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Summary

The theory of nets with bending stiffness is meant to model some aspects of the mechan-
ical behavior of cloth and cable networks. We use this theory to study the effect of small
-bending stiffness in plane deformations. It is shown that the theory of perfectly flexible
networks gives an adequate approximation except at places where that theory predicts
discontinuous changes in fiber directions, and at boundaries along fibers. In such regions
singular perturbation methods can be used to analyze the stress and deformation.

1. Introduction

In a previous paper [1] we have formulated a theory of inextensible networks
with bending stiffness, which is intended to model some aspects of the behavior
of cloth in finite deformations. The theory of inextensible networks [2], [3], [4]
was modified by attributing a bending stiffness to each fiber in the network. In
the resulting theory the bending couples play no direct role. Their presence
produces a modification in the stress-deformation relation for the material and in
the boundary conditions needed in order to set a problem.

In the present paper we study the effect of small bending stiffness on plane
deformations of inextensible networks. In plane deformations, boundary value
problems are relatively easy to solve within the theory of perfectly flexible net-
works, so such deformations afford a convenient class for a first approach to the
study of nets with bending stiffness.

Bending couples have the effect of introducing higher derivatives of the
deformation into the stress-deformation relations [1], and the equilibrium equation
'is then two orders higher than it is in the theory of perfectly flexible networks. The
derivatives of highest order are multiplied by a small stiffness coefficient. The
higher-order derivatives in the equation make it necessary to pose additional
boundary conditions, beyond the usual displacement or traction conditions. These
additional conditions generally are not satisfied by solutions obtained from the
theory of prefectly flexible networks. As we show in the present paper, the main
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effect of bending stiffness is to produce boundary layers at the edges of the sheet.
The solution at interior points is adequately represented by the zero-bending-
stiffness solution, provided that the latter iz sufficiently smooth.

In Section 2 we outline Rivlin’s [2] kinematic results concerning plane defor-
mations, in vector notation [4]. The equilibrium equation and stress-deformation
relations are given in Section 3. Boundary conditions are discussed at some length
in Section 4. We restrict attention to cases in which boundary couples are not
specified, except on pinned boundaries where a certain zero-couple condition is
appropriate. On traction boundaries that cut across both families of fibers, the
presence of boundary couples affects the prescribed traction boundary condition
but no separate couple condition is required. The boundary conditions are dis-
cussed further in Section b, in connection with a simple kinematically determinate
example.

In Section 6 we find the general solution of the equilibrium equation by intro-
ducing a stress potential and then finding its form in terms of the deformation,
following the pattern laid down by Rivlin [2] and used by Pipkin [4]. In Section 7
we use these results to set up a pair of differential-integral equations that can be
used to determine the deformation in pure traction boundary-value problems.
When the bending stiffness is zero, these become integral equations that can be
solved by series or iteration methods [5], [6].

In Sections 8 and 9 we discuss examples in which the deformation is partly
determined kinematically, so that only one differential equation needs to be
solved. The examples in Section 8 show how boundary layers arise at boundaries
where the zero-stiffness solution does not satisfy all of the boundary conditions.
In Section 9 we discuss an example that shows how an interior discontinuityin the
fiber direction, which is admissible in the zero-bending-stiffness theory, is
smoothed out when the bending stiffness is not zero. There is again a boundary-
layer type of effect, but with a transition layer on the interior of the sheet.

Ordinary and singular perturbation methods for the general traction boundary
value problem are discussed briefly in Section 10.

2. Kinematics

We consider a plane sheet formed from two families of fibers that initially lie
parallel to the = and y axes of a Cartesian coordinate system. We treat the sheet
as a continuum, so that every line x = constant or ¥ = constant in the initial
domain D is regarded as a fiber. In a deformation, the particles of both fibers that
initially passed through the point (z, ) go to the place #(z, y) in the same plane.
The derivatives of r are denoted by

a=r, and b=r, 2.1)
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The vectors @ and b are tangential to the deformed fibers, and because the fibers
are assumed to be inextensible they are unit vectors:

a-a=b-b=1. (2.2)

By using (2.2) and the integrability condition for (2.1), Rivlin [2] showed that @
and b are functions of only one variable each,

a=a(x), b=D>by), (2.3)
and the deformation then has the form
r = f(z) + 9(y), (2.4)
where f' =@ and g’ = b.

Let %, j, k be unit vectors in the coordinate directions, and let w(6) be the unit
vector defined by

w(f) =i cosh +jsind. (2.5)
We can represent @ and b in terms of their angles « and § by
a=uxz)], b=ulfy)] (2.6)
Then the curvature vectors for the deformed fibers are
a'(z) =k X an'(x), b'(y) =k xbf'(y). 2.7
The local distortion of the sheet is meagured by the angle of shear y defined by
siny = @ -b = cos [B(y) — «(x)]. (2.8)

The deformed area per unit undeformed area of an element of the sheet, which we
denote by J, is given in various forms by

J=cosy=EFk - -axb=sin[fly) — «x)]. (2.9)

We restrict attention to deformations for which J > 0 everywhere. The possibility
of folding [4], which would make J < 0, is ruled out because we intend to assign a
non-zero bending stiffness to the sheet.

3. Stress and Equilibrium

- Let t be the force per unit initial length exerted from right to left across a
directed arc dr = adx - bdy, and let ds be the initial length of this arc. Then [1}

tds = t,dy — tydx, (3.1

where the stress vectors £, and ¥, are independent of the direction of the arc.
Equilibrium in the absence of body forces requires that [1]

by, + b, =0. (3.2)
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Let eds be the bending couple exerted across such an arc. Then
cds = e,dy — ¢ydw, (3.3)

where the couple-stress vectors ¢, and ¢, are independent of the direction of the
arc. Rotational equilibrium requires that [1]

(T X ta _l_ ca).z‘ + (’I" X tb + cb)y =0. (34)

We postulate that the couples ¢, and €, are proportional to the curvatures of
the a-fiber and b-fiber, respectively:

c,=laxa,, ¢, =1bxb,. (3.5)

The bending stiffness coefficient I is a positive constant.

We require that the stress vectors £, and ¥, be of such forms that the rotational
equilibrium equation (3.4) is satisfied identically whenever the translational
equilibrium equation (3.2) is satisfied. This requirement leads to the result [1] that
t, and I, must have the forms

t,=T,a - 5b —Ta,,,
(3.6)

By using a work-energy relation we have shown [1] that 7, and 7%, which
we call fiber tensions, are reactions to the constraints (2.2) of fiber inextensibility.
They are primitive unknowns in any given problem. The shearing stress com-
ponent S is a specified function of the angle of shear ¢ defined by (2.8). It is
mathematically convenient and qualitatively reasonable to take S to be of the
form [4]

§=Gtany = Ga- b}/J, (3.7)

where the shear modulus & is a positive constant. The terms involving I in (3.6)
are analogous to the shearing stresses on the cross-section of a bent beam, which
are necessarily present when the bending couple varies along the length of the
beam. Here these reactions must be taken into account explicitly since we take
the translational equilibrium equation (3.2) as the basic equation to be satisfied.

4. Boundary Conditions

Let € be the boundary of the region D, given parametrically in terms of arc
length s by z = z(s), ¥ = y(s). The derivatives 2'(s) and y'(s) are the direction
cosines of the tangent to C. Let X, Y, and Z denote the parts of ¢ on which the
following conditions are satisfied:

X:2'=0; Y:y =0; Z: 2y 0. (4.1)
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That is, X consists of the parts of C that lie along fibers 2 = constant, ¥ the
parts that lie along fibers y = constant, and Z the parts that cut across both
families of fibers. Boundary conditions on Z are essentially different from those
on X and Y.

Let C be divided into three parts C,, C,, and C, that we call pinned, clamped,
and free respectively. The deformation is specified on the pinned and clamped
parts:

r[z(s), y(s)] = re(s) on C, and C,. (4.2

On ZC,, the intersection of Z with C,, the boundary condition (4.2} determines @
and b uniquely in plane deformations with J > 0 [1], [2], [4]. On XC, (or XC,),
(4.2) determines b, and in fact kinematic admissibility of the boundary data on
such a boundary is usually assured by specifying b and then using r,” = by’ to
determine 7. Similarly, on YO, or YU,, (4.2) determines @ but not b.

We say that the boundary is clamped if the directions of @ and b are specified
on it, to the extent that they are not already determined by (4.2), and pinned if
this extra information is not given. With the restriction to plane deformations,
this distinction is relevant only on X and Y. A line # = #, in X is clamped if we
specify the value of a(x,) on it, or equivalently specify «(x,), the angle of a.
Similarly, a line y = y, in Y is clamped if we specify the value of 5(y,):

{ry) =, on XC, Blys) =B, on YCO,. (4.3)

On the free part Oy, neither 7, @, nor b is specified.

We have used the minimum energy principle [1] to deduce the forms that
traction and couple boundary conditions take when there is no energy associated
with the boundary couples. In a certain sense these conditions refer to cases in
which no couple is deliberately applied to the boundary. On a clamped part of the
boundary no traction or couple condition can be specified. On a pinned part we
can specify that there are no couples that would do work on a virtual displacement
that leaves the boundary pinned. In plane deformations this condition is to a large
extent satisfied identically because the couple vectors ¢, and ¢, are perpendicular
to the plane of deformation. On Z there are no plane virtual displacements that
leave the boundary fixed, so this kind of zero-couple condition is relevant only on
X and Y. The same kind of condition can be specified on C,:

e,=0 on X(Cp,—+ C), ¢, =0 on Y(C,+ C)). (4.4)
With (2.7) and (3.5) we can put these conditions into the forms
K@) =0 on X(Cp+ 0, Fly)=0 on Y(C,+Cy, (45)

where z, and y, are boundary values in X and Y, respectively.

Traction boundary conditions can be specified on C,. Let T'(s) be the pre-
scribed force per unit initial length, applied as a dead load along C,. Of course, we
specify that T has no component in the direction normal to the plane of defor-
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mation. Then on XC; and YC, the traction boundary conditions have the forms [1]

ty' =T 4 (F:b), on XC, (4.6.1)
—tx' =T + (F,a), on YC;. (4.6.2)

These conditions involve unknown functions Fy(y) and F,(x) that represent finite
forces supported by the fibers that lie along the boundaries. Such singularities in
boundary fibers are a well-known feature of solutions in theories that use the
idealization of fiber inextensibility.

The traction condition on ZC, is of a form that is far from obvious. In a virtual
motion dr, part of the couple distribution on the boundary performs work only
when the boundary moves, so that §#(s) is not zero. This part of the work is of
the form P - 6, per unit initial length, where in plane deformations P has the
form [1]

P = (I'}J) [a(x) B'y) @'fy') + bly) «'(@) (y'[2")]. (4.7)

An integration by parts puts the work into the form of the work of a traction ~—P’
on a displacement dr. Then the traction boundary condition takes the form

T,y (s) — L' (s) — P'(s) = T(s) on ZC,. (4.8)

Thus even though no couple distribution is specified on ZC, there will generally
be non-zero couples on such a boundary, but the couple distribution is of a type
that is indistinguishable from a traction distribution. This is an effect that is
familiar from classical plate theory (Love [8, Sec. 297]).

At corners on the boundary and at points where the type of boundary (X, ¥
or Z) changes, and at points where the applied tractions include a point force,
traction boundary conditions specify a balance among certain finite forces. In a
notation to cover all cases, the condition has the form

F - A(F.a) + A(Fyb) + AP = 0. (4.9)

Here F is the applied point force. If an @-line passes through the point, 4(F,a}
is the sum of the two finite forces exerted by the singular fiber on the point; if the
a-line does not extend on both sides of the point, we conventionally set F, = 0 on
the side where there is no a-line. The term A(F,b) similarly accounts for the
forces exerted by a singular b-line on the point in question. The term AP is the
difference between the values of P on the two sides of the point; in evaluating this
term we conventionally set P = 0 on X and Y boundaries.

5. A Kinematically Determinate Example

As an exercise in the use of the boundary conditions we consider the defor-
mation of a sheet bounded by the curves

X:2z=0; Y.:y=H; Z:y:f(x)’, (5.1)
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where f(x) increases monotonically from f(0) = 0 to f(L) = H. We suppose that
the edge = 0 is clamped in its initial position. Then b(y) = j and «(0) = 0, and
since b is independent of x we then know b everywhere. The edge y = H is
drawn up onto a circular arc of radius R, in such a way that

x(z) = z/R, (6.2)

and pinned there. This determines @ = u(x) everywhere. The pinning condition
means that § is not specified but §'(H) = 0, and this is satisfied identically since
f = @/2 everywhere. With @ and b known, the deformation is determined by
integration:

v, ) = yf — Rl X [u(x) — i]. (5.3)

In order to determine the stress distribution it is necessary to specify the
traction T'(s) along the edge Z. In fact the plane deformation will be unstable
unless the tractions on Z are rather large and in such directions as to keep the
sheet stretched out. For our present purpose we suppose that some such traction
distribution has been specified.

The couple distribution on Z can be computed immediately because the defor-
mation is already known. From (3.5), €, = EkI'x’ and ¢, = 0, so the couple per
unit injtial length on the boundary is

Cc=¢cy — e =EkIx(x)y(s). (5.4)

However, it is not necessary to take any positive action to supply this distribution
of couples. It is equivalent to a certain traction distribution, whose form is easy
to compute although not intuitively obvious. From (4.7), P is of the form

P=P)j, P(x) = I'a/(x) f'(x)/cos a(x). (5.5)
Then the traction boundary condition (4.8) takes the form
tf'(x) — &, = Tfx'(s) + jP'(x), (5.6)

where we have divided by 2’ and have used ¢/’ = f'(z). Thus, the effect of the
couple distribution on the boundary is to alter the apparent traction distribution.

To determine the effect of bending stiffness on the stress field we need not
exhibit the complete solution. Let £,° and &° be the stress vectors when I' = 0,
involving fiber tensions 7,° and 74°% and let

My =1, — 40, Aty =t — . (3.7)

Then A%, and Af, can be regarded as the stresses due to bending stiffness alone,
in a sheet with no shear resistance and with no traction along the edge y = f(x).
On that edge they satisfy

At,f'(z) — Ay = jP'(). (5.8)
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This is satisfied if

A, =0 and Ab, = —jP'(). (3.9)

These stresses satisfy the equilibrium equation since A#, is independent of .
They are consistent with the stress-deformation relations (3.6) if

AT, = —I'x’? and AT, = —P'(z). ' (5.10)

The change in 7 is merely a formal reallocation of fiber tension from the term
Ta in £,° to the term —TI'a,, in ,. For P’ to be positive it is sufficient that
/>0 and /”’ > 0. If that is the case, the stress due to bending stiffness alone
is a compressive stress —P’, constant along each b-line.

This compressive stress in b-lines means that the top edge y = H is pressing
against the circular support to which it is attached. From (4.6.2), assuming that
AF, = 0. the reaction of the support on the sheet is

AT = Aty = —jP'(). (5.11)

In addition to this, there is a point force at the corner x = L, y = H. From
(4.9), with AP = —P(L) since P = 0 on y = H, the force at the corner is

AF = jP(L), (3.12)

with P(L) > 0. The corner is pulled into contact with the support by this force.
The total force exerted on the sheet by the support from = to L is

L
AF + f AT dx = jP(x). (5.13)
x

On the edge x = 0 there is a couple ¢ = —EJ'» per unit length. This couple
is supplied by the gripping device that enforces the clamping condition there.
Now, we would have deduced exactly the same deformation if we had specified
that the edge x = 0 were pinned rather than clamped, but then the zero-couple
condition «'(0) = 0 would not be satisfied. The contradiction means that it is
false to assume that the deformation is plane in such a case; if the edge x =0
is merely pinned, and not clamped, the sheet cannot remain in its original plane.

There is a similar contradiction if the edge Z has a vertical part « = L. To
look at this in more detail, let us suppose that y = f(x) lies along y = 0 nearly
all the way from « = 0 to # = L, and then rises nearly vertically (/" large) near
xz = L. From (5.5) we see that P = 0 along the horizontal part and that P is
very large, proportional to f’, along the nearly vertical part. Then the force
(5.13) that the support must exert on the upper edge of the sheet in order to
maintain the deformation approaches infinity as /' increases. In the limit in
which the sheet has a vertical edge # = L, no finite force can maintain the sheet
in the plane state that has been assumed.
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6. Stress Potential

The equilibrium Eq. (3.2) is satisfied if #, and £, are related to a stress potential
F by
t,=F,, t,= —F,, dF =1, dy — t, dx. (6.1.1, 2, 3)

To determine the relation of F to the deformation, we use the stress-deformation
relations (3.6) in (6.1) and then take the inner products of (6.1.1) with k X @
and (6.1.2) with k x b. This yields

kxa-F,=Ga-b—1Tk- (axa,),, (6.2.1)
Exb-F,=Ga-b+Ik-(bxb,,. (6.2.2)
We have also used (2.9) and the special constitutive Eq. (3.7) for §. We now
use (2.7) to simplify the terms involving I". Then, recalling that @ = a(x) and
b = b(y), and using (2.1), we can integrate (6.2.1) with respect to y and (6.2.2)
with respect to z, to obtain
kxa-F=0Ga r— Ty (z) + Mz,

(6.3)
Exb-F=Gr-b-+I'xp"'y + N).

Here M and N are as yet undetermined.
The expressions for F and k X7 as linear combinations of the base vectors
a and b are

F=aF -bxk/J) -+ bF- -kxalJ) (6.4)
and

kExr= —a(r-b/J) + b(r-alJ). (6.5)

Here J is defined by (2.9). By using (6.3) in (6.4) and then using (6.5), we obtain
the general solution for F':

F = Gk Xr + (1/7) [M(z) b(y) — N(y) a(z)]
— (L}J) [za(@) " (y) + ybly) &"'(x)].

(6.6)

When I' = 0, this reduces to the form previously [4] found for perfectly flexible
networks.

In cases in which the deformation is kinematically determinate, all of the
quantities in (6.6) are known except J/ and N. Traction boundary conditions
must be used to determine these functions, and for this purpose it is necessary
that at least one end of each fiber be on the boundary C,. In dealing with the
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boundary condition it is convenient to use an auxiliary function Fy(s) defined
on U by

by on X,
F,=F —J Faax onY, {(6.7)
0 on Z.

Then the boundary conditions (4.6) and (4.8) can be written as
P, =T+ P, (6.8)

with the understanding that P = 0 on X and Y. We note that at discontinuities
in P, such as those that may occur in passing from an X interval to a Z interval,
dP = P’ ds is to be interpreted as a finite difference. From (6.8),

F,=P + f T ds. (6.9)
0

Thus when the deformation is known, so that P is known, F, can be evaluated
by integrating the specified boundary tractions. The origin 8 = 0 is an arbitrary
point on .

The purpose of introducing F, is to eliminate the fiber tensions F, and F,
that appear in the boundary conditions (4.6). From (6.7) we see that

Exa-F—F)=0 onY, Ekxb-(F—F)=0 onX, (6.10)

and F = F, on Z. Then if (6.3) is evaluated at a boundary point, F can be re-
placed by F,, and we obtain

Maz)=kxa-F,—~Ga-r+ I'ys’(x) on ¥Yand Z, (6.11.1)
Ny)y=kxb-F,—Gr-b—Ixp"'(y) onXandZ. (6.11.2)

With M and N determined, F is known completely. The stress at interior
points is found by using (6.1), and the forces F, and F, in boundary fibers are
found by using (6.7).

The relations (6.11) remain valid even if the integral in (6.9) includes arcs
on which T has not been specified. On such ares (6.11) does not determine M
and N because F, is not known, but relations derived from (6.11) remain valid
nonetheless.

7. Traetion Boundary Value Problems

In the present section we consider pure traction boundary value problems,
for which € = C;, and show how to form equations that govern x(x) and B(y).
To simplify the notation we confine attention to cases in which no line z = con-
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stant or ¥ = constant intersects € more than twice, so that each such fiber consists
of one connected segment. We suppose that the boundary can be written as

y=yx) and y=y_(v), with y,=y_, (7.1)
and also as

z=ua(y) and z==x_(y), with z ==z, (7.2)

plus lines = = counstant in the first case and lines ¥ = constant in the second.
The difference between the values of a function f{z, y) at the two ends of
a fiber is denoted by '

Af(@) = flz, yul@)) — flz, y_() (7.3)

or

Af(y) = Hzly), 9) — flz_(9), 9), (7.4)

and it is essential to show the argument of Af in order to specify which difference
is intended. In this notation Ay(x) and Axz(y) are the lengths of the fibers z
= constant and y = constant, respectively. We use the same notation for dif-
ferences of the values of the function F,, given by (6.9), at the two ends of a
fiber.

The expression (6.11.1) gives two equations for M(z), one for each end of
the fiber = constant By subtracting one from the other we obtain

TAy(x) o' (x) = Ga - Ar(x) — k X a - AFy(x). (7.5)
From (6.11.2) we similarly obtain
Tlaly) B"(y) = —Gb - Ar(y) + I x b - AFy(y). (7.6)
The differences AF, are, f:om {8 9),
AFy(z) = AP(x) -+ Filw),  AF(y) = AP(y) — Fy(y), (7.7)

where F,(x) is the total force on the boundary to the right of the line z = constant
and F,(y) is the total force on the boundary above theline y = constant. When
(7.7) iz used in (7.5) and (7.6) the terms involving AP can be simplified. From
(4.7) we find that

kExa-P=TIx(z)(y/x), Exb -P=—I8/y)), (7.8)
where we have used (2.9). Now,
y'()/2'(8) = y.'(@®) and &(s)/y'(s) = 2. (%), (7.9)
the subscript depending on the point at which P is being evaluated. Then
kExa -AP(x) = I'a'(z) Ady'(x), Ek xb-APy) = —If'(y) Ax'(y). (7.10)

18 Acta Mech. 65/1—4
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By using (7.7) in (7.5) and (7.6), then using (7.10), and finally combining terms
that involve I', we obtain

IMAy(x) &' (2)} = —k X a(z) - [F.(x) + G4r{z) X k] (7.11)
and
Idx(y) B (y)] =k x bly) * [Fu(y) + Gk x Ar(y)]. (7.12)

The differences Ar can be written as integrals:

Y2} Z+lin
dr@) = [ bly)dy, Arly) = f a(z) de. (7.13)
y-(2) z_(y)
Then with (2.6), the pair of Eqgs. (7.11) and (7.12) form a system of differential-
integral equations for the fiber directions «(z) and f(y).
When I' = 0 they are integral equations that can be solved by series or
iteration [5], [6]. When G = 0 as well, they are merely algebraic equations
that can be solved immediately [2].

8. Ordinary and Singular Perturbations

To illustrate the use of ordinary and singular perturbation methods when
the bending stiffness is small, we consider a class of examples in which the system
(7.10), (7.11) reduces to only one equation. Let the sheet be bounded by the lines
x =0, z = L, and two smooth curves y = y,(z). Let us suppose that the edge
x = 0 is clamped in its initial position, so that (0) = 0 and b(y) = j. Clamping
the edge in any other position would similarly determine b(y) and «(0). A distri-
bution of tractions T'(y) with resultant F, is prescribed on the edge x = L. The
zero-couple condition (4.5) on that edge is «'(L) = 0. The two edges y = y.(z)
are left free from traction. Then the function F,.{x) in (7.11) has the constant
value F,. The following analysis would be changed very little if non-zero tractions
were prescribed on y = y.(x); F(x) would merely be non-constant.

The vector Ar(z) in (7.13) is equal to jdy(x) because b(y) =j; with any
other prescription of b it would still be the case that Ar(z) could be evaluated
immediately, The relation (7.12) is not needed because f#(y) is known. From
(7.11) we obtain

IAy(x) o' (2)] = —k X a - [F, -+ Gidy(x)], (8.1)
an equation for the single unknown «(x). The boundary conditions are
a(0) =0, a'(L) = 0. (8.2.1, 2)

Let ao(z) be the solution of (8.1) when I' = 0, and let @, be the corresponding
value of @. Then (8.1) yields

K{(x) ay(z) = F, - Gidy(z), (8.3)
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where K(z) is the magnitude of the right-hand member. With F, = F.i - F,j,
we have

K(z) = [(F, + GAy) + F2p" (8.4)
and

tan oo () = Fy/[F, + GAy(z)]. (8.5)

By using (8.3) to define a,, we can rewrite (8.1) in the form
TNMAy(x) o' (z)] = K(x) sin [e(x) — xo(x)]. (8.6)

Let us suppose that I' is very small, in the sense that the left-hand member
of (8.6) is small when evaluated with & = «,. Then « is given to first order in
I'by

x1(x) = ao(a) + Idy(x) oo’ (2)]' [ K(z). (8.7)

The approximations «, and «, cannot be valid near the boundaries unless
they accidentally satisfy the boundary conditions (8.2), which were not used
in determining them. Let % and 2’ be the length scales defined by

h = [T4y(0)/K()}?,  F = [[Ay(L)/K(L)]", (8.8)

and let us suppose that 2/L <€ 1 and »'/L <€ 1; here for the first time we define
precisely what we mean in saying that I"is small. Near the end # = 0 we introduce
a stretched coordinate £ = x/h and write

& = oo(hE) -+ H(£). (8.9)

By using this in (8.6) and then taking the limit as % approaches zero with ¢
fixed, we obtain

¢"(&) = sin ¢(§). (8.10)

The boundary condition (8.2.1) yields ¢(0) = —xy(0). The second condition
is replaced by the requirement that for any fixed « > 0, x(z) approaches ay(z)
when I" approaches zero. In terms of ¢(£), this means that ¢(oo) = 0. Then ¢
is determined by solving (8.10) with

$(0) = —uo(0),  ¢(o0) = 0. (8.11)

Near the end z = L we similarly introduce a stretched coordinate & = (x
— L)/W and by a similar process again obtain an equation of the form (8.10) but
now with boundary conditions

¢'(0) = —h'x,'(L),  $(—o0) = 0. (8.12.1, 2)

The factor 2’ is retained in (8.12.1) in order to obtain a non-trivial solution.
The solution of (8.10) that satisfies the boundary condition (8.11) is

¢ = —4 arctan [e* tan(x,/4)]. (8.13)

18*
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If x, is small this i approximately
¢ o2 —a(0) exp (—x/h). (8.14)

Thus, the correction to xy(xz) that is needed in order to satisfy the boundary con-
dition (8.2.1) is negligible outside a thin layer near x = 0 whose thickness is of
the order of %. Similarly, the correction near the end z = L is qualitatively like

¢ = —Wa'(L) exp [(z — L)[R], (8.15)

negligible outside a layer whose thickness is of the order of %’ and small even in-
side that layer; correcting the derivative requires only a very small correction to «
itself.

9. Interior Transition Layer

The approximation (8.7) evidently cannot be valid near places where «, or
even o, is discontinuous, since the supposedly small correction is infinite at such
places. In the present section we consider some of the details of a specific problem
in which the fiber direction is discontinuous in the zero-stiffness solution.

We consider a rectangular sheet with a straight central cut. The edges of the
sheet are initially along thelines ® = —L', x = 2L + I/, and y = +H. The cut
is along y =0, 0 £ # < 2L. A uniform traction T = T'i is applied as a dead
load along the edge x = 2L - L’ and an opposite traction T' = —T';% is applied
along z = —L'. Uniform tractions T = 1 7,j are applied along the edges
y = +H, respectively. The two edges of the cut are left free from traction.

In the solution for a sheet with no bending stiffness the regions # << 0 and
x > 2L remain undistorted and the stress vectors in these regions are £,0 = 7';i
and &,° = T,j. In the region 0 <y <X H, 0 <<z << 2L the vector a,(x) has an
expression of the form (8.8) with Ay(x) = H and F, a function of = given by

Fox) =THi+ Ty(L —a)§f. (9.1)
Then
tan oolx) = To(L — 2)(T, + G) H (9.2)
and
K(z) = [HXT, + G)* + T XL — x)2]2. (9.3)

Because of the symmetry of the sheet and its loading we need not consider the
region y << 0, nor even the region = > L. We see that «,(z) is discontinuous
across the line z = 0. There is accordingly a jump in shearing stress across this
line, and for thig reason the fiber x = 0 is singular, carrying a finite force

Foly) = T.L(H —y)/H  (y 2 0). (9.4)

When I' & 0 the regions x << 0 and x > 2L are again undistorted and the
stress is the same as in the solution for I' = 0. In the region y > 0, 0 < & < L,
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the equation for «(x) has a form similar to (8.6),
THa''(x) = K(z) sin [o(x) — oo{2)], (9.5)

with «, and K given by (9.2) and (9.3). Continuity of «(z) across z = 0 is now
required, so «(0) = 0. For a condition at x = L we use the symmetry condition
o(L) = 0:

o(0) = (L) = 0. (9.6)

Exactly as in Section 8 we can show that «(x) varies rapidly but continuously
from its boundary value «(0) = O to the value «,(0) through s thin layer near the
line z = 0. Then the shearing stress § is no longer discontinuous across z = 0,
and this could lead one to guess that the fiber 2 = 0 might no longer be singular.
However, this is not the case. We now show that the stress discontinuity is
exactly as it was in the zero-stiffness solution, leading to the same fiber force
Fy(y) given in (9.4).

At z = 04 we have @ = i, b = j, and thus (3.6) gives

1,0+, y) = To(0+-, ) T — ITja"(0) — ix’(0)7]. (9.7)
We have used § = 0 since @ - b = 0. The i-component of £, is conﬁnuous if
T.0+,y) =T, — I« (0) P, (9.8)
and the jump in ¢, is then
40+, ) — L,(0—, y) = —jl'«"(0). (9.9)
But from (9.5), with (9.2) and (9.3), we find that
THy"(0) = —T,L. (9.10)

Then the jump in $, is jT,L/H, and the fiber force required to equilibrate this
is (9.4). .

It should be pointed out that the present example is somewhat artificial in
that the minimum-energy solution under the stated conditions would not be a
plane deformation. Asin the case of infinitesimal deformations [7] the fibers along
the edges of the cut are singular and in compression, and this presumably means
that the solution is unstable. However, this has nothing to do with our basic
result: bending stiffness smooths the deformation but not the stress field.

10. Comments on the General Pure Traetion Problem

In a pure traction boundary value problem the system of differential-integral
equations (7.11), (7.12) must be solved simultaneously for a(x) and B(y), subject to
two boundary conditions on each of these unknowns. The boundary conditions on
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o(x) will apply at the largest and smallest values of z on the sheet, and the condi-
tions on f(y) will similarly be applied at the extreme values of y. If the sheet is
bounded by fibers at its extremes, the boundary conditions are the zero-couple
conditions (4.5). If the extreme value of a coordinate is on an arc of type Z, the
difference Ay(x) or Ax(y) vanishes at the endpoint, and the Eq. (7.11) or (7.12) is
singular there. The boundary condition is then that the solution «(x) or (y)
remains finite at the singular point.

For very small I', the zero-stiffness solution w«,(x), B.(y) will be acceptable
throughout most of the sheet. This solution can be tested by using it to evaluate
the terms involving I" in (7.11) and (7.12). It can be accepted as a valid approxi-
mation except at places where it does not yield negligible values of these stiffness
terms, and at extreme values of z or y at which it does not satisfy the boundary
conditions.

At the particular values of z or y where the zero-stiffness solution is not valid
by this test, we can use singular perturbation methods as in Sections 8 and 9.
This is no more complicated than in the examples considered earlier, because in a
trangition-layer equation for «(x), say, § can be taken as having the known value
Bo(y), and so Ar(x) in (7.11) can be approximated by Ar,(x) in the lowest order of
approximation.

Boundary-layer effects occur only on boundaries that lie along fibers, because
such effects are associated with particular values of = or y. On the boundary arcs
of type Z that cut across both families of fibers the solution shows no special
peculiarity. But even the boundary layers on X and Y are rather insignificant in
pure traction problems, because the zero-couple condition requires only a weak
correction of the type shown in the example (8.15).
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