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Summary.  We apply the  method of averaging to first order in the  small parameter  e to the  auto- 
nomous system 

x "  § ~xx § fix ~ + eg(x, x') = 0 

where we do not consider fl as small. This involves perturbing off of Jacobian elliptic functions, rather 
than off of trigonometric functions as is usually done. The resulting equations involve integrals of 
elliptic functions which are evaluated using a program written in the computer algebra system 
MACSYMA. The results are applied to the problem of approximating limit cycles in the above dif- 
ferential equation. 

1 Introduction 

A limitation of most texts which treat  nonlinear vibration problems by perturbation me- 

thods is tha t  most problems involve perturbing off of the sine and cosine solutions of 
simple harmonic oscillators (See [1]--[9]). In  this paper  we t reat  a class of problems which 
involve perturbing off of Jacobian elliptic functions. We consider the differential equation 

x" + ~x § fix 3 § sg(x, x') = O , ~ > 0 ,  ~ > 0 (1) 

in which fi is not  assumed to be a small quantity. We use the method of averaging iraple- 
mented on MACSYMA to t reat  this type of problem. We compare results found using elliptic 
functions with those found using trigonometric functions. In  particular we apply our results 
to the problem of approximating limit cycles in Eq. (1). I t  is shown tha t  the use of elliptic 

functions gives better  quanti tat ive and in some cases better  qualitative results than com- 
parable results obtained by using trigonometric functions. 

As an example of the difference between these two approaches, we offer the following 
problem based on the nonlinear oscillator: 

1 x' 31 ) x " + x = ~  - x ~ + - 2  +~6x2x'-  x'~' 
1 

with e = 1-O" (2) 

The usual approach (based on trigonometric functions) to studying Eq. (2) involves assum- 
ing tha t  the parameter  s is small, and perturbing off of the associated equation (for e = 0) 

x" + x  = o  (3) 

1" 
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which has the general solution 

x = C cos (t + B) .  (4) 

The method of averaging [1]--[9] seeks a solution to Eq. (2) when e #: 0 in the form 

x = C(t) cos r  (5) 

Variation of parameters and averaging over the unperturbed period 2z gives the usual 
formulas: 

2 z  

C'  = G(x ,  x ' )  sin ~b d~b (6.1) 

0 

2 z  

~f,' = 1 + ~ G(x,  x ) cos ~ d~ ,  (6.2) 

0 

in which Eq. (2) has been written in the form 

x "  + x + eG(x ,  x ' )  = O. (7) 

1 31 
Evaluating Eqs. (6) with G(x ,  x ' )  = x a - -  - ~  x '  - -  - - ~  x2x  ' q-  x '~ gives 

C '  = 8-6 C(C2 + 20) (8.1) 

3 
~'  = 1 + y s ~  ~ . ( 8 . 2 )  

Nontrivial fixed points of Eq. (8.1) are, in view of (5), periodic motions (limit cycles) of 
Eq. (2). Since the only fixed point of (8.1) is C = 0, the method of averaging predicts that  
there are no limit cycles for Eq. (2). This prediction is, however, erroneous ! See Fig. 1 which 
shows the results of numerically integrating Eq. (2). 

- 5  3 

X 

- 5  

Fig. 1. Limit cycle of Eq. (2) obtained by numerical integration (N). Also shown is the analytic 
approximation (A) for the limit cycle obtained by using first order averaging utilizing elliptic func- 
tions, to be discussed later, see Eq. (29). Note that first order averaging utilizing trigonometric 
functions fails to predict a limit cycle in this case, cf. Eq. (8.1). 
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The failure of first order averaging arises from the nature of the limit cycle. In Eq. (2), 
the limit cycle bifurcates from infinity at s ~ 0 and its amplitude scales as 1/e. Therefore, 
for s small, the limit cycle exists in that part of the phase space where x ~ 0(l/s). But when 
x is this large, second order effects (that were neglected before) become important. Aver- 
aging to second order in ~ can remedy this failure and, in fact, was used to deduce the 
foregoing conclusion regarding the size of the limit cycle for small e. Second order aver- 
aging involves combining the averaging process with a near-identity transformation of 
dependent variables. This approach has been treated in [7], where computer algebra 
(MACSYMA) programs have been presented in order to automate the process. Alterna- 
tively, one may stay with first order averaging, but follow the path presented in this 
paper. We will return to this sample problem later. We also note that results derived 
from the elliptic function approach hold for all fi, even fl large. 

Although the method of averaging has been treated in numerous references (e.g. [1] to 
[9]), most treatments deal almost exclusively with perturbations off of the simple harmonic 
oscillator. A few authors have considered perturbations off of nonlinear systems using ellip- 
tic functions. Kuzmak [10] looks for periodic solutions in Eq. (1) using a multiple scale 
method, where ~ and fi are slowly varying parameters. Garcia-Margallo and Bejarano [11] 
find limit cycles in a generalized van der Pol oscillator using generalized harmonic balance. 
Chirikov [12] studies resonance overlap in multiple harmonic excitations of Eq. (1). Davis 
[13] investigates second order ordinary differential equations using elliptic functions. Cap 
[14] applies the method of averaging to perturbations of the mathematical pendulum. 
Pocobelli [15] studies the slowly varying pendulum. Greenspan and Holmes [16] and 
Guckenheimer and Holmes [1] apply the Melnikov method to perturbations of Eq. (1) where 
cr ~ 0. Nayfeh [5], Kevorkian and Cole [3] and Sanders and Verhulst [8] also treat such 
problems. 

Perturbations of Eq. (1) with ~ = 0 (a purely nonlinear oscillator) have appeared in the 
literature. Garcia-Margallo and Bejarano [17] employ generalized harmonic balance in 
order to approximate limit cycles. Yuste and Bejarano [18] use first order averaging as a 
means to find transitory behavior as motion attracts toward a limit cycle. 

In most of these references the authors have reduced the problem to the evaluation of 
integrals which, through complicated algebraic manipulations, may often be expressed in 
terms of standard elliptic integrals. By using MACSYMA, we have been able to efficiently 
evaluate the associated integrals. 

We begin with a general treatment of averaging applied to systems of the form (1). For 
readers unfamiliar with elliptic functions, a brief review is provided in Appendix A. We 
then apply the method to the problem of approximating limit cycles in Eq. (1). 

2 The unperturbed solution 

We shall consider unperturbed systems of the form 

x "  § ~ x  -4- f ix ~ = O. 

The general solution can be found by assuming the solution in the form 

x = Ccn(At  + B,  k) = Ccn(u, k) = C c n  

(9) 

(lO) 
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where A and C are positive constants. The cn (u ,  k) function is a Jacobiaa  elliptic function. I t  
is a periodic function depending on both its argument  u and its modulus k. I ts  period is 
equal to 4K(k), where K(k) is the complete elliptic integral of the first kind. We abbreviate 

cn (u ,  k) by cn where the dependence of cn  on its argument  u and modulus/c are implicitly 
understood. (Likewise, all elliptic functions in this paper are abbreviated in this manner.) 
Substituting (10) into Eq. (9) we find 

[CA2(2k s - -  1) § ~C] cn -~ [Carl - -  2k~A2C]  cn  3 = 0 (11) 

where we have used the relation 

eSen(u, ]r 
~ u  2 

c n "  = (2]c ~ - -  1) cn  - -  2]cscn a . (12) 

For nontrivial solutions (C ~ 0), we find 

AS(1 - -  2/c 2) = ~ (13.1) 

C2t3 = 2]ceA 2 . (13.2) 

We then solve Eqs. (13) to find 

t i c  s t i c  s 
A s = ~ §  s , lc ~ - -  - -  (14) 

2A 2 2(o~ @ t iC  2) 

The modulus k and the instantaneous frequency A are known in terms of the amplitude C. 

Hence, C and the phase angle B are the two undetermined constants which specify the ini- 
tial conditions. 

In  applying the averaging method, we choose to use the variables (C, ?) where ~ is 

given by 

4K(/~) (p = A t  -~ B = u .  (15) 

This choice of variables leads to periodic variational equations tha t  can then be averaged. 
A brief discussion of the (C, ~) variables is given in Appendix B .  T h u s ,  the unperturbed 
solution can be written as 

x = Ccn(4Kcf ,  1~) ~ Ccn  

x '  = C A c n ' ( 4 K q ~ ,  It) ~ C A c n '  

~c~(u,  k) 
K = K ( ~ ) ,  ~ = k ( C ) ,  A = A ( ~ ) ,  o n '  ~ - -  ~u 

t i c  2 

- -  2 A  2, 

(16.1) 

(16.2) 

(16.3) 

which can be viewed as a generalized van der Pol transformation from (x,  x ' )  to (C, of). In 
this way, (C, ~) constitute "na tura l"  variables because they take into account the change 
of period occurring from orbit to orbit in the unperturbed flow. 
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3 Variation of parameters 

In order to obtain a solution to Eq. (1) when e # 0, we vary the parameters (C, q~) so that  
C = C(t) and ~ = ?(t) in Eqs. (16). Differentiating x in (16.1) and equating the result to 

(16.2), we obtain 

dC ( &n ) dq3 
- ~  cn + Ccn'4(vK'k' ~- C - - ~  k' + Ccn'4K - ~  = CAcn' (17) 

where primes denote differentiation with respect to the argument. (For cn, primes denote 
differentiation with respect to the argument u and not the modulus k). Differentiating 

Eq. (16.2), we find 

x" = - - .  (18) - ~  (A + A'C) cn' @ 4CAK'k'qvcn" + CAk'  - ~ j  + 4CA Kcn"  dt 

We substitute Eqs. (18) and (16.1) into Eq. (1) and solve for dC/dt and &f/dt. Making use of 

the following identities [19] : 

cn '~ = (1 -- cn 2) (1 - -  k ~ + k~cn ~) (19.1) 

Ocn' 1 ~ ( c n ' 2 ) -  1 
cn' ---k-- -~ --~ ---~ 2 Ok ((1 -- cn 2) (1 - -  k 2 d- k'~cn2)) (19.2) 

we find 

dC 1 
r 

dt e - f f  9cn (20.1) 

d q 3 A  1 [ ( 1 - - 2 k  2 ) 1 
dt --  4K 4- s 9 ~ cn -(1 - - - ~ )  (Zcn' ~- k2cn(1 --  cn~)) (20.2) 

A = A(C),  k = k(C) both given by (16); u = 4K~ (20.3) 

&n(u, k) 
K = K(k) ,  cn ~ cn(u, k), cn' =-- ~u Z ~ Z(u, k). (20.4) 

The function Z(u, k) denotes the Jacobi Zeta function. In Eq. (20.2), we have used [19] : 

~{3T/ C n  r ]C 
-- [(1 - -  k ~) 4Kq~ --  E(4K% k)] - -  on(1 - -  CTl 2) (21.1) 

& k(1 - k~) (1 - k~) 

Z(4Kcp, k) = E(4K% k) - -  4cpE (21.2) 

where E(4K% k) is shorthand notation for E(O, k), the incomplete elliptic integral of the 
second kind (where 0 = am(4Kq,  k) and am(u, k) is tke elliptic amplitude function [19]) 
and E = E(k) denotes the complete elliptic integral of the second kind. For ~ =~ 0, we also 

find an auxiliary equation on k: 

& ~1/~ ~ c  1/~ (1 - 2 ~ ) ~  ~ ' ,  ~ # o .  (22) 
d7 = 1/2(~ + ~c~)3~2 dt - ~g 

Note that  Eqs. (20) reduce to the variational equations associated with Eq. (7) and Eqs. (5) 

for fi = 0 with ~ = 2Jr~. 
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4 The averaging procedure 

While Eqs. (20) arc valid for any perturbation g, in this section we consider perturbations 
of the form g = g(x, x ') ,  where g is a polynomial in x and x'. We write Eqs. (20) in the form 

C' ~- eFt(C,  q~) (23.1) 

1 
~o' = ~ (~ + flC~) 1/~ + sF:(C, ~) = D(C) + sF2(C, ~o) (23.2) 

where the F~, as given by  Eqs. (20), are periodic in ~o. 
We denote the averaged variables by (C, ~). Then, the averaged equations become 

~' = ~F~ + 0(~ 2) (24.]) 

~' = ~(0)  + sF2 + 0(e ~) (24.2) 

where/~i are the mean values of F~ over one period of the unperturbed system : 

T 4~ 

4 f  - 
Y~ = F~ d~ = F~(C, ~) d~ ,  (25) 

o o 

where ~ = 4K~, K = K(k) ,  k = k(C) as given by Eqs. (16). 

5 Computer  algebra implementa t ion  of the averaging scheme 

We present a short summary of our implementation of the averaging scheme on the com- 
puter algebra system MACSYMA. The perturbation g is composed of a sum of terms of the 
form 

xnz T M  ~ (~n+mAmc,rtncTtrm (26) 

each of which can be written as a sum of terms of t he  form 

C'~+'~Amcn~+(~-I)/"cn', m odd (27.1) 

c~ §  ~+~/'', m even (27.2) 

using Eq. (19.1). I t  is therefore sufficient to consider g to be composed of a sum of terms of 
the form cn m and cn%n' .  By inspection of Eqs. (20), we can make a list of all combinations 
of elliptic functions which can possibly occur in the integrands of Eqs. (23), and their mean 
values. The integrands are listed in Table 1 and their mean values in Table 2. 

Table 1. Terms occurring in Y i 

Expression Typica4 terms 

(b) F~ cn m, cnrncn ", Zcn m, zcnmcn" 
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Table 2. Mean valnes of elliptic functions 

Function Mean Value 

a )  ~n  m 

(b) en~'cn ' 

(c) Zcn  '~ 

(d) Zcmmcn" 

[ Dm for m even] 

0 for m odd J 

0 

0 

I~ 
for m even 

m + 1 - -  Dm+l + k2Dm+3], m odd] 

where 

D O = 1 ,  

1 
D.,  - -  - -  [(m--2)(2k 2 - 1 )  Din_ z + (m - 3) ( 1 -  k ~) Dm_4], 

(m -- i) k ~ 

m = 4, 6, ... 

Armed with Table 2, one could find the averaged equations for a given perturbation 
g(x ,  x ' )  by hand. This lengthy calculation, however, is much better suited to MACSYMA. 
The MACSYMA program which implements the foregoing averaging procedure is listed in 
Appendix C. As an example of its use, we next apply the method to the problem of ap- 
proximating limit cycles in Eq. (1). We begin by returning to Eq. (2), then we generalize 
the example. 

6 Examples 

Eq.  (2) r e v i s i t e d  

If  we write Eq. (2) in the form 

, 
x "  + x + ~ x ~ = e 4-  - ~  x2x  ' - x '3 , w i t h e =  1--0 

1 1 31 
we identify ~ = 1, fi = ---~, g = - -  y x '  - -  - ~  x.2x' 4- x '3. Substitution of these values 

into Eqs. (20) and averaging gives (see sample run of our MACSYMA program in Ap- 
pendix C): 

C' = --e P(C) K - Q(C) E 
350CK 

where 

P ( O )  = 5C ~ + 44704 + 1017502 + 64700 

Q(C) = 594C a + 118800 .2 + 64700 

02 
202 + 20 

(1 + 02/10) 1/.2 

4K 
(2s) 



132 V.T. Coppola and R. It. Ra.nd 

and where K = K(k) and E ---- E(k) represent complete elliptic integrals of the first and 
second kinds respectively. Numerical evaluation of the condition 0 '  = 0 gives the limit 

cycle amplitude C ~-- 1.9861. Then Eq. (16.1) gives the following approximation for the 
limit cycle: 

x := 1.986 lcn(1.1808t ,  0.37608). (29) 

This approximation offers reasonable agreement with numerical integration of Eq. (2) for 

e ----- 1/10, see Fig. 1. Note tha t  first order averaging off of the simple harmonic oscillator 

failed to predict a limit cycle for this equation, cf. Eq. (8.1). 

L i m i t  cycles in Eq. (1) 

We investigate limit cycle solutions in systems of the form 

x " + ~ x + f l z  3 + e 9 - - 0 ,  ~ ~ 0 ,  f l ~ 0  (30) 

in which 

g = ~ x ' + ~ v ~ x ~ x  'i, where 2 ~ i + ] _ _ < 4 .  

Using Eq. (19.1), Eq. (20.1), and Table 2, we find tha t  the only terms tha t  make nonzero 
contributions to C' are 

~x', v21x2x ', vo3x 'a . (31) 

The condition for a limit cycle is tha t  C' be zero a t  a particular value of C (but not identically 
zero), i.e., F~ : 0. This condition on the parameters  6, v2~, and ~'0s will then determine the 
limit cycle radius (if a limit cycle exists). The other ten terms in 9 do not  influence the 
existence of a limit cycle (to 0(s)). Therefore, we take a modified perturbat ion for g: 

g -~ ~5x' %- ex~x ' %- ~tx 'a. (32) 

This perturbat ion includes the example given by Eq. (2). Note also tha t  ~ = ~ = ~? = 0 im- 
plies the existence of a family of closed orbits, and not limit cycles. 

We find F~ and ~V~ to be (cf. Eqs. (23), (24)): 

F1 = --C[($cn '2 + eC2cn2cn '2 %- ~C~(o~ + tiC z) cn '4] (33.1) 

.F~ = --C[~V~ %- eO,~V~ %- ~02(~ %- flO ~) V~] (33.2) 

w h e r e  

V 1 ~ m e a n  o f  c,?z '2 

1 
- -  3k2K [K(k  2 - -  1) + E(1 - -  2k2)] 

V~ --  mean of cn~cn '2 

1 
- -  15k4 ~ [K(k  4 - -  3k 2 %- 2) - -  2 E ( k  4 --  k ~ + 1)] 

Va ---- mean of cn 'a 

1 
- -  35ka K [K(8k ~ - -  13k ~ + 3k 2 %- 2) - -  2E(8k ~ - -  12k ~ + 2k ~ %- 1)]. 
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We have dropped the bar notation in Vi for convenience and do so in what follows. The 
value of k is related to C by Eq. (16.3). The V~ turn out to be positive for valid values of k. 
Ignoring the trivial case C .... 0, a limit cycle exists (F~ becomes zero) for : 

?~V~ ~- ~C~V~ -[- ~lC~(o~ + tic ~) V3 : O. (34)  

Equation (34) is viewed as a relationship between the limit cycle amplitude C and the para- 
meters 6, ~, and ~/. 

For the limiting cases of r162 ---- 0 and of fl = 0, C does not depend on k. Equation (34) can 
then be solved explicitly for C in terms of the parameters 6, ~, and ~7. In genera1, however, 
C does depend on k so that  Eq. (34) only implicitly defines C. Equation (34) is solved nu- 
merically for k using 

2k ~ 
C ~ = (35) 

fl 1 -- 2k 2" 

A bifurcation occurs along the curve that  is the intersection of Eq. (34) with 

d 
- ~  {6V~ + eC~V2 + ~?C2(~ ~- tiC ~) V3} ----- O. (36) 

Limit cycles on this curve are degenerate. Upon crossing this bifurcation curve, two hmit  
cycles coalesce at  a finite non-zero radius. We continue the discussion by considering f, he 
limiting cases. 

Case I:  results/or the linear oscillator (fl = O) 

The values of V~ become indeterminate at k = 0. By taking limits we find (cf. Eq. (34)): 

1 1 3 
V, : ~ ,  V~ : ~-, V~ : -~ (37.1) 

46 
C a - -  (37.2) 

This agrees with the solution found in [7] by perturbing off of the linear oscillator. 

Case I I :  results/or the purely nonlinear oscillator (a = O) 

We evaluate V~ and C 2 to be (of. eqs. (34)): 

1 1 
V1 = -~-, V2 ~ .09139, V3 = -~- (38.1) 

1 6 
C 2 = , ~1 = 0 (38 .2)  

3 ~  

C a =  - 7  ]/3~V~ i ]/7]/21Q~V22 - 4fl6~ 
2 ~  ' ~ ~ o .  (3s.3) 

We continue the discussion of this problem by considering the number of limit cycles which 
occur for given values of the parameters, i.e., the bifurcation set. 
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The bi/urcation set/or U :4:0 

W e  consider  the  b i furca t ion  set  of Eq.  (34) for V # O. (The b i furca t ion  set  for ~ = 0 is 

easi ly  shown to conta in  one Hopf  b i furca t ion  depend ing  on ~/~ and a/fl [20].) F r o m  Eq.  (34), 

we f ind  

6 2 
#2 = -~- IVan, ~- (~ ~- ric e) V3] (39) 

71 

where  ~ = ~ a n d / ~  = - - - -  are  pa ramete r s .  

E q u a t i o n  (39) defines a f ami ly  of s t r a igh t  l ines in  the  (#~,/~2) p a r a m e t e r  p lane  wi th  slopes 

and  in te rcep t s  pa r ame te r i z ed  b y  ~, fl, and  C. B o t h  the  slope and  the  #~- intercept  have  the  

value  zero a t  C := 0, and  increase  as C increases.  

Case I :  fi = 0 (The perturbed linear oscillatar) 

E q u a t i o n  (39) becomes (cf. Eqs.  (16.3), (37.1)): 

1 
( 4 0 )  

with  /2~-intercept a t  po in t  P (#~ : - -3~ ,  #~ -= 0) for al l  values  of C. A g raph  of Eq.  (40) 

pa r ame te r i zed  b y  C is g iven in Fig .  2. There  is one l imi t  cycle  in  regions I and  I I  ; t he re  a re  

none in regions I I I  and  IV. The  #2 - -  0 l ine is a Hopf  b i furca t ion  curve where  a l imi t  cycle 

]'s 

I1i J 

p 
- ]x 1 

/ / i  
Fig. 2. Limit cycles in Eq. (30) for fl ---- 0. 
The parameters/~1 and/~z are defined by 
#1 = Q/~ and/~2 = --6/~/, el. Eq. (40). Along 
each straight line there exists a limit cycle 
of fixed amplitude. Thus, in regions I and I I  
there exists I limit cycle while in regions I I I  
and IV there are no limit cycles. The tq axis 
corresponds to the limiting ease of a limit 
cycle of zero amplitude (and, hence, a Hopf 
bifurcation occurs upon crossing the/~i axis). 
The dashed llne is ~h = --3o~ and corre- 
sponds to limit cycles of infinite amplitude. 
The arrow shows the direction of increasing 
limit cycle amplitude. 

]-L 2 

/ -  ,, /.L| 

ni  

Fig. 3. Limit cycles in Eq. (30) for fl # 0. The 
parameters #~ and Ft2 are defined by/~i  ~ ~/~ 
and/x~ ---- --6/.7, el. Eq. (39). Along each straight 
line there exists a limit cycle of fixed amplitude. 
Thus, in region I there exists 1 limit cycle; in 
region I I  there exist 2 limit cycles; and in 
region I I I  there are no limit cycles. The #i axis 
corresponds to the limiting case of a limit cycle 
of zero amplitude (and, hence, a Hopf bifurca- 
tion occurs upon crossing the #1 axis). Along 
the curve separating region I I  from I I I  two 
limit cycles coalesce. The arrow shows the di- 
rection of increasing limit cycle amplitude. 
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is born at  the origin. On the bifurcation line #1 = --3~, a limit cycle of infinite amplitude 
is predicted. Point  P is a highly singular point: near P, the limit cycle amplitude is very 

sensitive to small changes in/~1 and/~ .  

Case I I :  fi # 0 (The perturbed nonlinear oscillator) 

The #1 intercept moves out from/~1 = --3~ at  C = 0 towards infinity as C -~ 0o. With this 
information, we plot Eq. (39), parameterized by C, in the (#1, #2) plane (see Pig. 3). One 
limit cycle exists in region I ,  two in region I I  (where each point lies on exactly two inter- 
secting lines), and none in region III .  A degenerate limit cycle exists on the bifurcation 
curve between II  and III .  The #1 axis is a I-Iopf bifurcation curve where a limit cycle is 
born at the origin. Point  P (#1 ~ --3~,/~2 = 0) is again a singular point where a degenerate 
limit cycle of zero amplitude exists. Near P,  the sensitivity of the amplitude on #1 and #2 

depends on the smallness of ft. 
The predictions of Pig. 3 are in agreement with the results of numerical integration of 

the originM differential equation (30). 

Comparing Case I with Case I I  

A comparison of the linear analysis (fi = 0, Fig. 2) with the nonlinear analysis (fl # 0, 
Fig. 3) shows qualitatively different results. In both analyses, a perturbation term of the 
form eva0 xa does not contribute to determining the existence of a limit cycle. Yet for fl 
small, the nonlinear analysis does not reduce to the linear one. The linear analysis fails to 
predict one limit cycle in region IV and two limit cycles in part  of region I I  of Fig. 2 for fl 

small. 
Numerical simulations confirm the nonlinear analysis. Equation (2) provided an example 

with the following parameter values: 

= 1, fi = s = 0.1, d = --0.5, Q = --3.1, U = 1 (41) 

in which the system belongs to region I I I  of Fig. 2 and I of Fig. 3. As we saw before, the 
analysis based on elliptic functions agreed with numerical integration, while the usual 
trigonometric approach failed to predict a limit cycle. 

Another example is afforded by the parameter values: 

= 1, fi = 2e = 0.1, d = 1, e = --4.6, ~ = 1 (42) 

in which the system belongs to region I I  of Figs. 2 and 3. A numerical simulation finds two 
limit cycles with amplitudes 1.93 and 2.93. Using Eq. (39), the predicted values are 1.97 
and 2.59, which compare well with the numerical integration values. The first order linear 
prediction Eq. (37.2) predicts only one limit cycle with amplitude 1.58. 

7 Conclusions 

With the advent of computer algebra, perturbation analyses using elliptic functions can 
now be done almost as easily as those using trigonometric functions. We have shown that  
perturbing off of elliptic functions will generally provide better quantitative and in some 
cases better qualitative results than a comparable perturbation off of trigonometric func- 
tions for systems containing an x 3 term. In some problems, averaging off of elliptic functions 
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(which contain an amplitude-frequency dependence that  trigonometric functions lack) 
provides results at first order which can only be attained by averaging off of trigonometric 

functions to second order. In  the case of limit cycles in Eq. (30), first order trigonometric 
averaging gives qualitatively incorrect predictions if fl # 0 and/~1 < --3~, cf. Figs. 2 and 3. 

Related work in progress by the authors includes the extension of the averaging method 
off of elliptic functions to include terms of 0(e2). This involves computing a near-identity 

transformation and is a generalization of second order averaging off of trigonometric func- 

tions (see [7].) Additional applications of the MACSYMA program have been made to the 
forced Duffing equation and to systems of the form of Eq. (9) in which ~ and fl are slowly 

varying functions of time. In  particular, extensions of this work to problems in which 
and fl are not necessarily positive are in progress (see [20]). 

Appendix A: Jaeobian elliptic funct ions  

Jacobian elliptic functions involve a collection of identities which are similar to those for 

trigonometric functions but  are more complicated algebraically. The use of computer alge- 
bra makes manipulation of these identities easier, permitting investigations to proceed on 

problems which were previously avoided because of the quantities of algebra involved. All 
formulas and conventions concerning Jacobian elliptic functions in this paper are taken 
from [19]. 

We now offer a brief comparison of elliptic functions with the more familiar trigono- 
metric functions. Corresponding to sin (u) and cos (u) are three fundamental  elliptic func- 

tions sn (u, k), cn (u, k), and dn (u, k). Each of the elliptic functions depends on the modu- 
lus k as well as the argument u. These reduce to sin (u), cos (u), and 1 respectively, when 
k ---- 0. The sn and sin functions share common properties as do cn and cos. These are 

summarized in Table 3. The dn function has no trigonometric counterpart.  Note tha t  the 
elliptic functions sn and cn be thought  of as generalizations of sin and cos where their 
period depends on the modulus k. 

-I 

COS ~ ~ - - ~  ~ - -  

- I  

sin _ 

s n  ~ 

[ 

7 . 5  

Fig. 4. Comparison of elliptic functions for k = ]/1-~ 
with trigonometric functions. The period of the 
elliptic functions is 4K(1/~) _~ 7.416. See Table3. 
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Table 8. Properties of Jacobian elliptic functions 
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Function / 

Property sn(u, Is) sin (u) cn(u, IS) cos (u) dn(u, IS) 

Max. value 1 1 1 1 1 
Min. value --1 --1 --1 --1 ( ]  - -  Is2)ll2 

Period 4K(IS) 2z~ 4K(IS) 2z 2K(]r 
Odd/Even Odd Odd Even Even Even 
d//du cn dn cos --sn dn --sin --!c 2 sn cn 
/[ IS ~ 0 sin sin cos cos 1 

K(IS) = complete elliptic integral of the first kind 

K(0) = z~/2, K(1) = ~-oo 

The argument  u is identified as the incomplete elliptic integral of the first kind which is 

usually denoted F(O, It). This identification shows tha t  u also depends on k. The value of ]c 

normally ranges from 0 to 1. The sn, cn, and dn functions are shown in Fig. 4 for/c = / 1 - ~ .  
The elliptic functions also satisfy the following identities which correspond to 

sin 2@cos  2 = 1 :  

sn 2 ~- cn ~ = 1 

lc2sn 2 ~- dn 2 = 1 

1 - -  lc 2 @ lc2cn 2 = dn ~ . 

(A.]) 

(A.2) 

(A.3) 

In  addition to the sn, cn, and dn functions, there are three other frequently encountered 
elliptic functions. First, there is the amplitude function am(u,  It) ( ~  O) which is the inverse 
of F(O, It) ( =  u). This function maps the elliptic argument  u onto a trigonometric argu- 
ment  0 so tha t  the period 4K(lc) in u equals the period 2u in 0. 

Second, there is E(O, k), the incomplete elliptic integral of the second kind. I t  is often 
written in abbreviated notation as E(u)  since 0 depends on u (via the a m  function) and the 

dependence on k is understood. Both E(u)  and u are not periodic in u. The complete elliptic 
integral of the second kind is denoted E(/c). 

Finally, a linear combination of E(u)  and u is periodic, and called the Jacobi Zeta func- 
tion Z(O, /c) : 

E(k) 
z (o ,  k) = E(O, ~) - -  ~ F(O, ~). (A.4) 

This  function is periodic with period 2K(]c) and has zero mean. I t  is often written in abbre- 
viated notation as Z(u ,  k). 

Appendix B: The averaging variables 

The averaging method is composed of two parts:  (i) deriving perturbation equations which 
are periodic in some angle variable through variation of parameters,  and (ii) averaging these 
equations over one period in the angle where the amplitude variable is held "fixed". In  
contrast to perturbations of the linear oscillator, the choice of the angle variable is cruciM 
to the method. 
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First, note that  since Eq. (9) is Hamiltonian, it possesses the first integral 

1 1 1 
I t  = -~ x '2 + -~ ~x~ + u flz~ (B.:) 

which provides another method for solving Eq. (9). We define action-angle variables (J, ~) 

for this I-Iamiltonian [1], [21] in order to provide more "natural"  variables to be used in 
setting up the averaging scheme. After some lengthy calculations, we find that  

4 C a 
J = ~) x' dx = -~ A -~2 [(2k~ --  1) E(k) @ (1 --  k 2) K(k)] (B.2) 

4K(k) ~v = At  -~- B = u (B.3) 

A = A(C) and k---- k(C) given b y E q .  (16.3). 

We consider J to be a function only of C (and the parameters cr and fl). Since Eq. (B.2) is 
not explicitly invertibte, we choose C as the variable to be used in the averaging scheme. 

The variable ~ is preferred to u and B in deriving the perturbation equations because 
while the perturbation equations are periodic in % they are not in u or B. This is seen as 
follows. Although each orbit in phase space is orbitally stable [2], [4], [9], it is Lyapunov 
unstable. This is because the frequency of an orbit depends on its amplitude, and motions 
starting close together but  on two different orbits eventuMly become far apart  (i.e., out 
of phase), even though their orbits arc close. This "phase shear" instability is reflected in 

the perturbation equations for u and B. 
In deriving tt~e perturbation equations based on using (C, B), we would obtain equations 

of the form 

C' = sit(C, A t  + B) ,  B '  == - - A ' t  + s/~(C, A t  -~ B) (B.4) 

in which/2 turns out not to be periodic in t. Thus Eqs. (B.4) are unsuitable for averaging. 
The orbital stability of the solutions is reflected in the equation for C. The Lyapunov 
(phase) instability is reflected in the equation for B. 

Similarly, choosing (C, u) as primitive variables, u = A t  + B,  gives 

C' = ~/~(C, u),  u' = A + et3(C, u) (B.5) 

in which/3 is not periodic in u, so that  Eqs. (B.5) are again unsuitable for averaging. 
However, setting u = 4K(k(C)) qJ, cf. (B.3), gives 

A 
C' = eFt(C, 4K~), q' = 4-K -~- eFt(C, 4K~v) (B.6) 

in which both F1 and F~ are found to be periodic in ~ and hence in the correct form for 
averaging. Thus, we use (C, ~) as the averaging variables. 

Appendix C: MACSYMA Computer program listing 

/ ,  ROUTINE TO PEt~TUI~B OFF X " @  AL X @ BE XA3 ~ - E  G(X,X') ~ 0 , /  
A V E R A G E O  : = = B L O C K ( [ X , Y , X X , Y Y , E C , K C , A L , B  E , G , F , F X 2 , F Z 2 , F I , F B A R , H I , D  , 

CFLOW,PFLOW], 
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PRINT("AVERAGING OF X" + AL X + BE X^3 + EPS G X,X',EPS,T"), 
PRINT(" "),AL :READ("ENTER AL :"), 
PRINT(" "),BE :READ("ENTER BE :"), 
PRINT(" "),PRINT("ENTER G(X,X') USING Y=X' :" ) ,  
G:READ(), 
PRINT( . . . .  ),PRINT("THE SOLUTION TO THE UNPERTURBED SYSTEM IS"), 
PRLNT("X = C CN(4,KC(C).PHI,K)"), 
PRINT("X' = C SQI~T(AL + BE CA2) CN'(4,KC(C).PttI,K)"), 
PI~INT("WHERE 0 (---- KA2 : BE C^2/2/(AL + B E  C/'2) (: 1/2"), 
PRINT("KC = COMPLETE ELLIPTIC INTEGRAL OF FIRST KIND"), 
PI~INT("AND 4~.KC(K),PHI = SQRT(AL + BE CA2).T+B"),PRINT( . . . .  ) ,  

PRINT("SEEK PERTURBED SOLUTION OF SAME FROM WHEI~E (C,PHI)"), 
PRINT("BECOME FUNCTIONS OF TIME"), 

PRINT( .... ), 

/, 
/, 

[, 

/, 

/, 
/, 
/, 

/, 

KILL(K), 

/, FOR SPECIAL CASES, K IS A NUMBER ,/ 

IF AL = 0 THEN K:SQRT(1/2), 
IF B E -  0 THEN (K:0,KC:EC:%PI/2), 

X -- C CN(4,KC,PHI) . /  
Y : X' = C SQRT(AL + BE CA2) CN'(4.KC.PHI) . /  

S%~IB OLS . /  

XX : CN FUNCTION */ 
YY = CN' FUNCTION (DERIVATIVE OF CN W.R.T. ARGUMENT) ,/ 

ZZ = ZETA FUNCTION */ 
KC,EC = COMPLETE ELLIPTIC INTEGRALS OF IST,2ND KINDS ,/ 

K =: MODULUS */ 

/, REDUC ROUTINE TO REDUCE EXPRESSIONS TO FORMS: CNAM AND 

CNA~ CN' */ 

REDUC(EXPR) : =BLOCK([EVEN,0DD,VAL], 
EVEN :EXPAND (( EXPR + EV (EXPR ,YY = -- YY))/2), 
ODD :EXPAND((EXPR--EVEN)/YY), 
ODD:YY.EXPAND(EV(ODD,YY=SQRT((1--XXA2)*(1--KA2@KA2 

,XXA2)))), 
EVEN :EXPAND(EV(EVEN,YY =SQI~T((1--XXA2),(1--KA2+KA2.xxA2)))), 
VAL :EVEN+ ODD 

), 

/ ,  AVERAGING PROCEDURE , /  

G :EV(G,X = C.XX,Y =C.SQRT(AL +BE.CA2).YY), 

F[1]:-- 1/SQRT(AL+BE.CA2).REDUC(G*YY), 
F[2] :1/C/4/KC/SQI~T(AL + B E.CA2) 

,REDUC(G.(XX--(1--2.K^2)/(1--KA2)*(ZZ,Yy+KA2*xx*(1--XXA2)))), 

IF K = 0 THEN F[2] :EV(F[2],ZZ=0), 

F[I]:EV(F[I],YY=0), /, CNAM CN' TERMS HAVE NO MEAN ,/ 

2 A c t a  M e c h .  81/3--4 
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FZ2 :RATCOEF(F[2],ZZ), / .  PICK OFF Z TERMS IN F[2] . /  
FX2:EXPAND(F[2]--FZ2.ZZ), /* PICK OFF X TERMS IN F[2] . /  
FZ2 :EXPAND(EV(FZ2--EV(FZ2,YY=0),YY=I)), 

/ .  Z CN^M TERMS HAVE NO MEAN ./ 
FX2:EV(FX2,YY=0), /* CNAM CN' TERMS HAVE NO MEAN ./  

/ .  MEAN VALUE ROUTINE . /  

D[0]:I, 
D[1]:0, 
D[2] :1/KBAR/'2.(EC/KC - 1 @ KBAR/'2), 
D[3] :0, 

D[II]: =RATSIMP(1/(II--1)/KBA~A2,( (II--2).(2.KBARA2--1).D[II--2] 
~- (II-- 3).(1--KBARA2).D[II--4])), 

IF K = 0 THEN (D[2]:I/2,D[II]:=RATSIMP((II--1)/II,D[II--2])), 
IF K = SQRT(1/2) THEN KBAI~:SQRT(1/2), 

/ .  FIND MEAN USING TABLE 2 . /  

HI:MAX(HIPOW(F[1],XX),HIPOW(FX2,XX),HIPOW(FZ2,XX)), 
FOI~ I I : l  THRU 2 DO FBAR[II]:0, 
FOR II:0 THRU HI DO ( 

FBAR[1] :FBAR[1] ~-RATCOEF(F[1],XX,II).D[II], 
FBAR[2] :FBAR[2] ~-RATCOEF(FX2,XX,II).D[II] 

--RATCOEF(FZ2,XX,II)/(II~-I).((1--KBARA2--EC/KC).D[II~-I] 
@KBARA2.D[II @ 3]) 

), 

/ .  CHANGE RESULTS TO PRINTABLE FORM ./ 

FOR II : l  THRU 2 DO FBAR[II] :EV(FBAI~[II],ABS(C)=CBAI~,C-----CBAR, 
K =KBAR), 

/ .  PRINT AVERAGED EQS . /  

CFLOW:EPS,FACTOR(FBAR[1]), 
PFLOW: 1/4/KC.EV(SQI~T(AL @BE,CBARA2),ABS(CBAR) =CBAR) @ EPS 
.FACTOR(FBAR[2]), 

DEI~IVABBREV :TRUE,KILL(KBAR), 
VAL :[DIFF(CBAR(T),T)=CFLOW,DIFF(PHIBAR(T),T) =PFLOW, 

KBAR/'2 = BE.CBAI~A2/2/(AL~]-BE.CBAR/'2)], 

PRINT("THE AVERAGED EQUATIONS ARE"),PRINT( .... ), 
PRINT(VAL),PRINT( . . . .  ) 

)$ 

Here is a sample run based on the example discussed in the t, exg, Eq. (2) : 

(c6) AVERAGE0$ 

PERTURBATION OF X" ~- AL X + BE X/'3 ~- EPS G(X,X',EPS.T) = 0 BY 
AVERAGING 

ENTER AL: 

1; 
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E N T E R  B E  : 

1/lO; 

E N T E R  G(X,X' )  U S I N G  Y = X ' :  

- - Y / 2 - - 3 1 * X A 2 * Y / 1 0 + Y A 3 ;  

T H E  S O L U T I O N  TO T H E  U N P E R T U R B E D  SYSTEM IS  

X = C CN(4*KC(C)*PHI ,K) ,  X '  = C SQRT(AL ~- B E  C^2) CN'(4*KC(C)*PHI,K~ 

W H E R E  0 < = K ^ 2  = B E  C^2/2/(AL + B E  C^2) < = 1/2 

KC = C O M P L E T E  E L L I P T I C  I N T E G R A L  OF F I R S T  K I N D  

AND 4*KC(K)*PHI  .... SQRT(AL + B E  C^2)*T~-B 

S E E K  P E R T U R B E D  S O L U T I O N  OF SAME FORM W H E R E  (C,PHI) BECOME 

F U N C T I O N S  OF T I M E  
T H E  A V E R A G E D  E Q U A T I O N S  A R E  

[cbar(t)~ = - -  cbar eps (24 cbar 4 kbar  s kc + 240 cbar ~ kbar  6 kc 

- -  39 cbar 4 kbar  4 ke - -  173 cbar 2 kbar  4 ke q- 175 kbar  4 kc + 9 cbar ~ kbar  2 kc 

- -  561 cbar ~ kbar  2 kc - -  175 kbar  2 kc + 6 cbar 4 kc + 494 cbar 2 kc 

- -  48 cbar 4 ec kbar  ~ - -  480 cbar 2 ec kbar  6 + 72 cbar ~ ec kbar  4 

+ 286 cbar 2 ec kbar  a - -  350 ee kbar  4 _ 12 cbar ~ ec kbar  ~- +4- 314 cbar = ec kbar  ~ 

+ 175 ec kbar  -~ - -  6 cbar 4 ec - -  494 ebar ~ ee)/(1050 kbar  ~ kc), 

ebar~ ) ] 
sq r t~  10 + 1 cbar e 

phibar(t) t  = 4 kc ' kbar2 = 20 ~(cbar~10 + 1) 

(VAX 8530 Time = 157 sec.) 

The results of the program give the averaged equations in terms of both  C (called cbar) 

and k (called kbar). The results are stored in the variable VAL:  VAL[1] contains the C'  

equation,  VAL[2] contains the ~' equat ion and VAL[3] contains the expression for k~ in 

terms of ~2. The following command  substi tutes ~ in terms of C, giving Eq. (39) of the t ex t :  

(e7) FACTOR(EV(VAL[1 ] ,KBAR =SQRT(RHS(VAL[3] ) ) ) )  ; 

(d7) ebar(t)t = - - eps  (5 cbar s kc + 447 ebar 4 kc + 10175 cbar 2 kc + 64700 kc 

- -  594 cbar 4 ec - -  11880 char ~ ec - -  64700 ec)/(350 cbar kc) 

(VAX 8530 Time = 3 see.) 
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