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Summary. Solutions for the equations of motion of an incompressible second grade fluid are derived by 
assuming certain conditions on the stream function. Exact solutions are obtained for a planar motion for 
both steady and unsteady cases. 

1 Introduction 

Known exact solutions of the Navier-Stokes equations are few in number. This is, in general, due 

to the non-linearities which occur in the inertial part of these equations. However, many flow 
situations of interest are such that a number of terms in the equations of motion either disappear 

automatically or may be neglected, and the resulting equations reduce to a form that can be 
readily solved. 

By considering the vorticity to be a function of the stream function alone, Taylor [1] showed 

that the non-linearities are self-cancelling and obtained an exact solution which represents the 

decay of the double array of vortices. By taking the vorticity to be proportional to the stream 
function perturbed by a uniform stream, Kovasznay [2] also observed the similar cancellation of 

the non-linearities and found an exact solution which described the motion behind a two- 
dimensional grid. Wang [3] was also able to linearize the Navier-Stokes equations and showed 

that the results established in [1], [2] can be obtained from his findings as special cases. Recently, 

Lin and Tobak [4] and Hui [5] investigated similar flows where the non-linear terms vanish 
automatically. 

In the case of the non-Newtonian fluids, namely the homogeneous incompressible 
Rivlin-Ericksen fluids of second grade [6], [7], it is found that the non-linearities occur not only in 

the inertial part but also in the viscosity part of the governing equations. As a result, the number 

of exact solutions becomes much smaller as compared to the exact solutions of Navier-Stokes 
equations. Rajagopal [8] observed that the non-linear convective terms which occur in the 

equations of motion of a second grade fluid also vanish for the specific problems studied by 

Taylor and Kovasnay as mentioned earlier. Rajagopal and Gupta [9] obtained a class of exact 
solutions to the equations of motion of a second grade fluid wherein the non-linearities are self 

cancelling though individually non-vanishing. They showed that these exact solutions form 
a subclass of the solution obtained by Wang [3] for the Navier-Stokes equations. 

By assuming a certain form of the stream function, solutions for such fluids for the steady 
planar case were obtained by Kaloni and Huschlit [10], Siddiqui and Kaloni [11], and Siddiqui 
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[12]. Viscometric flows of such fluids have been studied by Markovitz and Coleman [13] and 
solutions to unsteady flows have been found by Ting [14] and Rajagopal [15]. 

The equations of motion for such fluids are, in general, one order higher than the 

Navier-Stokes equations and require additional boundary conditions over and above the 

boundary conditions used to solve the Navier-Stokes equations. However for special classes of 
solutions in unbounded domains, one may not need an additional boundary condition. 

In the present paper, following Hui [5], we study the two-dimensional flow of a 

homogenous incompressible second grade fluid in which the vorticity is proportional 
to the stream function perturbed by a uniform stream and exhibit a class of exact solutions. 

In addition, on neglecting the inertial terms and assuming the Laplacian of vorticity 

to be proportional to the stream function perturbed by a uniform stream, we obtain 

another class of exact solutions in an unbounded domain which do not require an additional 
boundary condition. 

2 Basic equations 

The basic equations governing the motion of a second grade fluid are 

div v = 0 (1) 

O ~- + (grad v) = --grad p +/2172v + ((z I ~- ~2) div A12 

E { }] -~- g l  [721~ t + [72([ 7 X l~) ~- grad (v. V2v) + ~ [All 2 + ~of (2) 

where v is the velocity vector, p the pressure, A i the first Rivlin-Ericksen tensor given by 

A1 = grad v + (grad v) r, (3) 

0 the constant density, f the body force, cq and ~2 the material constant and/2 is the coefficient 

~v V2 of viscosity. Here vt = ~ ,  is the Laplacian operator and IA l] denotes the usual norm of matrix 

A given by (s 1/2. 
If an incompressible fluid of second grade is to have motions which are compatible with 

thermodynamics in the sense of the Clausius-Duhem inequality and the condition that the 
Helmoltz free energy be a minimum when the fluid is at rest, then the following conditions must 

be satisfied [16]: 

/ 2>0 ,  % > 0 ,  cq +c~2=0 .  

On the other hand, experimental results of tested fluids of second grade showed that cq < 0 
and cq + a2 4 = 0 which contradicts the above conditions and imply that such fluids are unstable. 
This controversy is discussed in detail in [16] and [17]. However, in our paper we will discuss both 

cases, cq > 0 and ax < 0. 



Planar motion of a second grade fluid 87 

Now let us consider the unsteady plane flow where v is represented by 

v = [u(x, y,  t ) ,  v(x ,  y,  t ) ,  0] (4) 

and define the generalized pressure h and vorticity w functions as 

h = ~-2 (u2 + v2) -}- p - -  0~l(U[72H + VV%) + ~ (3Cq + 20~2)IAll 2 (5) 

8v 8u 
w - (6) 

Ox 8y 

Then using (3) we get 

(0u']  2 4 (0v']2 \@] ( Ou ~Y Ovx] 2 Ox J " ]All z=4\Ox) + +2 + 

Substituting (4), (5), and (6) into (1) and (2) and assuming that the body force is absent, the 
equations of motion become 

8u 8v 
a~ + ~ = 0 (7) 

O h [ O u ]  3u 
ON -}- r ~ -  -- /)W = ]A~72U -t- alV 2 ~ -  -- all)V2w 

(8) 
O h I O v  ] Ov Oy -~- ~ ~ -}- HW = [.Ig2v @ o{1V 2 ~-  ~- 0~lb/V2w. 

If we define the stream function ff(x, y, t) such that 

off aV, 
U---- ~yy, V-- 0X' 

Eq. (7) is satisfied identically and Eqs. (8) become 

Oh ~02ff Off/ 1 OI/J 02ff Off 
o~ + ~ LOt Oy & (v~ff) = f -  Uy + ~v~ ot a~ - ~ ~ v ~ '  

(9) 
ah I- a~ff Off 7 Off a2ff off 
aT + e [ ] a t  ox ay (v2ff) = - ~ v 2  ~-x - ~ v2 - - a t  ax - ~ ~-y v4ff" 

In eliminating the generalized pressure between the equations in (9), the above system reduces to 
a single partial differential equation: 

[ 8  8(~, V2ff). 7 69 8(ff, V4ff) (10) 
e a7 (v2ff) a(x, y) 3 = ,,v% + ~1 gi [v~ff] - ~1 O(x, y) 

Equation (10) represents the motion of a second grade fluid when the motion is planar and the 
body force is null. We will solve Eq. (10) for some special cases. 
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3 G e n e r a l  s o l u t i o n s  o f  e q u a t i o n s  

Part I 

In this Section we will consider the case of the motion when 

V2~ = K(t~ -- Uy) (11) 

where K and U are constants. Using (11) one finds 

_ _ _  0~ a a(~, v2~,) a~, a0 (v2~) (v2~,) 
0(E, y) r 0y 0y 0x 

a~ o ag, a 
- [K(~b - Uy)] [ K ( ~ b -  Uy)] 

Ox Oy Oy Ox 

ar 
= - K t S  a-7' 

V 4 r  = VZV2@ = V Z [ K ( ~  - Uy)] = K2(I~ - U y ) ,  

c~ O K2 O~ 

a ( v 2 ~ , ) :  0 a~ 
at at [K(~ - Uy)] = K 77 '  

and 

a(@, V4//])- Ol// O V4 @ Ol/j O (gr = _ K 2 U  &// 
a(x,y) Ox ay ay ax Ox" 

Hence Eq. (10) subject to condition (11) becomes 

(~o -- cqK) O~ + U(0 - ~ ,K)  ct ~x = #K(~  - Uy). (12) 

On setting 7" = ~ - Uy, Eqs. (11) and (12) reduce to the system 

V27" = K7". (13) 

07" Og s 
(O - ~IK) a t  + U(e  - alK)  Ox = #KT'.  (14) 

We note with interest that by setting U = 0 and ~1 = 0 in the above system, we obtain Taylor's 

case [1]. Furthermore on setting cq = 0 only, we recover Hui's case [5]. 

S teady  f low 

For the steady case Eqs. (13) and (14) become 

V27" = KT" (15.1) 

O7' 
U(0 - e~K) ~-x = #KT' .  (15.2) 

We observe that if U = 0, we obtain the trivial solution 7" = 0, which implies that ~ = 0. In the 

case when 0 - cqK = 0 it follows that 7' = 0, or K(~ - Uy) = 0, which implies that r = Uy. 

We suppose in the following that U(O - oqK) 4 = O. 
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Then (15) becomes 

V21[ / = Kg* 

Q~P /2K~ 

ax U(~ - ~ K ) "  

Solving the last equat ion using the product  method we get 

1 #Kx 

~P = F( y) e v o - ~  

or 

7, = F(y)  e w where 2 - 
0 -- 0qK" 

To find F(y)  we substitute (17) into (15.1) to get 

(16) 

(n) 

F"(y) + - / ~  F(y) = 0. (18) 

Upon  solving Eq. (18) we have the following general solution for the stream function defined in 

the positive half space x > 0: 
(20~lU 2 .+ 122) _ [}/2(40~1U2 +/22)]1/2 

(i) If K < 0 or < K 
2U2~12 

(20~ ,e  2 + }/2) _}_ [/22(40~1U2 q_/A2)]1/2 
< then 2U2cq 2 

< l O =  U y + C e  ~-cos  - K  y + A  . (19) 

These solutions for K < 0 represent a uniform stream plus a per turbat ion  which decays when 

0 
K < cq, and grows when cq < ~ and is periodic in y. For  the other case they represent a uniform 

Q and grows when cq < ~ and is stream plus a per turba t ion  which decays when cq > periodic 
/%_ 

in y. 
(2o0qU 2 -I- }/2) q_ [}/2(40~1U2 -I /22)] 1/2 

(ii) If K = 0 or K = then 
2U20q 2 

2x 

= Uy + (Ay + B) e v .  (20) 

Fo r  K = 0 these solutions represent a uniform stream for any cq and for the second case they 
_/22 

represent a uniform stream with a per turba t ion  which grows when 40/_77 < ~z < 0 or 0 < cq 

0 0 and is not  periodic in y. < ~ and decays when cq > 

(2@oqU 2 nt_/22) _ [/22(40~1U2 +/22)]1/2 
(iii) If  0 < K < or  

2U20q 2 

(20~1U 2 q_/22) _}_ [/22(4@0,1U -k/22)]1/2 
K > then 

2U20q 2 

~2)1:2 ) ~x 
/ ( ).2~/~ (K_v = e w-. = U y + ~ A e  t'~ v~) r + B e  (21) 
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These solutions represent a uniform stream and a per turba t ion  which decays if ~1 > ~ and 
K ~o 

grows if e l  < - - -  
K 

U n s t e a d y  f lows 

A)  Case 1 

We will consider in the first part  plane wave solutions of Eq. (14) of the form 7" = G(x, y) e "~ with 

X = x - U t .  

Equat ion (14) can be written as 

07" 07" 
0-T + U ~ x  = 27' .  (221 

The case when ~ - ~IK = 0 implies 7" = 0, hence ~ = Uy. 

Upon  substituting 7" = G(x, y) e mt into Eq. (22) we find that m = 2. Hence 7" = G(x, y) e ~' 

satisfies Eq. (22). To find G(x,y)  we substitute 7" = G(x, y) e a into Eq. (131 to get 

~?2G ~2G 
c~X~5 + --@2 = K G .  (23) 

Plane wave solutions to Eq. (23) exist in the form 

G = g ( { )  where { = X c o s 0 + y s i n 0 ,  - / 7 < 0 < / 7 .  

Substi tut ing G = g({) into (23) we get 

g"(~) = Kg(~) 

or (24) 

g" - Kg = 0. 

There are three cases 

a) If K = - -k  z < 0, then the general solution of (24) is given by g(~) = A(O) cos k {4 + B(0)} 

and the corresponding solution for the stream function is 

tp(x, y, t) = Uy + A(O) e ~' cos k {(x - Ut) cos 0 + y sin 0 + B(0)} (25) 

where A(O) and B(O) are real arbi t rary  constants depending on 0. 

b) If K = 0, then the solution is 

t) = Uy + A(O) {(x - Ut) cos 0 + y sin 0} + B(O). (26) 

c) If K = k 2 > 0, the general solution of (24) is 

g(~) = A(O) ekr + B(O) e - <  

and the solution for the stream function is 

~p(x, y, t) = Uy + eaA(O) e k~(x-v~176176176 + B(O) e -kt(~-vt)~176176176 (27) 

We observe that when K = 0 the flow is i r rota t ional  and the solution is valid for both  viscous and 

second grade fluid. For  K < 0 and ~1 > 0 the solution is exponential ly decaying and reduces to 
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Hui 's  case, (Class A) [5]. F o r  K > ~o > 0 the solut ion is exponential ly decaying, but for K > 0 

and :q = 0, the solution is exponential ly growing and can only have physical meaning in a finite 

time interval. I t  is interesting to observe that  as :q increases the damping of the stream line 

functions is greater as expected for a second grade fluid when compared  with viscous fluids. 

B )  Case  2 

In this Section we will give another  class of solutions to Eqs. (13) and (14) of the form 

= H ( X ,  y) e m~/v 

mx 
where X = x - U t  and m and H are to be determined. Upon  substituting 7, = H ( X ,  y) e ~-  into 

Eq. (14) we find that m = 2 where 

2 -  # K  
-- cqK" 

I f e l  = 0, Eq. (14) reduces the Hui 's  case (Class B) [5]. To find H we substitute ~ = H ( X ,  y) e ~t into 

Eq. (13) to get 

OX ~ + ~ - ~  + \ U  2 - K  H + - - 8 y 2  = 0 "  (28) 

Plane waves solutions to (28) exist in the form 

H = h(~), ~ = X cos 0 + y sin 0. (29) 

Substi tut ing (29) into (28) we get 

h"(~) + ~ -  h (~) cos 0 + ~-5 - K h(~) = 0. (30) 

Solutions of (30) are of the form 

h(~) = ce m~/v (31) 

where c is an arbi t rary  constant  and m = - 2  cos 0 + [ K U  2 - 22 sin 2 0] ~/2. Depending on the 

sign of K U  2 - -  2 2 s i n  2 0, we have the following solutions: 

a) If K = k 2 ~ U2 > O, then 

h(~) = e-(;~~176176162 e r162 q- B(O) e -r (32) 

22 
for - H  -< 0 < H except when K = ~ 5  and 0 -- H / 2 ,  then (30) reduces to h"(~) = 0 whose 

solution is h = ay  + b. The lat ter  solution is also obtained when K = 0. 
22 

b) I f K = k  2 <  ~ ,  then for [0[ < 00 or H - 00 < [0[ __< /T where 00 = sin l _ _  

solution is given by 

K l / 2  
U, the 

2 

h = e-('~~176176162 e r176 q- B(O) e -r176 (33) 
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and if 0o < [0[ < / 7  - 00, the solution is given by 

h = A(O) e (-~c~176162 cos [~(2 a sin 2 0 - KU2)  1/2 + B(0)]. (34) 

c) If K = - k  2 < 0, then 

h = A(O) e (-~~176176162 cos [4(22 sin z 0 - K U 2 )  1/2 + B(0)]. (35) 

Xx 

Observe that the solutions T = h({) e u cannot  be obtained from the solutions g* = g(~) e ;t and 
2x  

/7 the plane wave solutions T = h(~) e v reduce to the vice versa, except when 0 = 0. When 0 = ~-, 

special case of the steady flow solutions discussed earlier. 

Part  I I  

We now consider the mot ion of a second grade fluid when g4g, = K(O - Uy) where K and U are 

real constants under the assumption that  the mot ion  is slow enough, so that  we can neglect the 

inertia terms. Then Eq. (10) becomes 

( 8 )  8(r F4r _ 0" 

Lett ing ~74~ = K ( ~  - Uy) and T = ~ - Uy we get 

V4T = K T  (36) 

# + c q ~  T = - ~ U o x - x .  (37) 

We observe that  when ~ = 0 then T = 0 which implies that ~ = Uy. In the following we give 

solutions to equations (36) and (37). 

S t e a d y  f lows 

For  steady flows, the system (36), (37) reduces to 

8T  - #  
U - - - T  

~X OC 1 

(38) 
[74}// = K~. I .  

For  U = 0, T = 0, hence ~ = 0 which implies no flow. Fo r  U =# 0 

0T  # 
U - - - T  

8X 0~ 1 

- i t x  

admits  solutions of the form T = F(y) e ~,v. 

Letting 2 = - #  and substituting T = F(y)  e ~x into equation V 4 T  = K T ,  gives rise to the 
ctlU 

fourth order  ordinary differential equation 

F 0v) + 222F '' + (24 -- K) F = 0 (39) 

whose solutions are 

a) If  K = 0 

F = A c o s ( 2 y + B ) + C y c o s ( 2 y + D )  (40) 
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where A, B, C, a n d  D are a rb i t ra ry  constants .  

b) If K = k 4 > 0, then  

i) F o r  k 2 = 22 , F = A cos [(22 + k2) 1/2 y + B] + Cy + D (41) 

ii) F o r  k 2 > 22 

F = A cos [(22 + k2) ~/2 y + B] + Ce (k~-a2)l'2y + De ~k2-a~)~'2Y (42) 

iii) Fo r  k 2 < 22 

F = A cos [(22 + k2) 1/2 y + B] + C cos [(22 - k2) ~/z y + D]. (43) 

c) I f K = - - k  4 < 0 , t h e n  

F = e ( ~ + k 4 ) ~ ' 2 ( ~ 1 7 6  1 (44) 

+ Ce-(X +k ), ~co~T)y cos (24 + sin y + D 

w h e r e 0 o = t a n - 1  - ~5 " H e n c e  

O = ~ + Uy = Uy + F(y) e x~ (45) 

where F is given by a), b) or c). 

U n s t e a d y  f lows  

The  Eqs. (36) and  (37) of m o t i o n  become 

V4~/' = K ~  (46) 

- -  + U - 67  j where c5 = - - .  (47) 
& #x czl 

A) Case 1 

We will consider  solut ions  of (47) of the form 7 ~ = G(X, y) e-at where X = x - Ut. Plane  wave 

solut ions  of Eq. (47) exist in  the form G(X, y) = g(~) where ~ = X cos 0 + y sin 0, - / / <  0 < / 7 .  

Subs t i tu t ing  k~ = g(~) e -'~t in to  Eq. (46) we get 

gW(~) _ Kg(~) = 0. (48) 

Depend in g  on  the sign of K we ob ta in  the fol lowing solut ions:  

a) If K = 0 then  

~k = Uy + e-at[A(O) (X cos 0 + y sin 0) 3 + B(O) (X cos 0 + y sin 0) z 

+ C(O) (X cos 0 + y sin 0) + D(0)]. (49) 
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b) If K = k ~ > 0 then 

= U y  + e-'~t[A(O) e k(xc~ + B(O) e -k(xc~ 

+ C(O) cos {k(X cos 0 + y sin 0) + B(0)}I. (50) 

c) I f K = - k  4 < O t h e n  

(Xoo~O+ysl, Ol (X cos 0 + y sin 0) + B(O) ~p = Uy + e -~ A(O) e (~176 cos sin ~- 

+ C(O) e sing(XcosO+yslnO) COS cos ~ (X  cos 0 -~- y sin 0) + D(O) . (51) 

B) Case 2 

We will now consider solutions of (47) of the form ~ = H(X, y) e-*~/v where X = x - Ut and 

# 

Plane wave solutions of Eq. (47) exist in the form H(X, y) = h(~) where 

= X c o s 0  + y s i n  0, - / 7  < 0 < H.  

ax 
Substi tuting ~g = h(~) e v into Eq. (46) we get the fourth order  homogeneous differential 

equation 

62 6~ ( 64 ) 
h I v + 4  (cos0) h ' " + 2 ~ ( l + 2 c o s  20) h ' ' + 4 ~ ( c o s 0 ) h ' +  ~ 4 - K  h = 0 .  (52) 

The auxiliary equation associated with (52) has the following roots:  

- -6  cos 0 + [--32 sin 2 0 + (U4K)l/2] 1/2 m = (53) 
U 

Depending on the sign of K we obtain the following solutions: 

a) If K = 0, then 

h = A(O) e-v(oosOl(Xoo~O+y~i~o) cos sin 0 (X cos 0 + y sin 0) + B(O) 

6 
+ C(O) (X cos 0 + y sin 0) e -v(c~176176176176 

(54) 

b) If K = k ~ > 0, then for 10] < 0o o r / / -  0o < 101 < F/ where 
kU 

0o = sin -1 - -  
6 

-aoosocx ~osO+y~inO~ {(32 sin2 0 + kZu2)l/Z (X cos O + sin O) } 
h = A(O) e V cos U + B(O) 

(--acosO+(k2U 2 62sin~O)l~2)(Xe, osO+ysinO) ( 6cosO-(k2U2-3Zsin20)l12)(XcosO+ysinO ) 
+ C(O) e v + D(O) e v (55) 
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and for Oo < IO[ < n - Oo 

- 6  cos O(X cos 0 + y sin0) 
h = A(O) e v 

S(62 sin 2 0 + k2U2) 1/2 (X cOS 0 ~- y sin O) 
COS 

U 
+ B(O)} 

-6cos0 f !6  z sin 2 0 - -  k 2 U 2 )  1/2 (X cos 0 q- y sin O) 
+ C ( O ) e ~  (x~176176176 cos l U + D(0)} (56) 

and  for 0 = Oo 

(62 sin 2 0 + k2U2) 1/2 (X cos 0 -}- y sin 0) 
h = A(O) c -6c~176 Gos U + B(O)} 

-6  cos0 

+ [C(0) + O(O) (X cos 0 + y sin 0)] e v (xco~o+y~i,o) (57) 

c) If  K = - k  4 ( 0 then  

h = A(O) e---(6c~176176176176176176176 { s i n O ~ 1 7 6  - -  cos r U + B(O) 

+ C(O) e -O~176176176176176 { r s i n O ~ 1 7 6  COS U + D(O) (58) 

U2k 2 
62 sin 2 O" F ina l ly  the so lu t ions  to Eqs. (46) and  where  r = (64 sin 4 0 + U4k4) 1/2 and  200 = tan  -~ 

(47) are given by  

6x 

~p = Uy + he -v- where  h is given by  a), b) or c). (59) 
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