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Summary

We present some analytical perturbation results from which the skin-friction is accu-
rately predicted over the range 1/2 <C f << co, where § is the usual Falkner-Skan parameter.
The first eigenvalue for various § in the range 2 < <C oo is also caleculated numerically
and certain properties noted. We find, analytically, the whole set of eigensolutions for the
case when f is large.

1. Introduction

The Falkner-Skan one-parameter family of solutions of the boundary-
layer equations has proved to be very useful in the interpretation of fluid flows
at moderately high Reynolds numbers, and various properties of this family
have been discussed extensively in the literature for all relevant values of the
parameter f.

The purpose of this paper is twofold. In section 2 we present a perturbation
analysis about a known analytical solution of the Falkner-Skan equation which
corresponds to g infinite. This section is analytical and the results are found
to be very useful in accurately predicting the skin-friction in the range 1/2 < 8
<< 0. In the third section the numerical calculation of the eigenvalues by Chen
and Libby [1] for # < 2 is extended to the range 2 < § <C oo, thereby confirming
the spatial stability of such flows. Guided by the numerical results, we analytically
consider the eigenvalue problem for large f, and for this special case we are able
to derive the complete set of eigensolutions.

2. The Falkner-Skan Equation
The boundary-layer equations are
Uy + vy = UU; + vuy,, (1)

Uy + vy =0, (2)
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and the relevant boundary conditions for the class of flows of interest are
yu=v=0, on y=0, w— Ulx) as y-— oo. (3)

The ‘initial’ condition at some station x = z, will not concern us in this in-

vestigation.
The Falkner-Skan similarity solutions are obtained if we assume U(z) = ax™
and write
b= [MU(””)FZ F(y) (4)
T laEm]

where 5 = {[(1 + m) U(x)]/(2vx)}** y, u = ¢, and v = —,. Substituting into
Eq. (1) we obtain the well-known Falkner-Skan equation,

F 4+ PR 4 f(1 — F'2) = 0, (3)

where dashes imply differentiation with respect to %, § = 2m/{(1 + m) and the
boundary conditions are

F0)y=F'(0)=0, F'ip) >1 as 5->o00. (6)

It may be opportune to note here that the range 2 < § <C oo corresponds to
—oo < m << —1 and for such values we require ¢ < 0, i.e. the flow velocity
is in the direction of z-decreasing.

The aspect we are concerned with in this section is the behaviour of the
solutions for large 8 (m ~ —1). It is known that the analytical solution for
m = —1 can be derived from (5) and (6) by writing

Fly) = B*(z) (7)

where z = 8% and then taking the limit § — co. On substituting (7) into (5)
and (6) we find that

/‘III + _lffl/ + 1 — ]'/2 o O’ (8)

where dashes here imply differentiation with respect to z, and the boundary
conditions become

0y = f(0) =0, fz)—1 as z-—oo. (9)
We now look for a solution to (8) subject to (9) by writing

| /) = Fole) + B + - (10)
and find
fo' 1 —f2=0, (11)

B A fotd — 20 =0, (12)
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on equating terms of O(1) and O(f~?) respectively. The boundary conditions
become

W0 =7(0) =0, j/()>1 as z—oo, (13)
HO)=/H'(0)=0, f'(z) >0 as z— oo. (14)

The solution of (11) subject to (13) is well-known and can be written
fol#) = z - 2]/3 — 3)/2 tanh (2/}/2 + o), (15)

where tanh ¢ = ]/2 / VS A property which will be useful later is f,/’(0) = 2/ 1/ 3
= 1.164701 which is related to the skin-friction. With f,(z) known it is poss1ble
to solve (12) for f,(z) subject to (14) and after some algebra we find that

oy — 20— +16) (3V§ G 12V§) [ yTly) dy — G—V—z

5S? 2 5
161y20 7y27 167y27  13)/207
40 2082 140 40

+K2T2_]_K 8]/21 s T 1568 18T\ o
> : o S) (T4 g5 15— 1) 5

(VE——C) log § +

(16)

where 6 = 2/1/5 + ¢, § = sech 0, T = tanh § and the constants K; (+ = 1, 2, 3)
are given by

~(272/5) [4(0g 2 + 76 — ¢) — 1],
K, = K, — (4)/2/5) log 3] (15¢/8 4- 91/6/8) + 111/3/2 + 13)/2 /20,
Ky = )2 c(log 3 — 457) _ K.f3 -+ 36 K,/16 — 197)/3/60 — (9]/3 log 3)/10.

These lead to the numerical values

c = 1.146216,
K, = 0.557587,
K, = 1.748655,
K, = 2112126,

and also to f,"'(0) = 0.074614. A numerical integration of (11), (12) subject to
(13), (14) confirmed these results.
The skin friction for these flows is given by

1/2
(M %g) _ [(1 + ;ﬂ) @ﬂU3] (0).
Y/o &
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The results using just two terms of the expansion in (10) give

Fr(0) = BY2[£,(0) + B~,"(0)] (17)

and in table 1 a comparison is given with the exact numerical results, also obtained
in this study, using Eq. (8)%. As will be noted, the large-§ results from (17) are
sufficient to predict the skin-friction to within 0.69, over the range 1/2 < § <C co.

Table 1
i F(0) F(0)
numerical analytical

100 11.554 47 11.55447
50 8.17553 8.17552
20 5.18072 5,18066
10 3.67523 3.67508
5 2.61578 2.61536
2 1.68722 1.68575
1 1.23259 1.22032
0.5 0.92768 0.92202

3. Perturbations about Falkner-Skan Solutions

In this section we examine the spatial stability of the Falkner-Skan flows for
2 < B < oo by use of a perturbation procedure. We generalise (4) by writing

[ 2=U@)]
V= [(1+m)J )

where 7, u, v are as defined in section 1, and on substituting into (1) we get

Fog + FF g + Bl —=F )= @2 — p)a(F, F ; — FF,,)- (18)
Writing F(z, ) = F(n) + Fi(z, n), where F(n) is the Falkner-Skan function in
section 1, we obtain, by linearising, the following equation for F;:

F.__ -+ FF

1nyn

— 9pF'F,, 4 F"F, = (2 — f) o(I'F

19z

— P F"y. (19)

1oy
A separable solution in the form F, — X(») H(#) is possible provided X (z) = #*/#~2
and

H'" - FH" + (A—20) F'H' + (1 — ) F"H = 0. (20)

1 The numerical integration of (5) subject to (6) was straight-forward for f < 20 but,
because the range of integration necessary decreases as f increases, it was found to be
essential to use the formulation in (8) and (9).



Further Properties of the Falkner-Skan Equation 209

This equation, which is subject to the boundary conditions
H(0)=H'(0)=0, H(n)—-0 as #-—o0, (21)

is precisely the same as that arising in the work of Chen and Libby [1] who con-
fined attention to the range —0.1988 = g < 2 because they posed their problem
in terms of Gortler variables. We should note that, since U(z) < 0 for the range
2 < B < o0, we expect the similarity solution posed in (5) and (6) to be valid as
x — 0 and therefore for spatial stability we require 4 > 0.

The eigenvalue problem defined in (20) and (21) has been solved numerically,
with normalisation H/(0) = 1, for various values of § and the results of the first
eigenvalues are presented in table 2. For values of £ in excess of 20 we have had to
use the large-f formulation exemplified by (7) by necessity since the Falkner-Skan
function was found only in this way. It will be convenient to note the form of the
equation used for §> 1: it is

B B (L= 2) [ A ML 2) [ h =0 (22)

where h(z) = BH(y), z = B2, j(z) = p2F(n) as introduced earlier and dashes
imply differentiation with respect to z. The boundary conditions are

h(0) = h'(0) = 0, R(z)—>0 as z-— oo, (23)

with normalisation 2'(0) == 1.

However, there are two points of interest that we have noted regarding the
numerical results in this section. First, it is clear that 4,71 — 2 as § -» oo and on
closer inspection of the results we find 1, ~ 2§ + 2 for large §. Secondly, when
the properties of the numerical results of the eigenfunctions were examined it was
found that the large-8 transformation referred to above was inappropriate for g
of order 400, since the range of integration found to be necessary was increasing
with increasing 8. Again, closer examination revealed that the natural structure
of the eigenfunction was more aptly described in terms of H(y), the original
variables. Consequently, the formulation in (22) is not appropriate for the direct
numerical evaluation of the eigenvalues for > 1.

Table 2
8 1B 21 + Y
400 2.00507 2.005
200 2.01016 2.01
100 2.02043 2.02
50 2.04117 2.04
20 2.104 27 2.1
10 2.21077 2.2
5 2.42516 24
2 3.06566 3
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In view of the above, including the fact that from (15) we are able to obtain
simple expressions for F, F’ and F'' which are correct to O(8-'2) providing
7B%> 1, the form of the ‘outer’ structure of H(z) can be determined for large
by noting that Eq. (20) can be approximated by

Hy' -+ gHy" + (3 — 28) Hy = 0 (24)
except when n = O(8~2). The general solution of (24) is
Hy' = ¢ "M AU(a,4) + BV(a, )], (25)

where U, V are the parabolic cylinder functions, @ = 1/2 - 28 — 4 and 4, B are
constants. The term V(a, 1) gives rise to an algebraic variation in H," as 5 — co
and so we take B = 0.

The next stage in this approach would be to obtain an inner solution valid for
7 = O(8~'%) from (22) and subject to A(0) = A'(0) = 0 and a certain matching
condition as z - co. However, it transpires that the essential properties of all
the eigenfunctions, including the eigenvalues, are obtainable from (24) by noting
that, from the properties of H,(%) and the envisaged form of the inner structure, we

. - . - a3 3 1
must impose the condition H,'(0) = 0. Since U(a, 0) = ]/n 2 4r T + 5
we require the zeros of 1/7'(x) and hence deduce that -

In =28 - 2n, (26)

where n = 1, 2, 3, ... It follows that the complete set of eigenvalues, correspond-
ing to > 1, is given by (26) and we note that the result, 2, = 2§ 4 2, for the
first eigenvalue is in agreement with the numerical results referred to above.
Further, with 4, = 28 + 2 we find from (25) (with B = 0) that the correspond-
ing first eigenfunction is Hj, = A4,7e "% The form of the higher-order eigenfunc-

74}

0 7 Z 7 v 7
Fig. 1. The first eigenfunction H,'(x) for § = 100. The asymptotic result Hj,(n) = A;ne— 712
with 4, = :2.2 is also shown by a dashed line
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tions can then readily be found, and the nth-order one, H;,, is related to (d*"/
dif™y H,, so that H}, = Ay(3 — 5%) ¢~ "/% for example. The first eigenfunction
for § = 100 is plotted, using the numerical results, in Fig. 1, and we also show the
variation of Hj with 4, = 2.2 for comparison. Bearing in mind that the error
involved in finding the term Hj, is O(8'/2) the agreement is very satisfactory.

Finally, we note that for 2 << # << oc the flows are spatially stable, although
since the z-variation of the disturbance is given by X (z) = «? where p = 1/(§ — 2)
we observe that, for large §, the set of values for the exponent p bunch together,
and, in the limit § — oo, collapse to the single value p = 2.
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