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Summary 

The uniqueness of some helical flows of a second grade fluid, between two infinite 
circular cylinders, is proved. Initially, the fluid is at rest and flow is produced by the motion 
of the cylinders. Finally, the special case of a flow in a circular cylinder is considered. 

1. Introduction 

For some time the special class of Rivlin-Ericksen fluids of second grade 

has been of interest to both the theorist and the experimentor in their efforts 

to understand the non-Newtonian behavior of incompressible, homogeneous 

fluids. Furthermore, the problem of finding of different motions in such fluids 

has been treated b y a  number of authors [1]--[4]. 

In  this model the Cauchy stress T and the fluid motion are assumed to be 

related as follows 

T = - - p l  + ~oA1 + aIA2 + ~2A12 (1) 

where A1 and A2 are the first two l~ivlin-Ericksen tensors, #o is the viscosity, 

c~x and ~2 are normal stress moduli, and --pI  is the spherical stress due to con- 
straint of incompressibility. 

Of course, all motions are restricted to be isochoric, so that  div v ----- 0 and, 

thus A1 is traceless. 

The research reported here is devoted to the study of an helical flow of an 
homogeneous incompressible second grade fluid between two infinite concentric 
coaxial cylinders. The flow induced in fluid is considered when the cylinders 

rotate about their axis and slide in the direction of the same axis with prescribed 
velocities. Finally, the special case of the flow in a cylinder is considered. A 

motivation of the present analysis is the applicability of the flows in discussion 
to many technological problems. 
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2. Equations of Motion 

In  the following we use cylindrical co-ordinate (r, O, z) and consider a flow 
having the contravariant  velocity components [5] 

-~ O, 0 ----- (o(r, t), ~ = u(r, t). (2) 

Such a flow is called helical, because, in general, the streamlines are helices. 

In  [5, Sec. 123] it  was proved that  solving the dynamical equations, for this 
flow, reduces to finding solutions co = o)(r, t) and u = u(r, t) of the next  third- 

order linear partial  differential equations 1 

Or[r a ~t (#0(9  -j- oq ~to))]  ~--- ~or 3 Oto) (3) 

Of[r Or(#ou + al  ~tu)] =- --ra(t)  + ~r Otu. (4) 

Once a solution pair oJ(r, t), u(r, t) has been found, all stress components 
can be determined by  using (1), (2) and (112.9)--(112.10) from [5]. 

Remark  1. In  the case when ~1 = 0, corresponding to a Reiner-Rivlin fluid, 

the system (3)--(4) is identical with tha t  resulting from the Navier-Stokes theory, 
so tha t  the helical frows possible in a Reiner-Rivlin fluid of second gade are 

the same as those in the Navier-Stokes fluid. However, the surface tractions 
tha t  must  be applied in order to produce the flow will va ry  according to the 

value of ~2. 

3. S ta tement  oI the Prob lem 

We consider an unsteady helical flow between two infinite coaxial cylinders 

of radii R1 and R~ ( >  R~), which a t  t ---- 0 began to rotate  about  their axis with 
angular velocities Ql(t) and ~2~(t) and to slide in the direction of the same axis 
with the velocities U~(t) and U~(t), respectively. Up to the moment  t = 0 the 

whole system is assumed to be in rest. 
Assuming tha t  the fluid adheres to the walls and denoting by  

and  

-~(r, t) = ro~(r, t) + R2 - -  R1 [(r - -  R2) ~2~(t) - -  (r - -  R~) t22(t)] (5) 

~(r, t) = u(r, t) + - -  
R 2 - -  R 1 

[(r - -  R=) Ul(t) - -  (r - -  RI)  U2(t)] (6) 

1 The function d(t) from [5] Eq. (123.17) must vanish. This ensure us that the radial 
stress Tit from (112.9) is a single-valued function of position. 
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we a t ta in  to  the next  two problems with initial and bounda ry  conditions 

(# ~- o~ ~t) Lsvs(r, t) ~- as(r, t) - ~,vs(r, t), t H 0 

vs(r, O) ~- Vs(r), r C (R~, R2) 

where 

n - - - - 0 , 1 ,  

v s ( R .  t) -~ vs(R2,  t) = O, t ~= 0 

1 n 
vo ----- ~,  vl -~ ~ ,  Ls ~ ~ 2  _~ __ ~r - -  

r r 2 ' 

a0(r, t) = a(t__)) g [U~( t )  - Ue(t)]  + ~[U~' ( t )  - -  U~'(t)]  
r(R2 - -  R1) 

§ (r - -  R2) U l t ( ~ )  - -  ( r  - -  R 1 )  U 2 ' ( t  ) 

Re - -  R1 

3tt[~l(t) - -  ~e(t)] ~- a[~9~'(t) - -  Y22'(t)] 
al(r, t) 

r(R2 - -  R1) 

(r - -  R2) ~l '( t)  - -  (r - -  R1) ~Q2'(t) 
-{-r 

R2 - -  R1 

and 

Vo(r) -~ 
( r  - -  R 2 )  U 1 - -  (r - -  R1) U2 

R 2 - -  R 1 

V l ( r )  = 
(r - -  R2) ~'~1 - -  ( r  - -  R1) Y2, 

r 
R 2 - -  R 1 

with ~gs = Qs(0) and Us ---- Us(0). 

(7.1) 

(7.2) 

(7.3) 

4 .  T h e  U n i q u e n e s s  o I  t h e  S o l u t i o n  

Theorem: I f  the problems (7) have cont inuous solutions on the domain 

{R1 ~-- r _~ R2, t H 0} then they  are unique. 

I n  order to prove this, we shall use, as in [6], an expansion theorem of Steklov 

[7, Ch. 4, w 1]. Le t  vs(r, t) be, cont inuous solutions of our  problem, whose part ial  

derivatives ~vs  and ~r2v, are piecewise continuous.  :For each t H 0, t hey  can 
be wri t ten as :Fourier-Bessel series absolutely  and  uni formly  convergent  in 

terms of the  eigenfunctions 

[ J~(Rlrnm) Ys(rrsm)l (8) B~(rrsm) = A~ Jn(rr~m) Y~(Rlrs,n) 
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of the problems 

Lav + 2v = O, 
i.e., 

v(R, )  = v(R~) = 0 ;  n~--O, 1 

co 
v.(r, t) = Z Clam(t)" B.(rrnm). (9) 

Here, Jn(.) and Ya(.) denote Bessel funct ions ' in  standard notations, ram 
are roots of the transcendental equations Bn(R2r)= 0 and the constants A.  
are chosen so that  the normalisation condition 

f r[Bn(rrn,.)] ~ dr = 1 
R~ 

to be satisfied. Now, introducing (9) in (7.1), multiplying then by  rBn(rrnp) 
and integrating between the limits r ~ R~ and r ~ R~, we get the next  linear 
differential equation in ~%~(.) 

epn,.(t) + b.mcf.m(t) = Cnmanm(t) (10) 

---- r 2 ~ 1/(1 q- ~r2nm) and a~m(.) are the finite Hankel where bnm #r~nm/(1 -k C~ rim)' C,m 
transforms [8] of the functions an(r, .). 

The solutions of the Eq. (10) with initial conditions 

%re(O) = V.m V.m = j" rVa(r) B,(rram) dr 
R1 

together with (9) give us the unique solutions of (7) 

va(r, t) = ~ Vnm + Cnm aa~(t) �9 e b"mt dt B.(rrn~) �9 e -b~t .  (11) 
m=l 0 

In the special ease when the functions ~ ( t ) ,  D~(t), U~(t), U2(t) and a(t) are 
constants and equal with D~, D~, U~, U~ and a, respectively, the relations (5), 
(6) and (11) lead to 

and 

co(r, l) = (r --J~ l) ~Q2 -- (r --/~2)~1 _~ L ~ VamBl(rr lm ) e-b,m r 
R2 - -  R 1  r . , = 1  

3(D~ -- "Qa) r Am e_b,mt) 
-~- r(R2 RI) ~ -x-'B~(rr~'~) (1 - -  

- -  m:l Tim 

(r - R1)  U2 - -  (r - -  R2) U1 + 
u(r,  t) VomBo(rrom) ~--bo.,t 

R2 - -  R 1  m = *  

"~Yl= Bm "]- R2 - -  R1 
C,~) Bo(rro,~) (1 --  e-b~ 
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R~ R2 R~ 

where  Am = f Bx(rrm) dr. B.~ = f rBo(rrom) dr and  Cm = f Bo(rrom) dr a n d  the  
R1 R1 R1 

solu t ion  cor responding  to the  s t e a d y  case a p p e a r  as  a l imi t ing  case when 

t ~ .  

Remark 2. If  the  mo t ion  is s t e a d y  a n d  the  veloci t ies  of the  two cyl inders  

a re  same, i.e., ~ = Q2 = O and  U~ = U2 = U and  the  pressure  g r a d i e n t  which 

ac ts  on the  f lu id  para l l e l  to the  axis  of the  cyl inders  a ---- 0, then  co(r) = ~ a n d  

u(r) - -  U i.e., all  f lu id  par t i c les  move  wi th  the  same veloci t ies  ~ and  U. 

5. The Limiting Case R 1 @ 0 

Tak ing  the  l imi t  of the  Eq.  (8) when R~ ~ 0 we f ind  the  e igenfunct ions  cor- 

responding  to  a helical  f low th rough  an  inf ini te  c i r cu l a r  cyl inder .  Assuming 

t h a t  a t  the  m o m e n t  t = 0 the  cy l inder  began  to r o t a t e  a b o u t  i ts  axis  wi th  the  

angu la r  ve loc i ty  ~2(t) and  to sl ide in the  d i rec t ion  of the  same axis  wi th  the  

ve loc i ty  U(t), a n d  mak ing  the  no ta t i ons  ~- 

~(r, t) = too(r, t) -- r~(t) a n d  ~(r, t) = u(r, t) -- U(t) (12) 

we a t t a i n  to  the  same Eq.  (7.1) wi th  

v.(r, O) = V.(r) ,  r c [0, R) ;  ~, = 0, 1 

vdR ,  t) = 0,  Iv.(0, t)l < co ,  t > 0 

and  ao(t) = a(t)/~ -- U'(t), a~(r, t) = --r~'(t),  Vo(r) = - -U  and  }7~(r) = - - r /2 .  

F o r  t he  p resen t  class of p rob l ems  one ob ta in s  

and  

oo 
~o(r, t) = D(t) ~- __20 ~ Jl(rrlm) e_~.~t 

r m = l  rlmJl'(Rrlrn) 
t 

co J l ( r r l m )  e--bxr~t , 
-4- 2 ~ -----z-,--7~,,  , f .Q (t) eb~t dt 

m=l rlm( 1 -~- ~r~m) J~ (Rrlm) J 
0 

2U ~ Jo(rro.d e bo~t 
u(r, t) = rZ(t) + - - ~ : 1  romJo'(l~ro,~) 

2 o~ Jo(rrom) e-bomt , .. a(t) 1 
-4-R ~=1 rom( l -  ~ - -  _.~-?:g-i-~ -7-777,, . + ~ r o m )  J o ( R r o ~ ) f [  U (~) -- --Qj 

0 

e b~ dt 

(la) 

(14) 

where r0m and  rim are  roo ts  of the  equat ions  J o ( R r ) =  0 and  Jl(Rr) = O, 
respect ive ly .  

2 These changes present an advantage over those resulting from (5), (6) for U1 = O1 
= R 1 = 0, D 2 = 0 ,  U s = U and R 2 = R ~he radius of the cylinder. 
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The  solut ions  cor responding  to  the  s t e a d y  case 

a 

~o(r) = ~Q and  u(r) = U d- ~ (R 2 - - r  e) (15) 

a p p e a r  aga in  mak ing  ~(t)  ---- ~2 and  t ~ 0o in these  las t  re la t ions.  

Remark 3. Eqs. (13) and  (14) a re  ident ica l  to (3.3) and  (3.4) of l~ef. [9] where 

the  f ini te  H a n k e l  t rans forms  had  been  used. They  are  in accordance  wi th  the  

resul ts  f rom [10] and  [11]. 

The  f r ic t ional  couple  pe r  un i t  l eng th  of the  inner  or  ou t e r  cy l inder  (in the  

f irst  case) or  of the  cy l inder  r = R (in the  second ease) (see [10]) can be  easy  

es t ima te  having  in mind  the  express ions  of Tro = r(#o + 0~1 ~t) ~rco. 

Remark d. F r o m  the  above  resul ts  one can see t h a t  in s t e a d y  flows the  ve loc i ty  

f ie ld p red i c t  b y  the  t h e o r y  of f luids of second g rade  is ident ica l  wi th  t h a t  f rom 

the  Nav ie r -S tokes  theory ,  though  of course the  surface t rac t ions  t h a t  m u s t  be 

app l ied  in o rder  to p roduce  the  f low will v a r y  accord ing  to the  values  of a~ 

and  ~2. 
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