0 >~ 1, rs ~-~ 2/{( 7 + 1) Rb"(0) M02}. 
Here we also notice from (23) and (25) tha t  the length of run required up to the 

shock in axisymmetr ic  case is larger than in the case of a plane flow under  the 

same initial conditions. 
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