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Summary 

The theory of nets with bending stiffness is meant to model some aspects of the mechan- 
ical behavior of cloth and cable networks. We use this theory to study the effect of small 
bending stiffness in plane deformations. I t  is shown that the theory of perfectly flexible 
networks gives an adequate approximation except at places where that theory predicts 
discontinuous changes in fiber directions, and at boundaries along fibers. In  such regions 
singular perturbation methods can be used to analyze the stress and deformation. 

1. Introduction 

In  a previous paper  [1] we have formulated a theory of inextensible networks 
with bending stiffness, which is intended to model some aspects of the behavior 
of cloth in finite deformations. The theory of inextensible networks [2], [3], [4] 

was modified by  at tr ibuting a bending stiffness to each fiber in the network. In  
the resulting theory the bending couples play no direct role. Their presence 

produces  a modification in the stress-deformation relation for the material  and in 
the boundary conditions needed in order to set a problem. 

In  the present paper  we s tudy the effect of small bending stiffness on plane 
deformations of inextensible networks. In  plane deformations, boundary  value 
problems are relatively easy to solve within the theory of perfectly flexible net- 
works, so such deformations afford a convenient class for a first approach to the 
s tudy of nets with bending stiffness. 

Bending couples have the effect of introducing higher derivatives of the 
deformation into the stress-deformation relations [1], and the equilibrium equation 
is then two orders higher than it is in the theory of perfectly flexible networks. The 
derivatives of highest order are multiplied b y  a small stiffness coefficient. The 
higher-order derivatives in the equation make *it necessary to pose additional 
boundary  conditions, beyond the usual displacement or traction conditions. These 
additional conditions generally are not satisfied by  solutions obtained from the 
theory of prefeetly flexible networks. As we show in the present paper, the main 
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effect of bending stiffness is to produce boundary layers at the edges of the sheet. 
The solution at  interior points is adequately represented by  the zero-bending- 
stiffness solution, provided that  the lat ter  is sufficiently smooth. 

In  Section 2 we outline l~ivlin's [2] kinematic results concerning plane defor- 
mations, in vector notation [4]. The equilibrium equation and stress-deformation 
relations are given in Section 3. Boundary conditions are discussed at  some length 
in Section 4. We restrict at tention to cases in which boundary couples are not 
specified, except on pinned boundaries where a certain zero-couple condition is 
appropriate.  On traction boundaries that  cut across both families of fibers, the 
presence of boundary couples affects the prescribed traction boundary condition 
but  no separate couple condition is required. The boundary conditions are dis- 
cussed further in Section 5, in connection with a simple kinematieal]y determinate 
example. 

In  Section 6 we find the general solution of the equilibrium equation by  intro- 
ducing a stress potential  and then finding its form in terms of the deformation, 
following the pat tern  laid down by  l~ivlin [2] and used by  Pipkin [4]. In  Section 7 
we use these results to set up a pair of differential-integral equations that  can be 
used to determine the deformation in pure traction boundary-value problems. 
When the bending stiffness is zero, these become integral equations that  can be 
solved b y  series or iteration methods [5], [6]. 

In  Sections 8 and 9 we discuss examples in which the deformation is par t ly  
determined kinematically, so that  only one differential equation needs to be 
solved. The examples in Section 8 show how boundary layers arise at  boundaries 
where the zero-stiffness solution does not satisfy all of the boundary conditions. 
In  Section 9 we discuss an example that  shows how an interior discontinuityin the 
fiber direction, which is admissible in the zero-bending-stiffness theory, is 
smoothed out when the bending stiffness is not zero. There is again a boundary- 
layer type of effect, but  with a transition layer on the interior of the sheet. 

Ordinary and singular perturbation methods for the general traction boundary 
value problem are discussed briefly in Section 10. 

2. Kinematics 

We consider a plane sheet formed from two families of fibers that  initially lie 
parallel to the x and y axes of a Cartesian coordinate system. We treat  the sheet 
as a continuum, so that  every line x = constant or y = constant in the initial 
domain D is regarded as a fiber. In  a deformation, the particles of both fibers that  
initially passed through the point (x, y) go to the place r(x, y) in the same plane. 
The derivatives of r are denoted b y  

a = r~ and b = r~, (2.1) 
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The  vectors  a and  b are tangential  to the deformed fibers, and because the fibers 

are assumed to be inextensible t hey  are uni t  vectors : 

a - a = b . b =  1. (2.2) 

B y  using (2.2) and  the integrabi l i ty  condit ion for (2.1), Rivlin [2] showed tha t  a 

and  b are funct ions of on ly  one variable each, 

a • a ( x ) ,  b = b ( y ) ,  (2,3} 

and  the deformat ion then has the form 

r = [(x)  -[- g (y ) ,  (2.4), 

where f '  ~ a and g '  ~ b. 

Le t  i, j ,  k be un i t  vectors  in the coordinate directions, and  let u(O) be the un i t  

vector  defined b y  

u(O) = i cos 0 --~ j sin O. (2.5} 

We can represent a and  b in terms of their angles ~ and fi b y  

a = u[a(x)] ,  b -~ u [ f l ( y ) ] .  (2.6} 

Then the curva ture  vectors  for the deformed fibers are 

a'(x)  : k • a~ ' ( x ) ,  b ' (y)  : k • bf l ' (y) .  (2.7) 

The local distort ion of the sheet is measured b y  the angle of shear ? defined b y  

sin ~ = a .  b : cos [fl(y) - -  ~(x)]. (2.8} 

The deformed area per uni t  undeformed area of an  element of the sheet, which we 

denote  b y  J ,  is given in various forms b y  

J = cos ? ---- k �9 a • b ---- sin [fl(y) - -  a(x)]. (2.9) 

We  restrict  a t t en t ion  to deformations for  which J ~ 0 everywhere.  The possibil i ty 

of folding [4], which would make  J ~ 0, is ruled ou t  because we intend to assign a 
non-zero bending stiffness to the sheet. 

3. Stress and Equi l ibr ium 

Let  t be the force per un i t  initial length exerted f rom right  to left across a 

directed arc d r  ~ a d x  ~- bdy ,  and let ds be the initial length of this arc. Then [11 

tds  : tady - -  tbdx,  (3.1) 

where the stress vectors  ta and tb are independent  of the direction of the arc. 
Equil ibr ium in the absence of b o d y  forces requires tha t  [1] 

t~,x + tb,y : 0.  (3.2) 
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Let  cds be the bending couple exerted across such an arc. Then 

ccls ---- c f l y  - -  codx,  (3.3) 

where the couple-stress vectors co and co are independent of the direction of the 
arc. Rotational equilibrium requires that [1] 

(r • ta + co), + (v • to + co)~ = 0. (3.4) 

We postulate that the couples ca and Cb are proportional to the curvatures of 
the a-fiber and b-fiber, respectively: 

Ca = -Pa • a x ,  co = F b  • b v.  (3.5) 

The bending stiffness coefficient F is a positive constant. 
We require that the stress vectors ta and t0 be of such forms that the rotational 

equilibrium equation (3.4) is satisfied identically whenever the translational 
equilibrium equation (3.2) is satisfied. This requirement leads to the result [1] that 
to and t0 must have the forms 

ta ----- Taa + S b  - -  Faxx ,  

tb = T o b  + S a  - -  I 'bvv.  
(3.6) 

By  using a work-energy relation we have shown [1] that  To and Tb, which 
we call/iber tensions, are reactions to the constraints (2.2) of fiber inextensibility. 
They  are primitive unknowns in any given problem. The shearing stress com- 
ponent S is a specified function of the angle of shear 7 defined by  (2.8). I t  is 
mathematically convenient and qualitatively reasonable to take S to be of the 
form [4] 

S = G tan y = G a .  b / J ,  (3.7) 

where the shear modulus G is a positive constant. The terms invo lv ing / '  in (3.6) 
are analogous to the shearing stresses on the cross-section of a bent beam, which 
are necessarily present when the bending couple varies along the length of the 
beam. Here these reactions must be taken into account explicitly since we take 
the translational equilibrium equation (3.2) as the basic equation to be satisfied. 

4. Boundary Conditions 

Let  C be the boundary of the region D, given parametrically in terms of arc 
length s by x = x(s), y ~ y(s). The derivatives x'(s) and y'(s) are the direction 
cosines of the tangent to C. Let  X, Y, and Z denote the parts of C on which the 
following conditions are satisfied: 

X :x ' - - - -0 ;  Y : y ' ~ 0 ;  Z : x ' y ' ~ ,  O. (4.1) 
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Tha t  is, X consists of the par ts  of C tha t  lie along fibers x = constant,  Y the 

parts  that  lie along fibers y = constant, and Z the par ts  that  cut across both 
families of fibers. Boundary  conditions on Z are essentially different from those 
on X and Y. 

Let  C be divided into three parts  Cp, Co, and C, that  we call pinned, clamped, 
a n d / r e e  respectively. The deformation is specified on the pinned and clamped 
parts :  

r[x(s),y(s)] ~-ro(S) on Cp and Co. (4.2) 

On ZCp, the intersection of Z with Cp, the boundary  condition (4.2) determines a 
and b uniquely in plane deformations with J > 0 [1], [2], [4]. On XCp (or XC~), 
(4.2) determines b, and in fact  kinematic admissibility of the boundary data on 
such a boundary  is usually assured b y  specifying b and then using ro' ----- by' to 
determine r0. Similarly, on YC~ or YCc, (4.2) determines a but  not b. 

We say that  the boundary  is clamped if the directions of a and b are specified 
on it, to the extent  that  they are not  already determined by  (4.2), and pinned if 
this extra information is not given. With the restriction to plane deformations, 
this distinction is relevant only on X and Y. A line x = xo in X is clamped if we 

specify the value of a(xo) on it, or equivalently specify a(xo), the angle of a. 
Similarly, a line y ~ Y0 in Y is clamped if we specify the value of fi(Yo) : 

r = s 0  on XCc, fl(yo) :rio on YCc. (4.3) 

On the free par t  Ct, neither r ,  a, nor b is specified. 
We have used the minimum energy principle [1] to deduce the forms that  

traction and couple boundary  conditions take when there is no energy associated 
with the boundary  couples. In  a certain sense these conditions refer to cases in 

which no couple is deliberately applied to the boundary. On a clamped par t  of the 
boundary no traction or couple condition can be specified. On a pinned par t  we 
can specify that  there are no couples that  would do work on a virtual displacement 
that  leaves the boundary  pinned. In  plane deformations this condition is to a large 
extent  satisfied identically because the couple vectors ca and co are perpendicular 
to the plane of deformation. On Z there are no plane virtual displacements that  
leave the boundary  fixed, so this kind of zero-couple condition is relevant only on 
X and Y. The same kind of condition can be specified on Ct: 

e . = O  on X ( O p + O t ) ,  c 0 = O  on  Y ( O p + C ~ ) .  (4.r 

With (2.7) and (3.5) we can put  these conditions into the forms 

~'(x0) = 0 on x ( o p  + r  fl'(y0) = o on r ( ~  + C,),  (4.5) 

where x0 and Yo are boundary  values in X and Y, respectively. 
Traction boundary  conditions can be specified on Ct. Let  T(s) be the pre- 

scribed force per unit  initial length, applied as a dead load along Ct. Of course, we 
specify  that  T has no component  in the direction normal to the plane of defor- 
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mation. Then on XCt and YCt the traction boundary conditions have the forms [1] 

faY' : T + (F~b)~ on XCt,  (4.6.1) 

--tbx' ~- T ~- (Faa)~ on YCt. (4.6.2) 

These conditions involve unknown functions Fb(y) and Fa(x) that  represent finite 
forces supported by  the fibers that  lie along the boundaries. Such singularities in 
boundary fibers are a well-known feature of solutions in theories that  use the 

idealization of fiber inextensibility. 
The traction condition on ZCt is of a form that  is far from obvious. In  a virtual 

motion ~r, par t  of the couple distribution on the boundary  performs work only 
when the boundary  moves, so that  ~r'(s) is not zero. This par t  of the work is of 
the form P .  ~r', per unit initial length, where in plane deformations P has the 
form [1] 

P ~-- (I~/J) [a(x) fl'(y) (x'/y') -~ b(y) ~'(x) (y'/x')]. (4.7) 

An integration by  parts  puts  the work into the form of the work of a traction _ p r  
on a displacement ~$r. Then the traction boundary condition takes the form 

~ay'(s) -- tbx'(s) -- P'(s)  = T(s) on ZC,. (4.S) 

Thus even though no couple distribution is specified on ZCt there will generally 
be non-zero couples on such a boundary, but  the couple distribution is of a type  
that  is indistinguishable from a traction distribution. This is an effect that  is 
familiar from classical plate theory (Love [8, Sec. 297]). 

At corners on the boundary and a t  points where the type of boundary  (X, Y 
or Z) changes, and at  points where the applied tractions include a point force, 
traction boundary conditions specify a balance among certain finite forces. In  a 
notat ion to cover all cases, the condition has the form 

F ~- A(Faa) -~ A(Fbb) -~ zip : O. (4.9) 

Here F is the applied point force. I f  an a-line passes through the point, d (Faa) 
is the sum of the two finite forces exerted by  the singular fiber on the point;  if the 
a-line does not extend on both sides of the point, we conventionally set F~ ~- 0 on 
the side where there is no a-line. The term A(Fbb) similarly accounts for the 
forces exerted by  a singular b-line on the point in question. The term AP is the 
difference between the values of P on the two sides of the point;  in evaluating this 
term we conventionally set P ~ 0 on X and Y boundaries. 

5. A Kinematieally Determinate Example 

As an exercise in the use of the boundary conditions we consider the defor- 
mation of a sheet bounded by  the curves 

X: x = 0; Y: y ~ H ;  Z:  y = / ( x ) ,  (5.1) 
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where [(x) increases monotonically from [(0) = 0 to ](L) = H.  We suppose that  

the edge x ---- 0 is clamped in its initial position. Then b(y)  ~-- j and ~(0) ~ 0, and 

since b is independent of x we then know b everywhere. The edge y ~ H is 
drawn up onto a circular arc of radius R, in such a way that  

~(~) = z / R ,  (5.2) 

and pinned there. This determines a = u(~) everywhere. The pinning condition 
means tha t  fl is not specified but  f l '(H) ~ O, and this is satisfied identica]ly since 
f l -~ z/2 everywhere. With a and b known, the deformation is determined by  
integration: 

r (x ,  y) = y j  - -  R k  X [u(~) - -  i].  (5.3) 

In  order to determine the stress distribution it is necessary to specify the 
traction T(s)  along the edge Z. In  fact  the plane deformation will be unstable 
unless the tractions on Z are rather  large and in such directions as to keep the 
sheet stretched out. For our present purpose we suppose that  some such traction 
distribution has been specified. 

The couple distribution on Z can be computed immediately because the defor- 

mat ion is already known. From (3.5), ca ~ k F a '  and cb : 0, so the couple per 
unit  initial length on the boundary  is 

c = ray' - -  CbX' = k F ~ ' ( x )  y ' (s) .  (5.4) 

However, it is not necessary to take any  positive action to supply this distribution 
of couples. I t  is equivalent to a certain traction distribution, whose form is easy 
to compute although not intuitively obvious. From (4.7), P is of the form 

P ---- P ( x ) j ,  P (x )  ~-- Fa ' (x )  ] ' (x) /cos ~(x) .  (5.5) 

Then the traction boundary  condition (4.8) takes the form 

t~]'(x) - -  tb : T /x ' ( s )  + j P ' ( x ) ,  (5.6) 

where we have divided by  x' and have used y ' / x '  = / ' ( x ) .  Thus, the effect of the 
couple distribution on the boundary  is to alter the apparent  traction distribution. 

To determine the effect of bending stiffness on the stress field we need not 
exhibit the complete solution. Let  ta  ~ and to o be the stress vectors when F = 0, 
involving fiber tensions T~ ~ and Tb ~ and let 

A t ~  = ta  - -  ta  ~  ~ t b  : tb  - -  tb  ~  (5.7) 

Then Ata and zltb can be regarded as the stresses due to bending stiffness alone, 
in a sheet with no shear resistance and with no traction along the edge y = ](x). 

On that  edge they satisfy 

At~]'(x) - -  zltb ~- j P ' ( x ) .  (5.8) 
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This is sat isf ied if 

At~ = 0  and  Atb = - - j P ' ( x ) .  (5.9) 

These stresses sa t i s fy  the  equi l ibr ium equa t ion  since Atb is i ndependen t  of y. 

They  are  consis tent  wi th  the  s t ress -deformat ion  re la t ions  (3.6) if 

A T a : - - 1 " ~  '~ and  z l T ~ = - - P ' ( x ) .  (5.10) 

The change in Ta is mere ly  a fo rmal  rea l loca t ion  of f iber  tens ion f rom the  t e rm 

Ta~ in ta ~ to the  t e rm --Faxx in  ta. F o r  P '  to be pos i t ive  i t  is sufficient  t ha t  

/ '  > 0 a n d  ]" > 0. I f  t ha t  is the  ease, the  stress due  to bend ing  st iffness a lone  

is a compress ive  stress - - P ' ,  cons t an t  a long each b-l ine.  

This  compress ive  stress in b-l ines means  t h a t  the  top  edge y = H is press ing 

aga ins t  the  circular  suppor t  to which i t  is a t t ached .  :From (4.6.2), assuming  t ha t  

AF, = 0, the  r eac t ion  of the  suppor t  on the  sheet  is 

AT = Atb = --jP'(x). (5.11) 

I n  add i t i on  to this,  there  is a po in t  force a t  the  corner  x = L, y = H.  F r o m  

(4.9), wi th  zIP = - - P ( L )  since P = 0 on y = H,  the  force a t  the  corner  is 

AF = jP(L),  (5.12) 

with P(L) > 0. The corner  is pu l led  into  con tac t  wi th  the  suppor t  b y  this force. 

The to ta l  force exe r t ed  on the sheet  b y  the  suppor t  f rom x to L is 

L 

AF + f A T d x  = jP(x ) .  
x 

(5.13) 

On the  edge x = 0 there  is a couple c = --k-Y'~' pe r  uni t  length.  This  couple  

is suppl ied  b y  the g r ipp ing  device t h a t  enforces the  c lamping  condi t ion  there.  

Now, we would  have  deduced  e x a c t l y  the  same  de fo rma t ion  if we had  specif ied 

t ha t  the  edge x = 0 were p inned  r a the r  t han  c lamped,  b u t  then  the zero-couple  

condi t ion  a '(0) = 0 would  no t  be  sat isf ied.  The  con t rad ic t ion  means  t h a t  i t  is 

false to  assume t h a t  the  de fo rma t ion  is p lane  in such a case;  if the  edge x = 0 

is mere ly  p inned,  and  no t  d a m p e d ,  the  sheet  canno t  r ema in  in i ts  or iginal  plane.  

There  is a s imi lar  con t rad ic t ion  if the  edge Z has a ver t i ca l  p a r t  x = L. To 

look a t  this  in more  detai l ,  le t  us suppose  t h a t  y =/ (x )  lies a long y = 0 nea r ly  

all  the  w a y  f rom x = 0 to x = L, a n d  then  rises n e a r l y  ve r t i ca l ly  ( / '  large) near  

z = L. F r o m  (5.5) we see t ha t  P = 0 a long the  hor izon ta l  p a r t  and  t ha t  P is 

ve ry  large,  p ropor t iona l  to /', along the  nea r ly  ver t i ca l  pa r t .  Then the  force 

(5.13) t ha t  the  suppor t  mus t  exer t  on the  uppe r  edge of the  sheet  in o rder  to 

m a i n t a i n  the  de fo rma t ion  approaches  in f in i ty  as  / '  increases.  I n  the  l imi t  in 

which the sheet  has  a ver t ical  edge x = L, no f ini te  force can m a i n t a i n  the  sheet  

in the  p lane  s t a t e  t ha t  has been assumed.  
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6. Stress Poten t ia l  

The equi!ibrimn Eq. (3.2) is satisfied if t~ and tb are related to a stress potential  

F by  

ta = F~, tb = - - F x ,  dF  = t~ dy  - -  tb dx .  (6.1.1, 2, 3} 

To determine the relation of F to the deformation, we use the stress-deformation 
relations (3.6) in (6.1) and then take the inner products of (6.1.1) with k • a 

and (6.1.2) with k • b. This yields 

k •  Fy = G a .  b - -  1"k �9 (a • ax)~, 

k • b .  F z = G a .  b ~- 1"k �9 (b  • by)~. 

(6.2.1) 

(6.2.2} 

and 

k • a .  f = G a .  v - -  Fyo~"(x) § M ( x ) ,  

k • b .  F = G r .  b + I" • fi"(y) @ N ( y ) .  

Here M and N are as yet  undetermined. 
The expressions for F and k • r as linear combinations of the base vectors 

a and b are 

F = a ( F .  b • k / J )  + b ( F .  k • a /J )  (6.4) 

k • r =  - - a ( r .  b / J )  - t - b ( r .  a / J ) .  (6.5) 

Here J is defined by  (2.9). By using (6.3) in (6.4) and then using (6.5), we obtain 
the general solution for F :  

F = Gk  • v + ( l / J )  [M(x) b(y)  - -  N(y )  a(x)] 

- -  (1,/J) [xa(x) fl"(y) @ yb(y)  ~"(x)]. 

When 1, = 0, this reduces to the form previously [4] found for perfectly flexible 
networks. 

In  eases in which the deformation is kinematieally determinate, all of the 
quantities in (6.6) are known except M and N. Traction boundary  conditions 
must  be used to determine these functions, and for this purpose it is necessary 
that  a t  least one end of each fiber be on the boundary  Ct. In  dealing With the 

(6.6) 

(6.3) 

We have also used (2.9) and the special constitutive Eq. (3.7) for S. ~Ve now 
use (2.7) to simplify the terms involving 1,. Then, recalling tha t  a = a(x)  and 
b = b(y),  and using (2.1), we can integrate (6.2.1) with respect to y and (6.2.2} 
with respect to x, to obtain 
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boundary condition it is convenient to use an auxiliary function Fo(s ) defined 

on C by  

I 
F b b y '  on X,  

Fo = F-- P a a x '  on Y ,  (6.7) 

0 on Z. 

Then the boundary conditions (4.6) and (4.8) can be written as 

i~o' = T + P ' ,  (6.8) 

with the understanding that  P = 0 on X and Y. We note that  at  discontinuities 
in P,  such as those that  m a y  occur in passing from an X interval to a Z interval, 
d P  = P '  ds  is to be interpreted as a finite difference. :From (6.8), 

8 

F o = P  + f T d s .  (6.9) 
0 

Thus when the deformation is known, so tha t  P is known, F0 can be evaluated 
by  integrating the specified boundary tractions. The origin s = 0 is an arbi t rary  
point on Or. 

The purpose of introducing F0 is to eliminate the fiber tensions Fa and Fb 
tha t  appear  in the boundary  conditions (4.6). From (6.7) we see that  

k •  on Y, k x b - ( F - - F o ) = 0  o n X ,  (6.10) 

and f = Fo on Z. Then if (6.3) is evaluated at  a boundary  point, F can be re- 
placed by  Fo, and we obtain 

M ( x )  = k • a .  Fo - -  Ga . r + F y ~ " ( x )  

N ( y )  = k • b . Fo - -  G r  . b - -  F •  f l"(y)  

on Y and Z,  (6.11.1) 

on X and Z.  (6.11.2) 

With M and N determined, F is known completely. The stress at  interior 
points is found by  using (6.1), and the forces F~ and Fb in boundary fibers are 
found by  using (6.7). 

The relations (6.11) remain valid even if the integral in (6.9) includes arcs 
on which T has not been specified. On such arcs (6.11) does not determine M 
and N because F0 is not known, but relations derived from (6.11) remain valid 
nonetheless. 

7. Traction Boundary Value Problems 

In the present section we consider pure traction boundary value problems, 

for which C = Ct, and show how to form equations that govern a(x) and fl(y). 

To simplify the notation we confine attention to cases in which no line x = con- 
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s tan t  or y = constant  intersects C more than  twice, so tha t  each such fiber consists 

of one connected segment.  We suppose tha t  the b o u n d a r y  can be wri t ten as 

y = y+(x) and  y---- y_(x ) ,  with y+ ~ y_,  (7.1) 

and  also as 

x = x+(y) and x = x_(y) ,  with x+ ~ x_, (7.2) 

plus lines x = cons tan t  in the first case and  lines y = cons tant  in the second. 

The difference between the values of a funetior~/(x,  y) a t  the  two ends of 

a fiber is denoted b y  

Al(x) = l(x, y+(x)) - -  l(x, y_(x)) (7a)  
o r  

~l(y) =/(x+(y), y) - / (x(y) ,  y), (7.4) 

and  it is essential to  show the a rgument  of A / i n  order to specify which difference 
is intended. I n  this nota t ion  Ay(x)  and  Ax(y)  are the lengths of the fibers x 

= cons tant  and  y ~ constant ,  respectively. We use the same nota t ion  for dif- 

ferences of the  values of the functiorL Fo, given b y  (6.9), a t  the two ends of a 

fiber. 
The expression (6.11.1) gives two equat ions for M(x) ,  one for each end of 

the fiber x = constant  B y  subtract ing one f rom the other  we obta in  

FAy(x )  ~"(x)  = Ga . A t ( x )  - -  k • a �9 A fo (X) .  (7.5) 

F r o m  (6.11.2) we similarly obta in  

FAx(y )  fl"(y) = - - G b  . A t ( y )  + k • b . AFo(y) .  (7.6) 

The  differences AFo are, f" om (6 9), 

~F0(x) = AP(x) + F,(x) ,  4F0(y) = d e ( y )  - -  F~(y), (7.7) 

where Fr(x) is the tota l  force on the b o u n d a r y  to the r ight of the line x = constant  

and  Fu(y) is the tota l  force on the b o u n d a r y  above  the line y = constant .  W h e n  

(7.7) is used in (7.5) and  (7.6) the terms involving A P  can be simplified. :From 

(4.7) we f ind tha t  

t X r t X t r  p~ k • a .  P = FoJ(x) (y / ), k • b . P = - -Ff l ' (y)  t /Y  ), (7.8) 

where we have used (29).  Now, 

y'(s)/x '(s)  = y j ( x )  and  xr(s)/y'(s) = x• (7.9) 

the subscript  depending on the point  at  which P is being evaluated.  Then 

k • a .  AP(x )  = Fee'(x) Ay ' ( x ) ,  k • b .  AP(y )  = - -Ff l ' (y)  Ax ' ( y ) .  (7.10) 

18 Acta Mech. 65/I--4 
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By  using (7.7) in (7.5) and (7.6), then using (7.10), and finally combining terms 
that  invo lve / ' ,  we obtain 

F[dy(x) a'(x)] '  = - -k  • a(x). [Fr(x) @ Gdr(x) X k] (7.11) 
and 

F[dx(y) fl'(y)]' = k • b(y) : [F~(y) • Gk • dr(y)] .  (7.12) 

The differences dr  can be written as integrals: 

y+(x) x+iy~ 

dr(x) =- f b(y) dy, dr(y) ---- f , (x) dx. (7.13) 
y_(x) x_(y) 

Then with (2.6), the pair of Eqs. (7.11) and (7.12) form a system of differential- 
integral equations for the fiber directions a(x) and fi(y). 

When F = 0 they are integral equations that  can be solved by  series or 
iteration [5], [6]. When G = 0 as well, they are merely algebraic equations 
that  can be solved immediately [2]. 

8. Ordinary and Singular Perturbations 

To illustrate the use of ordinary and singular perturbat ion methods when 
the bending stiffness is small, we consider a class of examples in which the system 
(7.10), (7.11) reduces to only one equation. Let  the sheet be bounded by  the lines 
x = 0, x = L, and two smooth curves y = y~(x). Let  us suppose that  the edge 
x = 0 is clamped in its initial position, so that  ~(0) = 0 and b(y) ~ j .  Clamping 
the edge in any  other position would similarly determine b(y) and ~(0). A distri- 
bution of tractions T(y) with resultant Fr  is prescribed on the edge x = L. The 
zero-couple condition (4.5) on that  edge is ~'(L) = 0. The two edges y = y~(x) 
are left free from traction. Then the function Fr(x) in (7.11) has the constant 
value Ft. The following analysis would be changed very little if non-zero tractions 
were prescribed on y = y~(x); Fr(x) would merely be non-constant.  

The vector dr(x) in (7.13) is equal to jdy(x) because 5(y)----j;  with any  
other prescription of b it would still be the case that  dr(x) could be evaluated 

immediately. The relation (7.12) is not needed because fi(y) is known. From 
(7.11) we obtain 

I'[dy(x) a'(x)] '  ---- - - k  • a .  [Fr @ Gidy(x)], (8.1) 

an equation for the single unknown co(x). The boundary conditions are 

~(0) = o ,  ~'(L) = 0 .  (8.2.1, 2) 

Let so(x) be the solution of (8.1) w h e n / '  = 0, and let ao be the corresponding 
value of a. Then (8.1) yields 

K(x) ao(x) = F, @ Gidy(x), (8.3) 
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where K(x) is the magnitude of the right-hand member.  With Fr = Yl f  + F~j, 
we h a v e  

K(x) = [(F1 ~- GAy) 2 -~- F22] 1/2 (8.4) 

and 

tan o~0(x) = F2/[F1 @ GAy(x)]. (8.5) 

By  using (8.3) to define a0, we can rewrite (8.1) in the form 

F[Ay(x) cd(x)]' • K(x) sin [a(x) - -  ao(x)]. (8.6) 

Let  us suppose that  /" is very small, in the sense that  the left-hand member  
of (8.6) is small when evaluated with cr = ~0- Then ~ is given to first order in 

/" by  
~x~(x) = o~o(x) @ F[Ay(x) ~xo'(x)]'/K(x). (8.7) 

The approximations ~0 and al cannot be valid near the boundaries unless 
they accidentally satisfy the boundary  conditions (8.2), which were not used 
in determining them. Let  h and h' be the length scMes defined by  

h = [/"Ay(O)/K(O)] 1/2, h' = [FAy(L)/K(L)] 1/2, (8.8) 

and let us suppose that  h/L ~ 1 and h'/L ~ 1 ; here for the first t ime we define 
precisely what  we mean in saying that  l"is  small. Near the end x = 0 we introduce 
a stretched coordinate ~ = x/h and write 

= ~o(h~) § ~(~). (8.9) 

By using this in (8.6) and then taking the limit as h approaches zero with 
fixed, we obtain 

~"(~) = sin ~(~). (8.10) 

The boundary  condition (8.2.1) yields qb(0)=--a0(0) .  The second condition 
is replaced by  the requirement tha t  for any  fixed x > 0, a(x) approaches no(X) 
when /" approaches zero. In  terms of qS(~), this means that  r = 0. Then q~ 
is determined by  solving (8.10) with 

4(0) = - s o ( O ) ,  ~ ( ~ )  = 0.  (8.11) 

Near the end x = L we similarly introduce a stretched coordinate ~ = (x 

- -  L)/h' and by  a similar process again obtain an equation of the form (8.10) but  
now with boundary  conditions 

d/(O) = --h'o~o'(L), r  = 0. (8.12.1, 2) 

The factor h' is retained in (8.12.1) in order to obtain a non-trivial solution. 
The solution of (8.10) that  satisfies the boundary  condition (8.11) is 

= - -4  arctan [e -e tan(a0/4)]. (8.13) 

18" 
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I f  ~0 is smal l  this  is a p p r o x i m a t e l y  

4 m --~o(0) exp  ( - -x /h ) .  (8.14) 

Thus,  the  correc t ion  to ~0(x) t ha t  is needed  in o rder  to sa t i s fy  the  b o u n d a r y  con- 

d i t ion  (8.2.1) is negligible outs ide  a th in  l ayer  near  x = 0 whose thickness  is of 

the  order  of h. Similar ly ,  the  correc t ion  nea r  the  end x = L is qua l i t a t i ve ly  l ike 

d~ ~_. --h'oco'(L) exp [(x - -  L)/h'],  (8.15) 

negligible outs ide  a l aye r  whose thickness  is of the  o rder  of h' a n d  smal l  even in- 

side t h a t  l aye r ;  correc t ing  the  de r iva t ive  requires  on ly  a v e r y  smal l  correc t ion  to 0r 

itselL 

9. Interior Transition Layer 

The a p p r o x i m a t i o n  (8.7) ev iden t l y  canno t  be  va l id  nea r  places  where ~o or 

even ~o' is d iscont inuous ,  since the  supposed ly  smal l  cor rec t ion  is inf ini te  a t  such 

places.  I n  the  p resen t  sect ion we consider  some of the  de ta i l s  of a specific p rob lem 

in which the  f iber  d i rec t ion  is d i scont inuous  in the  zero-st iffness solut ion.  

W e  consider  a r ec t angu la r  sheet  wi th  a s t r a igh t  cent ra l  cut .  The edges of the  

sheet  a re  in i t i a l ly  a long the  l ines x = - - L ' ,  x = 2L  @ L' ,  and  y = :J:H. The  cut  

is a long y = 0, 0 --< x --< 2L. A uni form t r ac t ion  T = T~i is app l i ed  as  a dead  

load  a long the  edge x = 2L ~- L'  and  an  oppos i te  t r ac t ion  T = - - T l i  is app l i ed  

a long x = - - L ' .  Uni fo rm t rac t ions  T - - - - 4 - T 2 j  a re  app l i ed  a long the  edges 

y = : t :H,  respect ive ly .  The  two edges of the  cut  are  lef t  free f rom t rac t ion .  

I n  the  so lu t ion  for a sheet  wi th  no bending  st iffness the  regions x < 0 and  

x > 2L  rema in  u n d i s t o r t e d  and  the  stress vec tors  in these regions are  t~ ~ = Tl i  

and  tb ~ = T~j. I n  the  region 0 =< y ~ H,  0 < x < 2L  the  vec to r  ao(x) has an  

express ion of the  form (8.3) wi th  dy(x)  = H and/7~ a func t ion  of x g iven  b y  

f~(x) = T I H i  ~- T2(L - -  x ) j .  (9.1) 

Then  

a n d  

t a n  ~0(x) = T2(L - -  x)/(T~ ~- G) H (9.2) 

K(x)  = [H2(T1 q- G) ~ q- T22(L - -  x)~] 1/2. (9.3) 

Because  of the  s y m m e t r y  of the  sheet  a n d  i ts  loading  we need no t  consider  the  

region y < 0, nor  even the region x > L. W e  see t h a t  ~0(x) is d i scon t inuous  

across  the  l ine x = 0. There  is accord ing ly  a j u m p  in shear ing stress across  this  

l ine, and  for this  reason the  f iber  x = 0 is s ingular ,  ca r ry ing  a f in i te  force 

Fb(y) = T2L(H - -  y ) /H  (y ~ 0). (9.4) 

W h e n  f '  =t= 0 the  regions x < 0 and  x > 2L  are  aga in  u n d i s t o r t e d  and  the  

s t ress  is the  same as  in the  so lu t ion  for F ---- 0. I n  the  region y > 0, 0 < x < L, 
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the equat ion for o~(x) has a fo rm similar to (8.6), 

rH~" (x )  = K ( x )  sin [~(x) --  ~o(X)], (9.5) 

with a0 and  K given b y  (9.2) and (9.3). Cont inui ty  of ~(x) across x = 0 is now 

required, so a(0) = 0. For  a condit ion at  x = L we use the s y m m e t r y  condition 
~(L) = 0:  

~(0) = ~(L) = 0. (9.6) 

Exac t l y  as in Section 8 we can show tha t  ~(x) varies rapidly  bu t  cont inuously 

f rom its b o u n d a r y  value or = 0 to the value ~0(0) through a thin layer  near the 

line x = 0. Then the shearing stress S is no longer discontinuous across x = 0, 

and  this could lead one to guess tha t  the fiber x = 0 might  no longer be singular. 

Idowever, this is no t  the case. We now show tha t  the stress discont inui ty  is 

exac t ly  as it was in the zero-stiffness solution; leading to the same fiber force 

Fb(y) given in (9.4). 

At  x = 0 +  we have a = i, b = j ,  and thus (3.6) gives 

to (0+ ,  y) = Ta (0+ ,  y) i - - /~[ jM' (0)  - -  ic*'(0)~]. (9.7) 

We have used S = 0 since a .  b = 0. T h e / - c o m p o n e n t  of to is cont inuous if 

To(O@, y) = T1 - -  F[M(0)] "~, (9.8) 

and the jump in t~ is then 

to (0+ ,  y) - -  to(O--,  y) ---- - - j / ~ ' ( 0 ) .  (9.9) 

Bu t  f rom (9.5), with (9.2) and  (9.3), we find tha t  

/ 'H~"(0)  = - - T 2 L .  (9.10) 

Then  the jump in to is j T 2 L / H ,  and  the fiber force required to equilibrate this 
is (9.4). 

I t  should be pointed ou t  tha t  the present  example is somewhat  artificial in 

tha t  the min imum-energy  solution under  the s ta ted  conditions would no t  be a 

plane deformation.  As in the ease of infinitesimal deformations [7] the fibers along 

the edges of the cut  are singular and  in compression, and this p resumably  means 

tha t  the solution is unstable.  However ,  this has noth ing  to do with our  basic 
result:  bending stiffness smooths  the deformat ion but  no t  the stress field. 

10. Comments  on the General Pure Traction Problem 

I n  a pure t ract ion b o u n d a r y  value problem the system of differential-integral 

equat ions (7.11), (7.12) mus t  be solved s imultaneously  for 0r and/~(y), subject  to 
two b o u n d a r y  conditions on each of these unknowns.  The b o u n d a r y  conditions on 
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~(x) will app ly  a t  the largest and smallest values of x on the sheet, and  the condi- 
tions on ri(y) will similarly be applied a t  the extreme values of y. If  the sheet is 

bounded b y  fibers at  its extremes, the bounda ry  conditions are the zero-couple 

conditions (4.5). I f  the extreme value of a coordinate is on an arc of type  Z, the 
difference z]y(x) or zlx(y) vanishes at  the endpoint ,  and the Eq. (7.11) or (7.12) is 

singular there. The bounda ry  condit ion is then tha t  the solution a(x) or ri(y) 
remains finite a t  the singular point .  

For  very  small F, the zero-stiffness solution ~0(x), rio(Y) will be acceptable 
throughout  most  of the sheet. This solution can be tested b y  using it to evaluate 

the terms involving _P in (7. l l )  and (7.12). I t  can be accepted as a valid approxi-  

mat ion except  a t  places where it does not  yield negligible values of these stiffness 

terms, and a t  extreme values of x or y a t  which it does no t  satisfy the bounda ry  

conditions. 
At  the part icular  values of x or  y where the zero-stiffness solution is not  valid 

b y  this test, we can use singular per turba t ion  methods as in Sections 8 and 9. 

This is no more complicated than in the examples considered earlier, because in a 

transit ion-layer equat ion for ~(x), say, fl can be taken as having the known  value 

rio(Y), and so Jr(x) in (7.11) can be approximated  by  Aro(x) in the lowest order of 

approximat ion.  
Boundary- layer  effects occur only  on boundaries tha t  lie along fibers, because 

such effects are associated with par t icular  values of x or y. On the bounda ry  arcs 

of type  Z tha t  cut  across bo th  families of fibers the solution shows no special 
peculiarity. Bu t  even the bounda ry  layers on X and Y are ra ther  insignificant in 

pure t ract ion problems, because the zero-couple condit ion requires on ly  a weak 

correction of the type  shown in the example (8.15). 
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