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Summary

The uniqueness of some helical flows of a second grade fluid, between two infinite
circular cylinders, is proved. Initially, the fluid is at rest and flow is produced by the motion
of the cylinders. Finally, the special case of a flow in & circular cylinder is considered.

1. Introduction

For some time the special class of Rivlin-Ericksen fluids of second grade
has been of interest to both the theorist and the experimentor in their efforts
to understand the non-Newtonian behavior of incompressible, homogeneous
fluids. Furthermore, the problem of finding of different motions in such fluids
has been treated by a number of authors [1]—[4].

In this model the Cauchy stress T and the fluid motion are assumed to be
related as follows

T= "‘Z)I + MoAl 4+ o4, + x,4,2 (1

where A, and A4, are the first two Rivlin-Ericksen tensors, u, is the viscosity,
oy and ¢, are normal stress moduli, and —pl is the spherical stress due to con-
straint of incompressibility.

{ course, all motions are restricted to be isochoric, so that dive = 0 and,
thus A4, is traceless.

The research reported here is devoted to the study of an helical flow of an
homogeneous incompressible second grade fluid between two infinite concentric
coaxial cylinders. The flow induced in fluid is considered when the cylinders
rotate about their axis and slide in the direction of the same axis with prescribed
velocities. Finally, the special case of the flow in a cylinder is considered. A
motivation of the present analysis is the applicability of the flows in discussion
to many technological problems.
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2. Equations of Motion

In the following we use cylindrical co-ordinate (r, 8, z) and consider a flow
having the contravariant velocity components [5]

F=0, 6 = wl(r, i), &= ulr, ). @)

Such a flow is called helical, because, in general, the streamlines are helices.
In [5, Sec. 123] it was proved that solving the dynamical equations, for this
flow, reduces to finding solutions w = w(r, t) and » = (7, {) of the next third-
order linear partial differential equations!

8[r® 0,{pw + o, 8yw)] = or® Q0 (3)
Orl7 Orlpor + &y Ou)] = —ra(t) + or dyu. 4

Once a solution pair w(r, #), u(r,f) has been found, all stress components
can be determined by using (1), (2) and (112.9)—(112.10) from [5].

Remark 1. In the case when x, = 0, corresponding to a Reiner-Rivlin fluid,
the system (3)—(4) is identical with that resulting from the Navier-Stokes theory,
go that the helical frows possible in a Reiner-Rivlin fluid of second gade are
the same as those in the Navier-Stokes fluid. However, the surface tractions
that must be applied in order to produce the flow will vary according to the
value of «,.

3. Statement of the Problem

We consider an unsteady helical flow between two infinite coaxial cylinders
of radii B, and R, (> R,), which at ¢ = 0 began to rotate about their axis with
angular velocities £2,(f) and £2,(¢) and to slide in the direction of the same axis
with the velocities U,(t) and U,(?), respectively. Up to the moment ¢ = 0 the
whole system is assumed to be in rest.

Assuming that the fluid adheres to the walls and denoting by

@(r, t) = rolr, t) + [(r — By) ,(8) — (r — B,) 2:(8)] (5)

B, — R,

and

1
alr, ) = ulr, ) 5= [l = B) Us(0) — (r — B) V(0] (6)

1 The function d(¢) from [51 Eq. (123.17) must vanish. This ensure us that the radial
stress 7, from (112.9) is a single-valued function of position.
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we attain to the next two problems with initial and boundary conditions
( + o &) Lyvglr, t) + an(r, t) = Oyv4(r, 1), t>0 (7.1)
va(r, 0y == V,(r), r € (B, BBy) (7.2)

va(Bi, ) = va(Rey ) =0, £=0 (1.3)

where

n

n=20,1, Vo = U, 7 =, Ln'_—arz—“Tar—F:

anlr, 1y = A0 _ 00 = Us0] + ofUY(1) — Uy'(6)
T e Ry — Ry

+ (r — Ry) Uy () — (r — RBy) U,/(1)
R, — R,

_ 3/l[Ql(t) — ()] + o[ 2,'() — 2,'(t)]
r(Ry — RBy)

ay(r, t) =

(r — Rg) 2/(t) — (r — By) 2,'(¢)
T R, — R,

B= oo, &= xmfo,

(r —Ry) Uy — (r — Ry) Uy
R, — Ry

Vi(r) =

and
(r — RBy) 2, — (r — Ry) -er

Vi(r) = ")

with Q, = Q,(0) and U, = U,(0).

4. The Uniqueness of the Solution

Theorem: If the problems (7) have continuous solutions on the domain
{R, £ r £ R,, t > 0} then they are unique.

In order to prove this, we shall use, as in [6], an expansion theorem of Steklov
{7, Ch. 4, § 1]. Let v,(r, #) be, continuous solutions of our problem, whose partial
derivatives 9,v, and 9,%, are piecewise continuous. For each ¢ > 0, they can
be written as Fourier-Bessel series absolutely and uniformly convergent in
terms of the eigenfunctions

Jn (ernm)

B,,(W,,m} = A“ [Jﬂ(rram) —_ ?(_R—r—)
n\£v1fnm

Yn(”'n m)] (8)
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of the problems
Lo+ dv=0, v(By) = v(R,) = 0; n=20,1

i.e.,
oo

’U,,(T, ) = Z (an(t) ‘ B,,(M',,m). (9)
m=1
Here, J,(.) and Y,(.) denote Bessel functions in standard notations, 7,
are roots of the transcendental equations B,(R,r) = 0 and the constants A4
are chosen so that the normalisation condition

n

R,

f HBulrram) P dr = 1

1

to be satistied. Now, introducing (9) in (7.1), multiplying then by 7B,(rr,))
and integrating between the limits r = B, and r = R,, we get the next linear
differential equation in @y,(.)

¢7nm(t) + bnm?’nm(t) = Cnmanm(t) (10)

where by, = pr2, /(1 + ar2 ), Cam = 1/(1 - ar?_) and a,,(.) are the finite Hankel
transforms [8] of the functions a,(r, .).
The solutions of the Eq. (10) with initial conditions

R,y
Pam(0) = Vi (V,,m == j rVu(r) Bu(rrym) dr)

Ry

together with (9) give us the unique solutions of (7)

vu(r, 1) =

g

t
I:Vnm _l— Cam f anm(t) * eb"mt dti\ Bn(rrnm) ° e_b"mt- (11)
1 ¢

In the special case when the functions Ql(t), Q,(8), Uy(t), Us(t) and a(z) are
constants and equal with Q,, Q,, U,, U, and «, respectively, the relations (5),
(6) and (11) lead to '

r —RB N2, —(r — Ry 2 1 =
wlr, 1) = ( ) RZ — ;31 2) 1 4 7m§1 VimBi(r7y ) e bt

32, — 2 ® A4

+ ( 2 1) Z zm Bl(rrlm) (1 —_ e"‘blmt)
PRy — By) nlq Tim

and
—RYU, —(r —R)U hai
u(r, t) — (7' 1) 2 (7' 2) 1 + Zv VOmBn('rTOm) e_°°"~t
B, — B, m=1

0 U, — U
+ X (5— B, + RZ—RI Om) By(r7om) (1 — e~ bont)fr2
m=1 (1] 2 1
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R, R By
where 4, = fBl("m) dr, B, = frBo(m,m) dr and C,, = fBo(rrOm) dr and the
R, R, R
solution corresponding to the steady case appear as a limiting case when
= oo.

. Remark 2. If the motion is steady and the velocities of the two cylinders
are same, i.e., 2, = 2, = Q and U, = U, = U and the pressure gradient which
acts on the fluid parallel to the axis of the cylinders ¢ = 0, then w(r) = £ and
u(r) = U i.e., all fluid particles move with the same velocities £2 and U.

5. The Limiting Case B, = 0

Taking the limit of the Eq. (8) when R, =>0 we find the eigenfunctions cor-
responding to a helical flow through an infinite circular cylinder. Assuming
that at the moment ¢ = 0 the cylinder began to rotate about its axis with the
angular velocity 2(f) and to slide in the direction of the same axis with the
velocity U(f), and making the notations?

(7, &) = ro(r, {) — rQQ) and  @lr, i) = ulr, ) — U (12)
we attain to the same Eq. (7.1) with
Oa(r, 0) = Vu(r), 7r€[0,R); =n=0,1
(B, 8) =0,  |u(0,9)] <oo, £20

and a,(t) = a(t)fo — U'(t), as(r, 1) = —rQ'(), Vo(r) = —U and V,(r) = —rQ.
For the present class of problems one obtains

_2_‘?_ ;ov J1(r71m)

—_— —bimt
] 7
T ey Timd 1 (Brym)

w(r, t) = 20) +

g (13)

oo J b1t

+opy —itmle f 2(t) et dt
m—1 T1m(1 + o715} J1' (Brim)

0

and
20 % Jo(rrem) _
wr,)=U@¢)+ —= 3 ——— ¢ Domt
B 2 vomd o (Brom)
2 =® To(FTom) € ot t a(t) (14)
o\""om o
— U'(t) — —L| &bt dt
+ Rm)_—-?l 7"0m(1 + 0”(?:m) JOI(RTOm) [ ( ) [ ] ‘
0

where 7o, and r
respectively.

1m 8re roots of the equations Jo(Bry =10 and J(Rr) =0,

2 These changes present an advantage over those resulting from (5), (6) for U, = £,
=R, =0,0, =9, Uy, = U and B, = R the radius of the cylinder.



252  C. Feteciu and Corina Feteciu: On the Uniqueness of some Helical Flows

The solutions corresponding to the steady case

o) =90 and  ulr)=U + 41 (R2 — r2) (15)
Ho

appear again making Q(f) = 2 and ¢ = oo in these last relations.

Remark 3. Egs. (13) and (14) are identical to (3.3) and (3.4) of Ref. [9] where
the finite Hanke! transforms had been used. They are in accordance with the
results from {10} and [11].

The frictional couple per unit length of the inner or outer cylinder (in the
first case) or of the cylinder 7 == R (in the second case) (see [10]) can be easy
estimate having in mind the expressions of T, = r(uy, + «, &) 0.

Remark 4. From the above results one can see that in steady flows the velocity
field predict by the theory of fluids of second grade is identical with that from
the Navier-Stokes theory, though of course the surface tractions that must be
applied in order to produce the flow will vary according to the values of «,
and «,.
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