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Summary 

The method of dislocation layers is used to study the stress-field created around an 
infinite row of eollinear Griffith-type elastoplastic strip cracks in an orthotropie crystal 
loaded at infinity. Formal solutions are obtained in detail for the mode I I I  antiplane shear 
case, leading to explicit expressions for the length of the plastic zones and the total plastic 
displacement at the crack-tips. Some representative numerical results are given. I t  is 
observed that the problems of a single, elastoplastic crack within a finite orthotropic plate 
and a finite plate containing a surface crack have solutions which are actually also provided 
by this analysis. The mode I and mode I I  analogous situations are briefly discussed. 

1. Introduction 

I t  is well-established (see, for example, Bilby and Eshelby [1], Lardner  [2]) 
tha t  certain strip-like cracks in elastic and elastoplastic media can be simulated 
by  equivalent continuous distributions of straight dislocations. A particular 

advantage of this "dislocation layer method"  over the more classical integral 
transform or complex potential  function techniques which are often conveniently 
employed for studying elastic cracks (see, for example, Sneddon and Lowengrub 
[3], Sih [4]) is tha t  it can be extended to provide some useful insight into elasto- 
plastic crack problems. This stems from the fundamental  work of Bilby, Cottrell 
and Swinden [5] who proposed the so-called BCS model for the plastic yield 

from a crack-tip. 
Recently, there has been an increasing interest in seeking dosed-form solutions 

for various cracked-strip problems, as illustrated by  the work of Singh, Moodie 
and I taddow [6], Tait  and Moodie [7], and Georgiadis and Theocaris [8] within 
the context of isotropic elasticity theory. The purpose of the present paper  is to 
show tha t  the dislocation layer method can be applied for studying the stress 
field created around an infinite row of collinear elastoplastic cracks in orthotropic 
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crystals when subjected to applied tractions at infinity. This extends the analysis 
of Bilby, Cottrelll Smith and Swinden [9], who considered corresponding mode I I I  
situations within an isotropic material, and also the isotropic classical elastic 
mode I and I [  solutions which have been studied by various authors, as sum- 
marized in [3] and [4]. For the sake of brevity, we restrict our detailed discussion 
to mode I I I  antiplane shear cracks and simply indicate, in Section 4, how the 
results appropriate for mode I and I I  loadings can be obtained. I t  is pointed out, 
in Section 4 also, that  in fact our solution further corresponds to the problem of a 
single, elastoplastic crack within a finite orthotropic plate, or a finite plate 
containing a surface crack. To be able to tackle orthotropic problems in this way 
detailed formulae for the stress components around straight dislocations in such 
media are required. These are provided by the studies of Chou and his colleagues. 
Chou and Sha [10] have stated the relevant components for a glide edge dis- 
location, a climb edge dislocation and a screw dislocation. Their results generalize 
those given previously by Chou [11] for dislocations in a basal plane of a hexag- 
onal crystal and by Chou, Garofalo and Whitmore [12] and Chou and Whitmore 
[13] for a cubic crystal. 

The basic mode I I I  problem is formulated in Section 2 before the derivation 
of its solution using dislocation layers is presented in Section 3. The length of the 
plastic zones and total plastic displacement created at the crack-tips are of 
interest. General explicit expressions are presented for these in Section 4. Low- 
stress approximations and representative numerical results are given. Some cor- 
responding expressions for cracks in purely elastic orthotropic plates are deduced. 

2. Basic Formulation 

We consider an infinite, periodic row of plane, collinear, stationary, Griffith- 
type strip cracks each of width 2c in an infinite homogeneous crystal which is 
orthotropieally symmetrical in its elastic response. We suppose that  the material 
is initially everywhere at rest and stress-free in a natural reference state and 
situated so that  its three mutually perpendicular planes of symmetry are the 
coordinate planes of a system of rectangular Cartesian coordinates x, y, z. 

The cracks are assumed to be lying on the y -~ 0 plane and centred at x -~ 0, 
=k2h, •  . . . . .  so that  they occupy the regions 

Z =  { ( x , y , z ) : 2 n h - - c < x < 2 n h + c , y = 0 , - - e o < z < o c }  (1) 

of the x - - z  plane, with n = 0, ~:1, =k2, . . . .  We suppose that  the medium is 
deformed in mode III ,  antiplane strain by stipulating that  %~ --> a at infinity, 
where ~v, is a component of the stress tensor referred to the x, y, z system of 
coordinates and ~ is a prescribed constant. With respect to the x, y, z coordinate 
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system, the relationship connecting the components of the stress and strain ten- 
sors, 6 and s respectively, for an orthotropic material can be written in the form 

G11 

G22 

G83 

0"23 

G13 

0"12 

where the %. denote 

-c11 c12 c13 0 0 0 

c12 c22 c23 0 0 0 

C13 c2~ c33 0 0 0 

0 0 0 2c44 0 0 

0 0 0 0 2c5~ 0 

0 0 0 0 0 2c6~ 

elastic constants the 

~22 

C33 

~28 

~12 

(2) 

referred to the chosen coordinate 
system. We further suppose that  the material is elastoplastic with constant 
yield stress gl ( >  g) and that  there is plastic flow at the tips of the cracks over 
plastic zones of length a - - c  extending throughout the regions 

Ip = {(x, y, z): c < Ix - -  2 n h j  < a, y = 0, - - c o <  z < co} (3) 

with n = 0, • 1, ~:2 . . . . .  
Hexagonal and cubic crystals are particularly important  special classes of 

orthotropie crystals and it is worthwhile indicating here that  Tupholme [14] has 
given explicit details of the substitutions which can be made into expression (2) 
to produce results applicable to them. 

3. Solution 

In order to discuss such mode I I I  cracks, according to the general procedure 
of the dislocation layer method, we replace them by an equivalent Continuous 
planar distribution of dislocations. To conform with the BCS model [5] these are 
not blocked at x = 2 n h - - c  and x = 2 n h - ~ c  ( n = 0 , : t : 1 , = f = 2 , . . . ) ,  but are 
allowed to run into the material through the regions Ip, defined by Eq. (3), pene- 
trating as far as the points x = 2 n h  - -  a and x - -  2 n h  + a ( n  = O, ::t=1, =t=2 . . . .  ) 

beyond the crack-tip, to create plastic shear in these regions. For these shear 
cracks we utilize straight screw dislocations with their lines and Burgers vectors 
parallel to the z-axis. We suppose that  such a dislocation corresponds to a dis- 

placement discontinuity given by 

~ttIII(x, 0-~) - -  UIII(x, 0 - - )  = (0, O, - -b)  for x > O, 

where b is a constant. Throughout a superfix I I I  is attached to the displacement 
vector u and the components of the corresponding stress tensor. For  a screw 
dislocation of t h i s  type  situated at the origin, the stress field has non-zero 
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components [10] given by  

uz,  bKs V~y ] 
Gxz ix, Y) I 

2~ x 2 -t- ~72Y ~ ' I 

,I = ] @z (x, y) bKs x 
27e x ~ + ~y~ 

where 

(4) 

K8 -(c,,c~)~/~, v = (~ /c , , )  ~/~. (5) 

The distribution of dislocations is odd in x; those to the right of each crack are 

positive and those to the left are negative. I f  the number  of dislocations on 
y = 0 in the interval (x, x + dx) is /(x) dx, then the components of the stress 
field created around the cracks can be calculated by  direct substitution into the 
formula 

f , ~ri~(x, y) = % ( - x ,  y)  f i x ' )  d x ' ,  (6) 
--co 

_In given by  Eqs. (4) and (5). with the appropriate  aq 

The value of the density function/(x) and the relationship between c and a are 
to be determined for various values of the prescribed physical constants a and ~,. 
This can be accomplished by  constructing the singular integral equation which 
constitutes the equilibrium equation for the dislocations representing this row of 
cracks. 

From Eq. (6) we see that  the shear stress at  a point on the x-axis due to all 
the other dislocations is 

c o  c o  

Gyz(X, O) . f II' O) /(X') ClX' -- @ f /(xl! da3', = % ( z - a : ' ,  2= .] " z - . '  
--CO --~ 

(7) 

where the integral here must  be interpreted as a Cauchy principal value integral. 

Hence, since the resistance to the motion of the dislocations is taken to be q (the 
constant yield stress of the material) within the plastic zones, we must  satisfy the 
equilibrium equation 

bKs ; ](x') { - - ~  in I ,  
27~ ,~ x --  x - - - - - T  dx' = - - ( ~ - - ~ 1 )  i n I p .  

- - o o  

(s) 

Using the observation t h a t / ( x  -~ 2nh) = / ( x )  and / (x )  = - - / ( - - x )  together with 
the result that  

z ~ - -  n ~ - -  2z ~ § 2z cot .~z, 
n = l  
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the left-hand side of this equation can be rewritten (el. Liebfried [15, in German]) 
in the form 

a 

bKs f cos (~zx'/2h) 
4h sin (=x/2h) -- sin (=x'/2h)/(x') dx'. 

- - a  

Hence, by  introducing the new variables defined by 

x~ = sin (=x/2h), 

xl' = sin (=x'/2h), 

the integral equation for / (x)  becomes 

al  

al -~ sin (=a/2h), I 
! cl = sin (~rc/2h), 

(9) 

f 2~ ~ --a, =-cl < xl < cl, (10) 
X 1 - -  X l '  

--tzl 

= =__- l ( x ) .  

This is of precisely the same form as that  obtained in the isotropie case origi- 
nally by  Bilby, Cottrell and Swinden [5] and subsequently by  Bilby, Cottrell, 
Smith and Swinden [9], being of the well-known type discussed by, for example, 
Muskhelishvili [16] and Gakhov [17]. We can therefore take over the main results; 
referring the interested reader to these for more details of their derivation. 

The appropriate solution can be conveniently written as 

2al In xl(a12 -- c1~)112 -[- cl(al~ -- x12)112 (11) 
/l(x:) =/ (x )  -- =bKs xl(al ~ - -  C12) 1/2 c:(a: ~ - -  :~12)1/3{ " 

We wish this to be bounded at both xl = :La~ (i.e. x = •  since there a r e n o  
barriers there. This requirement will be met if and only if 

f (  r (r - o~) al~ _ _  xl,2)112 dx /  + (al 2 - -  Xl ,2 )1 [2  d x  1' = O .  ( 1 2 )  

--Ci ( - - a i  Ci ) 

Substitution of the expression (11) into Eq. (6) leads to explicit representations 
of the stress components at any point in the medium. 

4. Implications and Discussion 

However, the two quantities which are usually of most interest are the maxi-  
mum extent  of the plastic zones in front of the cracks and the total plastic dis- 
placement, ~b0IH, at the crack-tips. I t  can be shown that  the condition (12) can 
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be rewritten as 

al - -  sin (zla/2h) cos (13) 

and it is this which determines the length, a--c,  of the plastic zones in terms of 
the applied stress. ~0 tH is the sum of the Burgers vectors of all the dislocations 
which have passed through a crack-tip and is thus given by 

a a 1 

~ ) ~  .~ (1 --[I(Xl)xl2) 1/2 dxl 

C gl 

0o 

4(hh [7ra] f sin0 
- =  - -  t a n  

~2K s 2-h {1 + sin ~ 0 tan ~ (~a/2h)} 1/2 
0 

I sin (0o + O) 
In sin (0o -- O) 

(1~) 

dO 

with 00 = xa/2al. 
We observe that  the condition (13) is identical to that  given by Bilby, Cottretl, 

Smith and Swinden [9] for cracks within an isotropic medium, so that  the length 
of the plastic zones is unaffected by the anisotropy of the material. On the other- 
hand, from Eq. (14), the ratio r of the plastic displaeeme~t at a crack- 
tip in the orthotropic crystal to that  in an isotropic material of shear modulus # 
is seen to be given by 

~)OIII / r  = [ s  ( 1 5 )  

The Table indicates the range of values of K~ and #/K~ for various materials. The 
values given for K8 are derived from the data of Chou [11] and Hearmon [18], 
and /~ has been taken to be 7 • 101~ Nm -2, as being typical for an isotropic 
material. We see that/~/K8 varies significantly from one material to another, with 
the greatest plastic displacements occurring for CdS and Mg. 

I t  is also of interest to record here the approximate results which are given in 
cases of small stress (~ ~ ~1)- From Eqs. (13) and (14) we find that  then 

(~ - -  C :7g2(12 t a n  (z~c/2h) a s 
- -  ~ - -  . ~o III c 8a1.2 zec/2h ' ~ ~ h tan (~c/2h). (16) 

"T~bie. Values o / K  8 (units 101~ Nm -~) aud /*/K s ]or various materials 

Material Be C Cd CdS Co Mg Zn Zr 

Kz 14.2 3.1 2.6 1.5 7.3 1.7 4.9 3.4 

#/K s 0.5 2.2 2.7 4.6 1.0 4.2 1.4 2.1 
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We note tha t  as h -> ~ these reproduce the results expected from Tupholme [14] 
for a single crack in an infinite plate. 

At this stage, it is instructive to point-out that ,  not only have we solved the 

problem formulated in Section 2 but moreover at  the same time, we have actually 
provided the solution t o  two further situations. Firstly, since the distribution of 
dislocations which we have employed is ant isymmetrical  about  the planes x = •  
it is clear, from a knowledge of the field of an image combination of such screw 
dislocations, tha t  the stress components o~  vanish on these planes. The stress 
distribution obtained for the i~ffinite row of cracks therefore also supplies tha t  

created around a single crack, - -c  ~ x ~ c, in a finite plate, - -h  .< x ~ h, of 
orthotropic material  whose surfaces x ~ ~ h  arc stress-free. Secondly, since the 
distribution is odd about  x = 0, it further  represents the conditions in an ortho- 
tropic finite plate, 0 ~ x ~ h, containing a surface crack, 0 ~ x ~ c. 

Bearing in mind the data presented in the Table, some consequences of these 
results and predictions for the theory of notch brittleness and high-stress fatigue 

can be deduced directly from those given by  Bilby, Cottrell, Smith and Swinden [9]. 
Finally, we can deduce the solution for cracks in a purely elastic orthotropic 

plate, for example, by  letting o~ --> ~ .  In  this limit we find from Eq. (11) tha t  

2o sin (z~x/2h) /(~) - -  _ _  

Ksb {sin 2 (~c /2h)  - -  sin 2 ( z x / 2 h ) p / 2 '  

and the corresponding shear stress directly in front of a crack can be shown from 

Eq. (7) to he 

sin (~x /2h )  

~y~(x, 0) = {sin 2 (~x /2h )  - -  sin 2 (~c/2h)}  112' (17) 

with resulting stress-intensity factor 

K,,-, = ~ 7 tan L N j /  . (is) 

Combining Eqs. (16) and (18), it is therefore apparent  tha t  the low-stress 
approximations for elastoplastic cracks can in fact be neatly written in terms of 

the corresponding elastic stress-intensity factor as 

a - -  c ~ ~2K~I,/4(~1 ~", q~o ' H  ~ z K ~ , i / K , ( h ,  (19) 

with the dependence on a, c and h contained in K~u and tha t  upon r and K 

shown explicitly. 
For the sake of brevi ty  we have only studied mode I I I  antiplane shear cracks 

here, but  the same type  of model could be applied to mode I and mode I I  situa- 
tions in which the specified tractions are such tha t  r -~ o and ox~ -*  o, respec- 
tively, at  infinity, using straight edge dislocations whose fields are summarized by  
Tupholme [14]. The foregoing analysis for the infinite row of elastoplastic cracks 
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would then  aga in  yie ld  Eq.  (15), for  example ,  bu t  wi th  the  cons tan t  Ks re- 

p laced  b y  K . (1  - -  v) or  Ke(1 - -  v) for  mode  I or  mode  I I ,  respec t ive ly ,  where 

g e = (~12 -~ c12) (c22(e12 _{_ c12 _j[_ 2 c s G ) J  , c1~ = (cl,c~) 1/2, 

K .  = K,(~2~/~.) ~/~, 

and  v is Poisson ' s  ra t io .  These solut ions  however  do no t  cor respond to those  for  

the  analogous  s i tua t ion  in  a f in i te  p l a t e  as d id  the  mode  I I I  resul ts ,  because  the  

image  cons t ruc t ions  for  edge dis locat ions  do no t  m a k e  the  p lanes  x = • 
stress-free.  I n  t he  isot ropic ,  p u r e l y  elast ic  l imi t  the  resul ts  ob ta ined  can indeed be 

shown to reproduce  those  p resen ted  in Sneddon  and  Lowengrub  [3] and  Sih [4]. 
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