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Summary 

We present some analytical perturbation results from which the skin-friction is accu- 
rately predicted over the range 1/2 ~ fl ~ ~ ,  where fl is the usual Falkner-Skan parameter. 
The first eigenvalue for various fl in the range 2 < fl ~ oo is also calculated numerically 
and certain properties noted. We find, analytically, the whole set of eigensolutions for the 
ease when fl is large. 

1. Introduction 

The Falkner-Skan one-parameter  family of solutions of the boundary- 
layer equations has proved to be very useful in the interpretation of fluid flows 
at  moderately high Reynolds numbers, and various properties of this family 
have been discussed extensively in the literature for all relevant values of the 

parameter  ft. 
The purpose of this paper  is twofold. In  section 2 we present a perturbation 

analysis about  a known analytical solution of the Falkner-Skan equation which 
corresponds to fi infinite. This section is analytical and the results are found 
to be very useful in accurately predicting the skin-friction in the range 1/2 < / 5  
< ~ .  In  the third section the numerical cMeulation of the eigenvalues by  Chen 
and Libby  [1] for fi ~ 2 is extended to the range 2 < / / <  ~ ,  thereby confirming 
the spatial stabili ty of such flows. Guided by  the numerical results, we analytically 
consider the eigenvalue problem for large fl, and for this special case we are able 
to derive the complete set of eigensolutions. 

2. The Falkner-Skan Equation 

The boundary-layer equations are 

uu~ + vuv = U U x  + ~u~v, 

u~ + v v ~ O, 

(1) 

(2) 
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and  the  re levan t  b o u n d a r y  condi t ions  for the  class of flows of in te res t  are  

u = v = 0 ,  on y = O ,  u - > U ( x )  as y - + o o .  (3) 

The ' in i t i a l '  condi t ion  a t  some s ta t ion  x = x0 will no t  concern us in this  in-  

ves t iga t ion .  

The FoJkner -Skan  s imi l a r i t y  solut ions  are  ob ta ined  if we assume U(x) -~ ax  m 

and wr i te  

[2vxU(x)]  x/2 
= [ ( z ~ j  F(*1) (4) 

where .1 = {[(2 -~ m) U(x)]/(2vx)} 112 y, u = ~bu and v = --~x.  Subs t i t u t i ng  into  

Eq.  (1) we ob ta in  the  wel l -known F a l k n e r - S k a n  equat ion,  

F ' "  4- F F "  .@ fi(1 - -  F '2) = 0,  (5) 

where dashes  i m p l y  d i f fe ren t ia t ion  wi th  respec t  to 7, fl = 2m/(1 + m) and  the  

b o u n d a r y  condi t ions  are  

F(0)  = F ' (0)  = 0,  F'(*1) --> 1 as ~ - +  oz.  (6) 

I t  m a y  be o p p o r t u n e  to  no te  here t h a t  the  range 2 < / 3  < oo corresponds to  

- - o o  < m < - -1  and for such values  we require  a < 0, i.e. t he  flow ve loc i ty  

is in the  d i rec t ion  of x-decreasing.  

The  aspec t  we are  concerned wi th  in th is  sect ion is the  behav iour  of the  

solut ions for large fl (m ~ - -1) .  I t  is known  t h a t  the  ana ly t i ca l  solut ion for 

m = - -1  can be der ived  from (5) and  (6) b y  wr i t ing  

F(*1) = fl-x/2/(z) (7) 

where z ---- ,81/2.1 and then  t ak ing  the  l i m i t / 3  -+ oc. On subs t i t u t ing  (7) in to  (5) 

and  (6) we f ind t h a t  

/ " '  + ,8-~1/" + 1 - / ' ~  = o, (s) 

where dashes here i m p l y  d i f fe ren t ia t ion  wi th  respect  to  z, and the  b o u n d a r y  

condi t ions  become 

/(0) = ]'(0) - -  O, / ' (z)  --+ 1 as z - +  oz .  (9) 

W e  now look for  a solut ion to (8) sub jec t  to (9) b y  wr i t ing  

/(z) =/o(Z) +/3-~/,(z) + . . .  (~0) 

and f ind 

io ' "  § 1 - - /o ,Z __ 0,  

/ , ' "  + iolo" - 21;I? = o, 

(11) 

(22) 
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equating terms of 0(1) and O(fi -1) o n  

become 
/0(0) = i0 ' (o)  = o ,  /o'(Z) - +  1 as  z ~ ~ ,  

/1(0)  = t , ' ( 0 )  = o ,  A ' ( z )  ~ 0 as  z - ~  ~ .  

The solution of (11) subject to (13) is well-known and can be written 

where t anhc  = 1/2/V-3. A property which will be useful later is/0"(0) = 2/V3 
= 1.154701 which is related to the skin-friction. With ]o(Z) known it is possible 
to solve (12) for ]~(z) subject to (14) and after some algebra we find that  

respectively. The boundary conditions 

(13) ' 

( ] 4 )  

0 

]~(0) ~-- - ~  (0 c -~  ]/6) ( 3 ] / ~ S  ~ 12V2 ) ; 6]/2 
5S 2 @ . . . .  yT(y) dy -- T 

t.. 
s 

161]/2 0 7]/2 T 167]/2 T 13]/2 0T 2 (16) 
�9 ( #  - ~) log s + 4---v- + 2 T  14o 40 

1o0,,  
+ - ~ - +  K ~ - - - - ~ l o g S  - - - ~  8S ~ --  16 16]  + K a  

where 0 = z /V2  + c, S = sech 0, T = tanh 0 and the constants K( (i = 1, 2, 3) 
are given by 

~,  = (2W!5)[4 (log 2 + W -  4 

~,  : [ ~ , -  (4V~/5)log 3] (15~/8 

K3 = V2 c(log 3 -- 457) -- K2/3 § 

- 7 ] ,  

+ 9  V 6 / 8 ) +  11V"3/2--~ 13 V-2c/20, 

3r K1/16 -- 197~3/60 - - ( 9 V 3  log 3)/10. 

These lead to the numerical values 

c = 1.146216, 

K1 = 0.557587, 

K2 = 1.748655, 

Ks ~- 2.112126, 

and also to / 1 " ( 0 )  = 0.074614. A numerical integration of (11), (12) subject to 
(13), (14) confirmed these results. 

The skin friction for these flows is given by 

@ o = 2 x  ~ " ( o ) .  
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The results using just  two terms of the expansion in (10) give 

J~H(0) = /~1/2[/0"(0 ) @ ~-1/1'"(0)] (17) 

and in table 1 a comparison is given with the exact  numerical  results, also obtained 

in this s tudy,  using Eq. (8)1. As will be noted, the large-fl results f rom (17) are 

sufficient to predict  the skin-friction to within 0.6% over the range 1/2 < fi < c~. 

Table 1 

fl ~"'(0) ~'"(0) 
numerical analytical 

100 11.554 47 11.55447 
50 8.17553 8.17552 
20 5.18072 5.18066 
10 3.67523 3.67508 

5 2.61578 2.61536 
2 1.687 22 1.68575 
1 1.23259 1.229 32 
0.5 0.927 68 0.922 02 

3. Perturbations about Falkner-Skan Solutions 

I n  this section we examine the spatial  s tabil i ty of the Falkner-Skan flows for 

2 < / 3  < oc by  use of a per turba t ion  procedure.  We generalise (4) by  writ ing 

[2~xU(x)]'/2 ~(x, ~) 

where ~, u, v are as defined in section 1, and on subst i tut ing into (1) we get 

~ ,  + ~ x  + 8(1 - ~ ? )  = (2 - 8) x ( ~ x ~  - J~%~).  (is) 

Writ ing  J'(x, •) = F07) 45 F1(x, V), where F(V) is the Falkner-Skan function in 

section 1, we obtain,  by  linearising, the following equation for F~ : 

A separable solution in the form F~ = X(x)  H(V ) is possible provided X(x)  = x ~'/(~-2 

and 

H'" 45 F a "  + (~ - 28) F ' ~ '  + (1 - ~) F " / / =  o .  (go) 

1 The numerical integration of (5) subject to (6) was straight-forward for fl ~ 20 but, 
because the range of integration necessary decreases as fl increases, it was found to be 
essential to use the formulation in (8) and (9). 
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This equation, which is subject to the boundary conditions 

H(0)~- -H ' (0 )~- -0 ,  H ' ( ~ ) - * 0  as ~ - ~ ,  (21) 

is precisely the same as that  arising in the work of Chen and Libby [1] who con- 

fined attention to the range --0.1988 <__ fl ~ 2 because they posed their problem 
in terms of G6rtler variables. We should note that,  since U(x)  < 0 for the range 

2 < fi < oc, we expect the similarity solution posed in (5) and (6) to be valid as 

x --> 0 and therefore for spatial stability we require 2 > 0. 
The eigenvalue problem defined in (20) and (21) has been solved numerically, 

with normalisation H"(O)  =- 1, for various values of fl and the results of the first 
eigenvalues axe presented in table 2. For values of fi in excess of 20 we have had to 
use the large-fl formulation exemplified by (7) by necessity since the Falkner-Skan 
function was found only in this way. I t  will be convenient to note the form of the 

equation used for r >~ 1 : it is 

h'" -~ fi-1/h" ? (2fi-: - -  2)/'h' + fi-:(1 2~) /"h  = 0 (22) 

where h(z) ~- f lH(~) ,  z = fil/2 U, /(z)  = fll/2F(~) as introduced earlier and dashes 

imply differentiation with respect to z. The boundary conditions are 

h(O) = h'(O) = O, h ' (z)  -+ 0 as z - *  ~ ,  (23) 

with normalisation h"(0) - -  1. 
However, there are two points of interest that  we have noted regarding the 

numerical results in this section. First, it is clear that  ),:fl-: -~ 2 as fl --> co and on 
closer inspection of the results we find )~1 ~ 2fl ~- 2 for large ft. Secondly, when 
the properties of the numerical results of the eigenfunctions were examined it was 

found tha t  the laxge-fi transformation referred to above was inappropriate for fi 
of order 400, since the range of integration found to be necessary was increasing 

with increasing ft. Again, closer examination revealed that  the natural  structure 
of the eigenfunction was more apt ly described in terms of H(?7), the original 
variables. Consequently, the formulation in (22) is not appropriate  for the direct 

numerical evaluation of the eigenvalues for fl ~ 1. 

Table 2 

fl ~/# 2(1 + #-:) 

400 2.00507 2.005 
200 2.01016 2.01 
100 2.02043 2.02 

50 2.04117 2.04 
20 2.10427 2.1 
10 2.21077 2.2 

5 2.42516 2.4 
2 3.065 66 3 

14 Acta Mech. 65/i--4 
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In  view of the above, including the fact  tha t  f rom (15) we are able to obtain  
simple expressions for F ,  F '  and F "  which are correct to O(f1-1/2) providing 

~]fil/2>~ 1, the form of the 'outer '  s t ructure of H(U ) can be determined for large fl 
by  not ing tha t  Eq. (20) can be approximated  by  

H0" '  + ~THo" + (2 - -  2fi) H0' = 0 (24) 

except when U = 0(/~-1/2) �9 The general solution of (24) is 

Ho' • e ~/4[AU(a, ~]) + BV(a ,  )7)], (25) 

where U, V are the parabolic cylinder functions, a = 1/2 + 2fi --  2 and A, B are 

constants.  The term V(a, ~]) gives rise to an algebraic variat ion in Ho' as U -~ oc 
and so we take B = 0. 

The next  stage in this approach would be to obtain  an inner solution valid for 

U = O(f1-1/2) from (22) and subject to h(0) = h'(0) : 0 and a certain matching  

condition as z - >  oc. However,  it t ranspires tha t  the essential properties of all 

the eigenfunetions, including the eigenvalues, are obtainable from (24) by  not ing 

that ,  from the properties of H0(~) and the envisaged form of the inner structure,  we 

must  impose the condition H0'(0) = 0. Since U(a, 0) = V ~ 2 ~ + i / ,  q- -~ 
we require the zeros of 1//'(x) and hence deduce tha t  

)~ = 2fi -~ 2n, (26) 

where n = 1, 2, 3, . . .  I t  follows tha t  the complete set of eigenvalues, correspond- 

ing to fi>~ 1, is given by  (26) and we note tha t  the result, 2~1 = 2fl ~- 2, for the 

first eigenvalue is in agreement  with the numerical  results referred to above. 

Fur ther ,  with ~1 = 2fi ~ 2 we find from (25) (with B = 0) tha t  the correspond- 

ing first eigenfunction is Hol = A~ve -~/2. The form of the higher-order eigenfunc- 

7.4~ 

7.2 / 

~0 

o / x 3 4~ 7/ 

Fig. 1. The first eigenfunetion HI'(~ ) for fl = 100. The asymptotic result H~I(~ ) = Alr]e -r/'/2 
with A 1 = 12.2 is also shown by a dashed line 



Further Properties of the Falkner-Skan Equation 211 

t ions can then readily be found, and the nth-order  one, Hton, is related to (d2"/ 

d~ 2n) HIol, so tha t  H/02 = A2~(3 - -  r/2) e -~/2 for example. The first eigenfunction 

for fi = 100 is plotted,  using the numerical  results, in Fig. 1, and we also show the  

variat ion of H01 with A1 = 2.2 for comparison. Bearing in mind tha t  the error 

involved in f inding the term H01 is O(fi -t/2) the agreement  is very  satisfactory. 

Finally,  we note  tha t  for 2 < fl < ~ the flows are spatial ly stable, a l though 

since the x-variat ion of the dis turbance is given by  X ( x )  = x p where p ~- 2/(fi - -  2) 

we observe that ,  for large fi, the set of values for the exponent  p bunch  together,  

and, in the l imit  fi -~ e~, collapse to the single value p = 2. 
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