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Summary. Solutions for the equations of motion of an incompressible second grade fluid are derived by
assuming certain conditions on the stream function. Exact solutions are obtained for a planar motion for
both steady and unsteady cases.

1 Introduction

Known exact solutions of the Navier-Stokes equations are few in number. This is, in general, due
to the non-linearities which occur in the inertial part of these equations. However, many flow
situations of interest are such that a number of terms in the equations of motion either disappear
automatically or may be neglected, and the resulting equations reduce to a form that can be
readily solved.

By considering the vorticity to be a function of the stream function alone, Taylor [1] showed
that the non-linearities are self-cancelling and obtained an exact solution which represents the
decay of the double array of vortices. By taking the vorticity to be proportional to the stream
function perturbed by a uniform stream, Kovasznay [2] also observed the similar cancellation of
the non-linearities and found an exact solution which described the motion behind a two-
dimensional grid. Wang [3] was also able to linearize the Navier-Stokes equations and showed
that the results established in [1], [2] can be obtained from his findings as special cases. Recently,
Lin and Tobak [4] and Hui [5] investigated similar flows where the non-linear terms vanish
automatically.

In the case of the non-Newtonian fluids, namely the homogeneous incompressible
Rivlin-Ericksen fluids of second grade [6], [7], it is found that the non-linearities occur not only in
the inertial part but also in the viscosity part of the governing equations. As a result, the number
of exact solutions becomes much smaller as compared to the exact solutions of Navier-Stokes
equations. Rajagopal [8] observed that the non-linear convective terms which occur in the
equations of motion of a second grade fluid also vanish for the specific problems studied by
Taylor and Kovasnay as mentioned earlier. Rajagopal and Gupta [9] obtained a class of exact
solutions to the equations of motion of a second grade fluid wherein the non-linearities are self
cancelling though individually non-vanishing. They showed that these exact solutions form
a subclass of the solution obtained by Wang [3] for the Navier-Stokes equations.

By assuming a certain form of the stream function, solutions for such fluids for the steady
planar case were obtained by Kaloni and Huschlit [10], Siddiqui and Kaloni [11], and Siddiqui
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[12]. Viscometric flows of such fluids have been studied by Markovitz and Coleman [13] and
solutions to unsteady flows have been found by Ting [14] and Rajagopal [15].

The equations of motion for such fluids are, in general, one order higher than the
Navier-Stokes equations and require additional boundary conditions over and above the
boundary conditions used to solve the Navier-Stokes equations. However for special classes of
solutions in unbounded domains, one may not need an additional boundary condition.

In the present paper, following Hui [5], we study the two-dimensional flow of a
homogenous incompressible second grade fluid in which the vorticity is proportional
to the stream function perturbed by a uniform stream and exhibit a class of exact solutions.
In addition, on neglecting the inertial terms and assuming the Laplacian of vorticity
to be proportional to the stream function perturbed by a uniform stream, we obtain
another class of exact solutions in an unbounded domain which do not require an additional
boundary condition.

2 Basic equations

The basic equations governing the motion of a second grade fluid are

dive=0 (1

d
Q [8—: + (grad v) v:l = —grad p + ul?v + (o; + o) div 4,2

+ o, [Vzvt + V(¥ x v) 4 grad {(V‘ F2y) + % IAIIZ}} +of (2)

where v is the velocity vector, p the pressure, A, the first Rivlin-Ericksen tensor given by
A; = grad v + (grad »)7, (3)

o the constant density, f the body force, o; and «, the material constant and p is the coefficient

. o . . .
of viscosity. Here v, = P 72 is the Laplacian operator and | 4| denotes the usual norm of matrix
A given by {ZaZ}'%.

If an incompressible fluid of second grade is to have motions which are compatible with
thermodynamics in the sense of thé Clausius-Duhem inequality and the condition that the
Helmoltz free energy be a minimum when the fluid is at rest, then the following conditions must
be satisfied [16]:

w20, a 20, a +o=0.

On the other hand, experimental results of tested fluids of second grade showed that oy < 0
and o + a, + 0 which contradicts the above conditions and imply that such fluids are unstable.
This controversy is discussed in detail in [16] and [17]. However, in our paper we will discuss both
cases, a; = 0 and o, <O.
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Now let us consider the unsteady plane flow where v is represented by

v = [ul(x, y, 1), v(x, y, 1), 0] “

and define the generalized pressure h and vorticity w functions as

1
h = g(uz + 2 +p— |:oc1(u\72u +07%0) + 7 (o + 205) iAﬂ ©)
ov ou
= = 6
T ox dy’ ©

Then using (3) we get

AP =4 ou 2+4 ov +2 du N v\

U\ ax dy dy  ox/)
Substituting (4), (5), and (6) into (1) and (2) and assuming that the body force is absent, the
equations of motion become

Ju ov

=t =0 o

oh ou ou
i~ + [5 - vw:, = uV2u + a,V? 5 a0V %w

oh ov v
a—); + [& + uw:| = uV?v + o, V> En + oqul?w.

If we define the stream function y(x, y, t) such that

o oy
= — v =
oy’ ox”

Eq. (7) is satisfied identically and Egs. (8) become

oy Oy al//
('72‘/’)} Wyt g, T T

o [Py
0x ot oy

» [_5290 - l//( lﬁ)}:—WZ%—a p2 OV 61//

V4
dy a1 ox ox 1 dtox v

In eliminating the generalized pressure between the equations in (9), the above system reduces to
a single partial differential equation:

0 oy, V2 0 oG, 74
0 [5 (r2y) — M] =yt L) — gy D) (10)

a(x, y) o T oy

Equation (10) represents the motion of a second grade fluid when the motion is planar and the
body force is null. We will solve Eq. (10) for some special cases.
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3 General solutions of equations

Part 1

In this Section we will consider the case of the motion when
V2 = Ky — Uy)
where K and U are constants. Using (11) one finds

oW T WAy, o0

Ay ax oy (V=y) 3y ox (V)
_HW O e - WO e
= 7x oy [K(y — Uy)] 3y ox [K(y — Uy)]
_ 4
= —KU —,
V4 = V23 = V2K(y — Uy)]l = K*(y — Uy),
d 0, a0
ST = 5 K- Uy =K
0 0 LW
5 T = K@~ Uyl =K -,
and
ay, 7*y)  ay 8 a9 . ay
ax,y)  ox dy Vi - 5}55(7 V)= -KU ox

Hence Eq. (10) subject to condition (11) becomes

0 0
(0~ uK) 2 4 Ule—21K) S = uk(y — Uy).

On setting ¥ = — Uy, Egs. (11) and (12) reduce to the system
VY = K¥.

¥ o
(¢ —oK) — + Ule — ;. K) —— = uK¥.
ot 0x

(13)

(14)

We note with interest that by setting U = 0 and ¢, = 0 in the above system, we obtain Taylor’s

case [1]. Furthermore on setting o; = 0 only, we recover Hui’s case [5].

Steady flow
For the steady case Eqs. (13) and (14) become

V¥ =KY

v
U(g — x1K) i uK¥.

(15.1)

(15.2)

We observe that if U = 0, we obtain the trivial solution ¥ = 0, which implies that s = 0. In the
case when ¢ — o; K = 0it follows that ¥ = 0, or K{ — Uy) = 0, which implies that y = Uy.

We suppose in the following that U(g — ¢; K) & 0.
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Then (15) becomes

V¥ = Ky
(16)

oy ukK¥
ox  Ulp — a1K)
Solving the last equation using the product method we get

l nKx
¥ = F(y) eVe=k
or

Jx uK
Y=F(y)e?! where Ai=—"——. a7

Qo — OClK

To find F{y) we substitute (17) into {15.1) to get

Ve
F (y) + [F_K} F(y)=0. (18)

Upon solving Eq. (18) we have the following general solution for the stream function defined in
the positive half space x = 0:
(200, U2 + ) — [P (4o, U? + p?)*?

@) IfK<0or U0 <K
(o, U? + p) + [Wldea U + p2)I'”
< 2072 then
B /’{2 1/2
Y =Uy+ Ce¥ cos [(UZ_K> y+A]. (19)

These solutions for K < O represent a uniform stream plus a perturbation which decays when

% < ay,and grows when oy < %and is periodicin y. For the other case they represent a uniform

stream plus a perturbation which decays when «; > % and grows when a; < %and is periodic
n y.
(200,U% + p?) + [n*(4oe, U + p?)]'?

@IEfK=0o0orK= 20,2

then

Ax

W =Uy+ (Ay + B)eV. (20)

For K = 0 these solutions represent a uniform stream for any o and for the second case they
2

represent a uniform stream with a perturbation which grows when 4—52 <ay<0or0 <o
4

0 . C
< E and decays when o; > % and is not periodic in y.

(200, U? + p%) — [p*(doa, U? + )2

2U20612 of
- (200, U + p?) + [p*(4oo, U + p2)]*? .
2U2(X12

(i) 0 < K <

K hen

a2

Yy =Uy+ <A(37<K7W)1 T+ Be(K_gz)my> eL‘f. (21)
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. . . . . Q
These solutions represent a uniform stream and a perturbation which decays if o) > % and

) 0
grows if o < —.
K

Unsteady flows
A) Case 1

We will consider in the first part plane wave solutions of Eq. (14) of the form ¥ = G(x, y) ¢™ with
X=x—-Us
Equation (14) can be written as

v oY

— — =AY, 22
ot * 0x @2

The case when ¢ — «; K = 0 implies ¥ = 0, hence y = Uy.
Upon substituting ¥ = G(x, y) e™ into Eq. (22) we find that m = 1. Hence ¥ = G(x, y) e*
satisfies Eq. (22). To find G(x, y) we substitute ¥ = G(x, y) ¢* into Eq. (13) to get

6 + G =KG (23)
ox: oyt

Plane wave solutions to Eq. (23) exist in the form

G=g() where &¢=Xcosb+ ysind, —II1<0<II.

Substituting G = g(£) into (23) we get

g"(9) = Kg(9)
or 24
g" — Kg=0.

There are three cases

a) If K = —k? < 0, then the general solution of (24) is given by g(£) = A(8) cos k {& + B(6)}
and the corresponding solution for the stream function is

Wix, y,t) = Uy + A(B) ” cos k{(x — Ut) cos 8 + y sin 0 + B(6)} (25)

where A() and B(0) are real arbitrary constants depending on 6.
b) If K = 0, then the solution is

W = Uy + A(0) {(x — Ur) cos 8 + ysin 8} + B(0). (26)
¢) If K = k? > 0, the general solution of (24) is

g(&) = A(0) e + B(B) e ™

and the solution for the stream function is

Y(x, y, 1) = Uy + eMA(6) Mt~ Uneosttysinbl 4 B(gy o~ Mlx=Uncosttysind], 27

We observe that when K = 0 the flow is irrotational and the solution is valid for both viscous and
second grade fluid. For K < 0 and «; > 0 the solution is exponentially decaying and reduces to
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. 0 . . . .
Huy’s case, (Class A) [5]. For K > — > 0 the solution is exponentially decaying, but for K > 0
231
and a; = 0, the solution is exponentially growing and can only have physical meaning in a finite
time interval. It is interesting to observe that as o, increases the damping of the stream line

functions is greater as expected-for a second grade fluid when compared with viscous fluids.

B) Case 2

In this Section we will give another class of solutions to Egs. (13) and (14) of the form

¥ = H(X, y) e™/?

mx

where X = x — Ut and m and H are to be determined. Upon substituting ¥ = H(X, y) e U into
Eq. (14) we find that m = 4 where

uK

A= ———.
Q—OClK

Ifo; = 0, Eq. (14) reduces the Hui’s case (Class B) [5]. To find H we substitute ¥ = H(X, y) e*into
Eg. (13) to get

0*’H 2) 0H 22 *H
’H ( K) H _o. (28)

x: T T\ )T e
Plane waves solutions to (28) exist in the form
H=n¢, &=XcosO+ysinf. (29)

Substituting (29) into (28) we get

2

h(&) + % h'(&) cos 0 + <% — K> h(&) =0. (30)

Solutions of (30) are of the form
h(&) = cem? (31

where ¢ is an arbitrary constant and m = — A cos 8 + [KU? — 1% sin? 8]'/2. Depending on the

sign of KU? — 42 sin? 0, we have the following solutions:
2

A
a)IfK =k*2 — >0, then
U

h(é) — e—(}tcosﬂ)é/U[A(e) eé(KUzk}?sinzG)”2 + B(G) e—g”(KUz—lsinZO)”z] (32)

2

2
for —II £ 0 < II except when K = Uz and 0 = 112, then (30) reduces to h"(£) = 0 whose

solution is h = ay + b. The latter solution is also obtained when K = 0.
A? 1/2
b) If K =k?% < iEs then for (6] < @, or IT — 8, < |0] < II where 8, = sin

U, the

solution is given by

h = e~ GeoseIU] 4(g) LSKU? —Wsin6)2 B(®) e—é(KUZ—Azsinze)m] (33)
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and if 8y < [B] < I — 6,, the solution is given by
h= A(B) =98V cos [£(2% sin® 6 — KUY? + B(O)]. (34)
o) If K= —k* <0, then
h= A(f) e~ cog (527 sin? 6 — KUY + B(B)). (35)
Ax
Observe that the solutions ¥ = h(£) ¢V cannot be obtained from the solutions ¥ = g(¢) ¢* and

AX

b Ax
vice versa, except when § = 0. When 6 = X the plane wave solutions ¥ = h(¢) eV reduce to the
special case of the steady flow solutions discussed earlier.

Part 11

We now consider the motion of a second grade fluid when P4y = K(y — Uy) where K and U are
real constants under the assumption that the motion is slow enough, so that we can neglect the
inertia terms. Then Eq. (10) becomes

0\ 4 Ay, )
<,u+oclb—{)l71ﬁ—oc1 —rx’y) =0

Letting V*y = K( — Uy) and ¥ =y — Uy we get

Viy = K¥ (36)
) v

We observe that when o; = 0 then ¥ = 0 which implies that y = Uy. In the following we give
solutions to equations (36) and (37).

Steady flows
For steady flows, the system (36), (37) reduces to

oy -
vl =ty
0x oy
(38)
vy = KY.

For U = 0, ¥ = 0, hence v = 0 which implies no flow. For U £ 0
o —
W _—ny
0x 0y
—px
admits solutions of the form ¥ = F(y) e«V.

_l'l; and substituting ¥ = F(y) ¢** into equation V*¥ = K%, gives rise to the

Letting A =
oy
fourth order ordinary differential equation

FV) 4 222F" 4+ (J* - K)F=0 (39)
whose solutions are

a)IfK =0
F = Acos(Ay + B) + Cycos (Ly + D) (40)
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where A, B, C, and D are arbitrary constants.

b) If K = k* > 0, then
i)Fork* =3*, F=Acos|[(A*+k?)'"*y+B}-+Cy+D
i) For k* > 1%
F = Acos [(A2 + k})Y% y + B] + Ce® 40" 4 pe =47y
iii) For k2 < 22
F=Acos [(A* + kY2 y + B] + Ccos [(A%> — k52 y + D].

c) If K = —k* <0, then

kY cos@ . 6
F=e%" ( Z)y A cos [(?f" + k2 <sm ?0) v+ B}

— (At Y cos@ . 0
+ Ce (A*+K%) < z)y cos [(/14 + k4)1/z <s1n ?0> Y+ D:|

2

where 0y = tan ™! < > Hence

2
Y=+ Uy=Uy+ F(y)e**

where F is given by a), b) or ¢).

Unsteady flows
The Egs. (36) and (37) of motion become

V4Y = K¥

¥ oy
— 4+ U— = —6¥  where 5=£.
ot ax o

A) Case 1

93

(42)

(44)

(43)

(46)

47)

We will consider solutions of (47) of the form ¥ = G(X, y) e * where X = x — Ut. Plane wave
solutions of Eq. (47) exist in the form G(X, y) = g(¢) where £ = X cos 6 + ysin 0, — II < 0 < II.

Substituting ¥ = g(£) ¢~ * into Eq. (46) we get
g6 — Kg(§) = 0.

Depending on the sign of K we obtain the following solutions:

a) If K = 0 then
Y = Uy + e [A(0) (X cos 0 + y sin 0)* + B(6) (X cos 0 + y sin 6)?

+ C(0) (X cos @ + y sin 8) + D(6)].

(48)

(49)
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b) If K = k* > 0 then
W= Uy + e "[A(0) X eostFysind) | B(f) 7K cost*ysind)
+ C(0) cos {k(X cos 8 + ysin §) + B(O)}]. (30)

¢) If K = — k* < 0 then

cosE cos sin . n .
Y=Uy+e™ |:A(0) e< 8>(X BFysinf) o8 {sm 5 (X cos 8 + ysin 6) + B(G)}

_sind ; I
+ C(0) ¢ g Xeosttysing o {cos N (X cos 0 + ysin 6) + D(G)}:|. (51)
B) Case 2
We will now consider solutions of (47) of the form ¥ = H(X, y) e **V where X = x — Ut and
5=L1.
231

Plane wave solutions of Eq. (47) exist in the form H(X, y) = (&) where

E=XcosB+ysinf, —I1 <0 <II.

dx
Substituting ¥ = h(£) e U into Eq. (46) we get the fourth order homogeneous differential

equation
WY+ 4 0 {cosHh" + 2 ﬁ (1+2cos? @) h" +4 éi (cos 0) b’ + i4 K)h=0 (52)
U U? U3 U T

The auxiliary equation associated with (52) has the following roots:

—5cos B 4+ [—6%sin? 0 + (U*K)V212
" U ' (53)

Depending on the sign of K we obtain the following solutions:

a) If K = 0, then

5 _ S
h = A(f) e TleosO Keosttysing) {cos (U sin 9) (X cos 0 + ysin 6) + B(G)}

—%(6059) (X cos® +ysind)

+ C(0) (X cos B+ ysinb)e
X {cos <g sin 0> (X cos 8 + ysin ) + D(@)}. (54)

kU
b) If K = k* > 0, then for [0] < 6 or [T — 0y < |0| £ 1T  where 6=sin™* =

h=AO)e

—dcosf(X o0sf+ysinb) 52 : 29 4 kZUZ 1/2 X cos 9 + sin 9
v cos {( o )U ( ) + B(6)

(—dcosf + (k*U? — 3 sin*0)'*)(X _osf + ysinb) (38 cosd — (k?U* — 675in*§)") (X _osf +ysin0)

+C(0) e U +D(@)e 7 (55)
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and for 90 < |6| < IT — 00

—5c0s0(X 050 +ysin) 2 sin? 202102 .
h=A@b)e 7 cos{(é sin 0+kU)U(Xcos0+ys1n0)

+ B(B)}

L CO)e T

_5c°59(Xc050+ySine) cos {(52 sin? 6 — kZUZ)l/2 (X cos 0 + y sin 0) + D(@)} (56)

U
and for 6 = 6,
2 a2 27723172 :
B = () e-3eoX S50 3sind) o {(5 sin® 0 + k*U?) U(X cos @ + y sin 6) N B(Q)}
, —dcosf X 0088+ ysing
+ [C(6) + D(B) (X cos 6 + ysin @) e T Xeostrysind) (57)
¢)If K = —k* <0 then
—(5cosf —rcosfp) (X 0s8+ysind) in 0,(X 0 in @
he=A)e T cos {’ sin Gl C‘;j tysinf B(H)}
—(dcos8 —rcosfo) (X os6 +ysind) in 8,(X ¢ g+ in 0
+CO)e T cos {r sin Bl O(j ysmb) D(G)} (58)
212
where r = (6% sin* 8 + U*k*)"/? and 26, = tan™? ot Finally the solutions to Egs. (46) and
sin
(47) are given by
8x
W = Uy + he” U where h is given by a), b) or c). (59
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