
Acta Mechanica 65, 153--168 (1986) ACTA M E C H A N I C A  
�9 by Springer-Verlag 1986 

On Large Strain Deformations of Shells 

By 

It. Stumpf and J. Makowski, Bochum, Federal t~epublic of Germany 

With 4 Figures 

(Received January 2, 1986) 

Summary 

A nonlinear shell theory is derived for large strain -- large bending deformations of 
shells composed of highly nonlinear materials. Expressions for the stress resultants and 
stress couples are presented. The equilibrium equations are obtained as weak solution of the 
stationary principle of total potential energy. A modified Kirchhoff hypothesis is used 
which accounts for thickness changes as well as for a shift in the location of the original 
midsurface of the shell. As example the eversion of a spherical shell is calculated numerically. 

1. In t roduct ion  

To calculate large elastic deformations of shell structures general nonlinear 
shell theories had been derived and successfully applied during the past few 

years [1]. These theories are based on the assumption of small strains, while the 
rotations of shell material elements may be large or even unrestricted. But  

numerical applications showed that  for various shell structures large rotations are 

often accompanied by large strains. The small strain assumption is also no more 

adequate for structures made of highly nonlinear materials. 

To derive a nonlinear shell theory appropriate for large rotations and large 

strain deformations the distribution of the displacement field in the direction of 

the normals to the reference surface turn out to be of primary importance. This 

and associated effects can be taken into account by using a three-dimensional 

displacement field of the shell represented by a Taylor expansion with respect to 

the normal coordinate ~ (see [2] and literature cited therein). However, the cor- 

responding local field equations are very complex and they have not found a 

general application in the analysis of engineering problems. More effective seems 

to be an approach applied by Libai and Simmonds [3] for the special case of 

cylindrical deformations of shells, which is a one-dimensional problem. The same 

approach has been used also by Taber [4] for axisymmetric deformations of shells 
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of revolution, a one-dimensional problem as well. In  both papers the considerations 
are based on the following three assumptions: 

(I) material  fibres normal to a reference surface in the initial configuration 
remain normal to it during the deformation; 

(II) the deformation of the shell is isoehoric (volume preserving) ; 
(III)  coordinate lines are principal directions of the deformations. 

I t  should be noted tha t  the assumption (III)  is in contradiction to the as- 
sumptions (I) and (II), which will be shown in section 4. 

In  this paper  the structure of the basic shell equations is studied for shells 
of arbi trary geometry undergoing large strain deformations. To obtain appro- 
priate shell models, the first Kirchhoff hypothesis is introduced, which corresponds 

to assumption (I). On the other side we relax the second Kirchhoff hypotheses 
requiring tha t  points on a given material  normal do not change their distance 
from the shell reference surface during the deformation. With this model large 
extension and large bending of the shell can be taken into account. I t  includes 
the dependency of the shell thickness on the deformation process, the asym- 
met ry  by  a shift of the original shell midsurface and also shear deformations. 

In  chapter 2 it is shown tha t  whenever the assumption (I) is satisfied the 
three-dimensional deformation of the shell can be expressed in terms of the 
changes in the metric and curvature tensors of its reference surface and of an 
unspecified function ~ = ~(0 ~, ~) characterizing the deformation in the direction 
of normals to the reference surface. Here 0 ~, cr = 1, 2 are the curvilinear Gaussian 
coordinates of the initial reference surface. Assuming a particular form of this 
function ~(0 ~, ~) a wide class of two-dimensional kinematical models can be 
constructed, denoted here as generalized Kirchhoff-Love models. 

In  chapter 3 it is shown tha t  for isochoric deformations (assumption (II)) 
a function ~(0 ~, ~) is uniquely determined by  five surface invariants, two of 
them defining the initial geometry of the reference surface and three of them 

characterizing its deformation. From the obtained results it follows tha t  the 
introduction of the assumption (I) and (II) does not exclude shear deformations. 
Thus in the particular cases of cylindrical shell deformations or axisymmetric 
deformations of shells of revolution the coordinate lines cannot be principal 

directions, which is outlined in section 4. 
Assuming tha t  the shell is made of an incompressible hyperelastic material  

the structure of a two-dimensional strain energy function is considered in chapter 
5. Formulat ing the functional of total  potential  energy for large strain deforma- 
tions of shells the local equilibrium equations are derived as weak solution of 
the stat ionary principle of total  potential  energy. Finally, as a numerical example 
the eversion of a spherical shell is calculated in chapter 6. 
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2. Generalized Kirehhoff-Love Models 

Let  us consider the deformation Z: 2 ~-> ~ of a three-dimensional body, 
with its initial configuration 2 ~ I~ 3, a domain in the Euclidean space IE 3 

and its deformed configuration ~ ~ ]E 3. With {0 i} we denote a material  (con- 
vected) coordinate system of the body. Throughout this paper  the usual sum- 
mation convention is used, where Lat in indices have the range 1, 2, 3 and Greek 

indices the range 1, 2. Then for any point P C 2 the position vector, the base 
vectors and the covariant metric tensor are given by  

P = p(Oi ) ,  g i  ---- p . i ,  gi j  ~- g i "  g i "  (2.1) 

The dual base vectors y~ and the contravariant metric tensor 9 ij are defined 

by: 

y~ �9 g~ ---- 8~ ~ , g~J = g~ .gJ, g~ = qiJg i. (2.2.1, 2, 3) 

Here ( ),i indicates partial differentiation with respect to the associated coordinate 

direction 0~ and a dot denotes the inner product of two vectors. All quantities 

defined at points P ~ z(P) E ~ of the deformed configuration will be marked 

by a bar, e.g. p, y~, g~j, ~, ~J etc. (Fig. i). 

In this paper we restrict our considerations to the deformation of shells, 

three-dimensional bodies, which are "small" in one direction [2]. Then it is 

convenient to take {0 i} ~ {0 ~, 0 3 -~ ~}, ~ ~ [--ho-, ~-h0 +] to be a normal coordinate 

system in the initial configuration ~ with an initial shell thickness h0 ~ ho- -~ h0 § . 

xl 

Fig. 1. Undeformed and deformed shell elements 
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I n  th is  case ~ = 0 defines a ma te r i a l  surface o44 called a reference surface (Fig. 1). 

W i t h  each p o i n t  M E ~ we associa te  the  pos i t ion  vec tor  r ,  base  vectors  a~, 

surface met r ic  t ensor  a~ ,  un i t  no rma l  vec tor  aa = n and cu rva tu re  tensor  b~s: 

r = r (O~) ,  a~ = r . ,  a~ s = a~ �9 a s ,  

1 
n = - -  e"~a~ X a ~ ,  ~"~ = ( a  ~ X a s) �9 n ,  (2.3) 

2 

A cross ind ica tes  the  usua l  vec tor  p roduc t .  

The  dua l  base  is def ined b y  

a ~ �9 a s = ~ ,  a ~s = a ~ �9 a s ,  a ~ = a~4a~, a 3 = n .  (2.4) 

Mean cu rva tu re  H and  Gauss iau  cu rva tu re  K are  surface i nva r i an t s  of J/4 : 

H =-~ ~b:  
(2.5) 

1 b 
K = 2 e ~ % ~ ' b J b %  a - -  = - - ,  a = de t  ass ,  b = de t  b~ s. 

All  quant i t i es  referred to po in t s  M = x(M) C ~ of the  deformed shell  ref-  

erence surface are  def ined cor responding  to  (2.1)--(2.5) and  will  be  m a r k e d  

b y  a bar ,  e.g. r ,  as,  a,s,  n ,  b~z, etc. W e  emphas ize  t h a t  J / n e e d  no t  be the  geo- 

met r i c  mid-sur face  of 2 .  

W i t h  the  pos i t ion  vec tor  r to a po in t  M C d// of t he  reference surface and  

the  un i t  no rma l  vec to r  n the  pos i t ion  vec tor  of a n y  p o i n t  P E :P of the  shell  

space  t akes  the  fo rm:  

p ( O  ~, 8) = r(O ~) + ~n(O"),  ~ C [ - -h0- ,  @ho +] (2.6) 

leading wi th  (2.1) and  (2.3) to  the  fol lowing represen ta t ions  of the  base  vec to r s  

and  met r i c  t ensor  componen t s :  

g,S = 14 ,u~ a~.~, g~3 = O, ~a8 = 1 ,  
(2.7) 

g~ = (u-1)S~ a s, g3 = g~ = n ,  

gas ~_ (#-l)ff  (#-l)~fa~u ' ga3 = 0,  gsa : 1, 

where the  shif ter  t ensor  ~ s  and  i ts  inverse  (# -~ ) j  are  g iven b y  

~ s  = ~2 - ~b#, (~-%~ ~ = ~;,  (2.8.1, 2) 

(#-~) s = _1 [~s  - -  ~(2H(V - -  b:Z)], (2.8.3} 

/ 

# = de t  tt~ s = ] / g  = 1 - -  2~H @ ~2K, g = de t  g0.  (2.8.4, 5) 
V a 
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We turn now to the construction of a bidimensional kinematical model of a 
" th in"  three-dimensional body, which should reflect the dominant behavior 
of this body. If large strain deformations are admitted in a she]] structure made 
of a highly nonlinear material, the non-uniform distribution of transverse normal 
strains over the shell thickness with associated effects have to be taken into 
account. To avoid furthermore an excessive complexity of the resulting shell 
equations we introduce the assumption that material fibres normal to the ref- 

erence surface in the initial configuration remain normal to it during the shell 

deformation (assumption (I)), while no restrictions are imposed on the shell 

deformation in the direction of the norma]s. Assumption (I) corresponds to the 

following constraint of the shell deformation: 

[~(0 ~, ~) - -  ~(0~)] �9 ~,,(0 ~) = 0 for ~ E [--ho-, +h0+] �9 (2.9) 

According to (2.9) the position vector of points P E o~ in the deformed configuration 
of the shell must be of the form 

- 0 ~ + , p(  , ~) = ~(0 ~ C(0", ~) ~(0 ~) (2.10) 

where the function C : ~(0 ~, ~) must satisfy the following condition 

C(0 ~, 0) = 0. (2.11) 

With (2.10) one gets the base vectors of points P E ~ by differentiation 
according to (2.1) : 

~() 
~ = ~ / a ~  + C . ~ ,  Y~ = C , ~ ,  ( ).~ - 

~ ' ( 2 . 1 2 )  

The corresponding metric tensor components are 

(2.13) 

To obtain the reciprocal base vectors .~ of P E ~ we first have to determine 
the inverse (fi-1)~ of fi~ defined by (2.8.2) yielding 

1 
( # - 1 ) / =  - -  [a? - C ( 2 ~ 7 a / -  b / ) ] ,  

(2.14) 

where H and ~7 denote the mean and Gaussian curvatures of the deformed 
reference surface d/~. A straightforward algebraic calculation lead to the reciprocal 
base vectors ~i satisfying the system of Eq. (2.2.1): 

1 y~  = ( ~ - l ) / a ,  ' ~3  = ; -  [ _ C , . ( ~ - % ~  as  + ~].  (2.15) 
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The corresponding metric tensor components are 

1 

:For the determinant ~ = det gli we can derive the following representation 

---- det g~i = 5fi2(~,~) 2 = 5(1 - -  2~H -~ ~ ) 2  ($,~)2 (2.17) 

with g = det 5,~, where Cayley-Hamilton's  theorem 

b:~b~.~ = - - R S , ~  @ 2TTb,~ (2.18) 
is valid. 

With the base vectors and the metric tensor of P E 2 and P ---- z(P) ~ 
we introduce the deformation gradient tensor F = 17g in material  coordinates 

F = ~ Q g~ ~ ~ - ~  ~) y]  (2.19) 

and the right Cauchy-Green strain tensor 

C = F T F  = (~iig ~ (~ y i .  (2.20) 

where ~) indicates the tensor product of two vectors. 

With (2.7), (2.8) and (2.12)--(2.17) we can determine the principal invariants 
of the Cauchy-Green strain tensor 

Iz (C)  = ffii~ i = f f " ~  ~- (~.~)~, (2.21.1 

Ia(C) = g~igiiI3(C) = g ~ -~ r162 g + Ia(C), (2.21.2 

Ia(C) ----- (detF)  z =  (~ 1 ] / a  7 = -~ j2fi~(r ] = . (2.21.3 

~'rom (2.12)--(2.21) it follows that  the three-dimensional deformation of the 
shell consistent within the constraint (2.9) is entirely specified by  the changes 
of the metric and curvature tensors of its reference surface. For  the determination 
of the ~unction ~ = ~(0 :, ~) it is important  to observe that  according to (2.21.3) 
the third invariant  Ia of the right Cauchy-Green strain tensor does not depend 
on the derivatives of g with respect to the surface coordinates 0 ~. :Furthermore 
it is shown by  (2.12)--(2.13) that  the model includes transverse normal strains 
and transverse shear strains. The lat ter  vanishes only on the reference surface 
according to (2.11). 
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To complete the given analysis the function ~ = ~(0 ~, ~) must be specified. 
In the most general case we can use a representation of the form 

~(0 ~, ~) = Z(~K(O"), ~),  K = 1, 2 . . . .  , M ,  (2.22} 

where ~g are additional independent kinematical variables apart from the 
position vector ~ of the deformed reference surface. Postulating some forms 
of the function Z(O ~, ~), which need not be a polynomial in $, a wide class of 
generalized Kirchhoff-Love type  kinematical models for large strain deformations 
of shells may  be constructed. In  particular, for ( ---- ~ the classical Kirchhoff-Love 
model [2] and for ~ ~ ~b~ the model considered by Biricikoglu and Kalnins [6] 
are obtained. The latter is essentially equivalent to that  of Naghdi [2], where 
the shell is modelled as a Cosserat surface with single director constrained to  
remain normal to it, which is commonly accepted in the classical membrane 
theory [5]. A generalization of these models had been considered by  Chernykh 

~2 
[7], [8] introducing the function ~ = ~b~$ + ~: ~- .  Using successively higher 

order polynomials the number of independent kinematical variables increases 
and consequently the corresponding field equations become more and more 
complex. Therefore it seems to be more effective to determine the function 

---- ~(0 ~, ~) from additional constraints imposed on the strains or/and stresses 
in the shell. An approach of this type is considered in the next section. 

3. Isochoric Deformation 

In  this section we introduce the additional assumption that  the deformation. 
of the shell is isochoric (volume preserving) satisfying the following constraint 

d e t F  ---- 1, F ~ VX, (3.1) 

which is generally assumed in large strain deformation problems. 
Introducing (2.17) and (2.8.4) into (3.1) yields a first order differentia~ 

equation for the function ~ : 

(K~ ~ --  2H$ § 1) - ~  ---- ]-1(K~2 - -  2H $  + 1). (3.2) 

With ~ ---- 0 at the reference surface ~ ~ 0 Eq. (3.2) can be integrated and we 
obtain 

. ~ 3  _ 3 ~ 2  ~ 3~ -~ ]-1(K~3 - -  3H~ 2 ~ 3~). (3.3): 

Let  us first note that  the general solution of the cubic Eq. (3.3) is of the form 

~(0 ~', ~) = Z[H(O~), K(O:), ](0~), H(0:), E(0~), $] (3.4) 

leading to the statement that  the function ~ is entirely determined by five in- 
variants of the reference surface: H, K characterizing the initial geometry and 
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], H,  K characterizing its deformation. With (3.4) and (2.13), (2.16) we obtain 
the result that  within the constraints (2.9) and (3.1) the deformation of a shell 
as a three-dimensional body is completely determined by  the kinematics of 
its reference surface in the undeformed and deformed configuration. However, 
the strain distribution over the shell thickness does not only depend on the 
changes of the metric and curvature tcnsors of the reference surface but  also 
on their surface derivatives via the derivatives of the invariants of (3.4). This 
is a main difference to the classical nonlinear shell theories of Kirchhoff-Love 
type.  

Let  us first consider the solution of (3.3) for two special cases. I f  a shell of 
an arbi trary shape is deformed into a plate, t h e n / 7  = ~r = 0 and the solution 
of (3.3) is 

1 
~(0 ~, ~) -= --ff ]-I~(K~ 2 - -  3H~ + 3) (3.5) 

where for simplicity 0" has been omitted in the arguments of the right hand 
side of (3.5). 

I f  the reference surface of the deformed shell is of zero Gaussian curvature 
(cylindrical, conical shells), then K ---- 0, H -~ 0 and the solution is 

:(0 ~, ~) = ?-~ 1 - 

X(~) = ~(K~ 2 - -  3H~ ~- 3), 

_ _ f f  ] - l f l x ( ~ )  

3 3 (3.6) - -~  ] I~j -1 < x ( $ )  < -g  ] lKrl-1, 

for ~ ~ [--hog -s 

The general real solution of the third order Eq. (3.3) is 

1 (~ @- (L @ D112) l/a @ (L - -  DI[2)IIa), ~(o~,~) = y 

D = (~2--  H2) 3 + L ~, 

3 1 
L = g 3  _ 2 FI~ + -ff ] - l f~X(~) ,  

X($) = ~(K~ z - -  3H~ -t- 3) 

(3.7) 

where again 0" has been omitted in the arguments. 

4. Cylindrical Deformation of Shells 

Let us reduce the general results of Sect. 2 and 3 for the special case of cylin- 
drical deformations of shells. An interesting s tudy of this problem has been 
presented recently by  Libai and Simmonds [3]. However, because of contra- 
dictory assumptions in their approach it is worthwile to reconsider this problem. 
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LZ 

/ /  

x 

t~ig. 2. Cylindrical deformation of shells -- notations 

B y  "cylindrical  deformat ion"  we mean  the deformation of a cylindrical 
shell into another  cylindrical shell such tha t  the  deformation in the direction 

of the generators of the cylinder, say x ,  consists of a uniform extension at  the 

most.  I n  this case it is convenient  to take 0 ~ = x, 02 ---- s, where s denotes the 
are length (Fig. 2). Le t  a and ~ denote  the curvatures  of the  reference surface 

in the  undeformed and deformed configuration. Le t  2~ = const, and ), = 2(s) 

be the (principal) stretches of the reference surface in x and s direction. Wi th  

1 1 
H =  ~ - a ,  H = T ~ ,  K = K = 0  (4.1) 

for cylindrical deformations the components  of the metric tensors in the un- 

deformed configuration (2.13) reduce to 

gl l  : 1 ,  9~2 = (1 - -  Sa) 2, ga~ = 1 ,  gl~ = g13 = g23 = 0 
(4.2) 

g::  = 1, f 2  = (1 - -  ~a) -2, g a 8  = 1, g:2 = g 1 8  = g 2 a  = 0. 

For  the deformed configuration we obtain  from (2.13) and (2.16) 

g n = 2 / 2 ,  

where (),~ --  

.ql~ = ~1~ = O,  ~ = ~ ,s~,~  

~u2 = ) .-3(1 _ ~.y)-~,  ~38 = (&; ) -2  [(&s)2 2 -2 (1  _ $ : ) - 2  @ 1] 

~( ) denotes differentiation with respect to the arc length s. 
~s 

For  isochoric cylindrical deformations result  (3.6) leads to 

(4.3) 

1 {1 - 1 / 1  - - - 1 ] } ,  ~(~,  ; )  = 

~(8) - j(8) ~(8)" j(8) = , U , ( 8 ) .  

~ :t:: 0 

(4.4) 

11 A c t a  Mech .  6511--4 
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To ensure that  a cylindrical deformation of the shell consistent within the con- 
straints (2.9) and (3.1) can take place the following inequality must  be satisfied 

i - -  ]~.1-1 < (1 - -  a~) 2 < 1 ~- [g1-1 for ~ C [--h0-, ~-ho+]. (4.5) 

Introducing (4.4) into (4.3) we are able to determine the explicite form of 
the metric tensor in the deformed shell configuration and via this result also 
all other relevant kinematical quantities, what is not shown here. 

Except  for notations the formula (4.4) is identical with the result presented 
by Libai and Simmonds [3, Eq. (10)] by  using a different approach. Besides 
the assumptions (2.9) and (3.1) it has been presumed there furthermore that  
the coordinate lines x, s, ~ are principal directions of the deformation. But  from 
(4.3) it follows immediately that  this is not true unless r ~) ~ 0. 

5. Large Strain Shell  Theory  

The previous sections are dealing with the kinematical aspects of shell de- 
formations taking into account no particular material properties. In  this chapter 
we consider the structure of local field equations assuming that  the shell is made 
of an incompressible hyperelastic material. Then there exists a strain energy 
density per unit  volume W = W(C) as a function of the right Cauchy-Green 
strain tensor C = ff~yi @ gj. For simplicity we presume that  the material  is 
homogeneous, but no restrictions will be made about the symmetry  of the 
material. 

A two-dimensional strain energy frunction q) per unit area of the undeformed 
reference surface J///is defined by  

f f f  WdF=ff f (5.1.1,2) 
,//4 -ao- 

where d V is a volume element of 2 ,  dA a surface element of d/g and ,u is give 
by (2.8.4). In  view of the results obtained in the previous sections the com- 
ponents of C are known functions of the normal coordinate ~. Consequently, 
performing in (5.1.2) the integration over the shell thickness it follows from 
(2.13), (2.16) and (3.4) tha t  the strain energy density ~ is a function of the form 

q~ = ~)(b,~, H,e , K.~, g~,  b~,  1,8, H,~, K ~). (5.2) 

In the Kirchhoff-Love type nonlinear shell theory the conventional strain 

measures are the middle surface strain tensor ~ and the change of curvature 

tensor 7r [1], [9]--[11] 

1 
7 ~  = ~- ( ~  - -  a~ ) ,  ~,~ = - - ( b ~  - -  b~8). (5.3) 
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Besides the measures (5.3) we introduce for large strain deformations the following 
surface invariants 

C~ 

;.~ = ~'-~ = , ~ = 2 ( 2 ~  - -  B ) ,  ~ = 2 (2~2 /7  - -  K ) .  ( 5 . 4 )  

In the argument of the strain energy function r according to (5.2) we express 
the variables by the strain measures (5.3) and by the invariants (5.4) such that  

is of the form 

= qS(b,~, H,~, K ~ ,  y,~, ~,~, 2~,~, z~,~, v~,~). (5.5) 

The dependency of ~b on b,~, H~  and K~ is shown to underline that  even for 
homogeneous material the two-dimensional strain energy function becomes 
inhomogeneous through these quantities. 

Corresponding to the strain measures (5.3) and (5.4) we define work-conjugate 
stress measures by 

n ~  = - ~  § , 

h : -  U - -  

m ~ = ~ + , (5 .6 )  

l "  - -  (5.7) 
~ . ~  ~~,~ 

where n ~z and m ~ are the stress resultant tensor and stress couple tensor o 

the Kirchhoff-Love type nonlinear shell theory for small strains and unrestricted 

rotations. The stress measures (5.7) are three additional stress variables, which 

we have to introduce taking into account large strain deformations. 

The displacement vector from a point of the reference surface in the un- 

deformed configuration M C Jg to its image in the deformed configuration M C ~/~ 

is 

u(O ~) = ~ - -  r = u~a~ + w n .  (5.8) 

With (5.8) the total potential shell energy can be defined by the functional 

J(") = f f  ~[uoe("), ~.e("), ;~,~("), ,~,~("), ~,o(.)] dA -- f f  q .  , d A ,  (5.0) 

where the second term on the right side of (5.9) is the potential of the surface 
loads q(0~). For simplicity we assume homogeneous boundary conditions such that  
the contribution of given boundary forces to the potential energy (5.9) vanishes. 

To derive the equilibrium equations by applying the stationary principle 
of total potential energy we determine the first G~teaux differential 

a"'(u; a) = f f (~'(u) ~,."'u., , .~, + m'(u) ~"'o, ~u; a) 

@ itS(u) )(1)(,,..~.~,_, fi) @ U(u) z~)(u; ~) (5.10) 

+ 12u) _m,~.. ~,~,~, a)l aA -- f f U " a dA. 
d l  

n *  
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I t  should be pointed out that  the first Ggteaux differential of functions or func- 
tionals can be denoted also as their variation. 

By partial integration and application of Gauss' divergence theorem we 
transform expression (5.10) into 

--/c'l~ (u) @~)(u; 4)  - -  l"I: (u) @~)(u; ~)} dA (5.11) 

- f f  q.4 dA + boundary term. 
J /  

Next we have to determine the Ggteaux differentials of the invariants (5.4). 
Using the definitions 

g 1 

a 2 

1 

1 

we are able to prove the following formulas 

z~(1)(u; a) = -~du)  ~ ( u )  7~(~)(u; a), 

~(1)(u; a) = -2;~du) [~(u) d~(u) + ~~ .(Wu; a) 

-- 2~(u) 5"~(u) ~'~)(u; 4), (5.13) 

- -  22~2(u) [ 2 ~ ( u )  a"~(u) - -  g"~(u)] ~(~)(u; a ) .  

According to (5.13) the Ggteaux differentials of the invariants (5.4) can be 
expressed as linear combinations of the Ggteaux differentials y,~(1)(u," u), ~ ~"  (1)~...t~, ~j 
of the strain measures (5.3). 

Introducing (5.13) into (5.11) the differential of the total potential energy 
is obtained in the form 

g(1)(u; 4) = f f  [NO~(u)~y,~(1)(u,. ~) ~- M~(u )  ~i~)(u; ~) --  q �9 a] dA 

(5.14) 
boundary term 

with a generalized stress resultant tensor N :z and a generalized stress couple 
tensor M "~ defined by 

(5.15) 
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The first Gs differentials ,(1)/ ^ /~ztu; u) and .~,z~(~)(,,'~, ~) are presented in [ l l ] .  
Following the procedure outlined there the energy differential (5.14) can be 

transformed into the equivalent expression 

./K 
~- [T~(u)l~ -~ b,~T"~(u) ~- q] ~v} dA + boundary terms, 

(5.16) 

which enables the derivation of the local equilibrium equations. The vector 
and tensor components T ~ and T ~ are given in [1], [9]--[11] for the nonlinear 
shell theory undergoing small strains and unrestricted rotations. Only in the 
expressions given there the stress measures lV ":~ and M ~ have to be replaced 
by their generalizations according to (5.15) valid for large strain deformations. 

We apply now the principle of stationary total potential energy stating that  
for arbitrary geometrically admissible superimposed deformations ~ the first 
G~teaux differential J(~)(u; Ft) vanishes 

Jr ~) ---- 0 V ~ (5.17) 

at the solution u = ~. Then (5.17) yields with (5.16) the three Lagrangean 
equilibrium equations for the large strain shell theory 

T:~(u)[z -- b~:TZ(u) ~ q: = 0 | 

i in ~44. (5.18) 
T~(u)l~ § b.~T~(u) § q = 0 

From (5.18) it follows that  the equilibrium equations of the large strain 
shell theory are of similar structure as the equilibrium equations of the small 
strain shell theory with unrestricted rotations [1], [9]--[11]. Only according 
to (5.15) there are entering additional terms which are functions of the three 
invariants (5.4). 

Up to here we have strictly avoided the introduction of additional assumptions 
concerning the magnitude of strains, rotations or other relevant parameters. 
I t  is obvious that  whenever suitable restrictions are imposed on the magnitude 
of some parameters characterizing the geometry of the shell and/or its defor- 
mation a wide class of simplified shell models can be derived, which will be 
the subject of a forthcoming paper. To underline the importance of additional 
simplifying assumptions for the numerical applicability we introduce in the 
next section a Taylor expansion of the function ~(0:, $). 

6. Thin Shell Approximation with Example 

ho 
Let  ~h = - - d e n o t e  the thickness parameter of the shell with a maximum 

R 
undeformed shell thickness h0 and a minimum radius of curvature R of the 
undeformed reference surface d///. If  (sh) ~ ~ 1 for some positive integer numbers 
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/V, the funct ion $(0 ~, ~) of (2.10) can be represented as Taylor  expansion with 
respect  to 

1 1 
~(~ ~) = ~1(~ ~ § -~. ~(~ ~ + " "  + (~- - 1)~., ~-1(~ ~ - ~  + ~ (6.~) 

For  isochoric deformat ions  the  coefficients of (6.1) have  to be  de te rmined  
such t h a t  (3.3) is satisfied. Therefore  we introduce (6.1) into (3.3) and different ia te  
successively with respect  to ~. P u t t i n g  then  ~ ---- 0 we obta in  

~ = ;~, ~b2 = ; ~ ,  ~3 = --)~vE + 3).~r~(~ + 2H) ,  . . .  (6.2) 

2~o _r 
t~ 

1 
of the,unct,on _ exact 

1j/, L - [Jnear a p p r o x i m a t i o n  

Q - quadra t ic  ,. 

C - cubic  
1,2 

1jO 
o,s o,7\ \ \ t2 1,~. 

0~8- 

q6- 
l 

/ 
I /Q 

; 
i 

q2- 

1~8 2.0 

k=-~ 
~2 

Fig. 3. Eversion of a spherical shell -- change in shell thickness (ho/R = 0.2) 
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and correspondingly the higher order coefficients ~a, ".., which are all functions of 
the three surface invariants A~, ~ ,  ~:. 

With the Taylor expansion (6.1) and the known coefficients (6.2) the de- 
formation of the shell can be represented in the form of a power series with 
respect to ~. 

As numerical application we consider the eversion of a spherical shell, for 
which a detailed description is given in [5]. If  R and ~ denote the radii of the 
reference surface in the initial and deformed configuration, respectively, we 
have 

H = - -R- : ,  K = R -2, ~ = ~-1, /~ = ~-2, 2-= ~2 = , (6.3) 

where 2. represents the stretch of the reference surface. For simplicity we choose 
the outer shell surface in the initial configuration as reference surface (Fig. 3). 

Inserting (6.3) into the exact function ~ according to (3.7) and (3.8) one gets 

r h ~ - e a  )' { 1 - -  ( 1 -  1 ~7 '113/ - -  [(1 ~ - e , ~ )  a -  1])  / '  (6.4) 

ho 
with eh ---- ~ and ~ : ~oo C [--1, 0]. With (6.4) we calculate the change in the 

shell thickness h/ho and the transverse normal strains A s yielding 

h-o h i  ~ {  ( 1 , l / a |  -- ~o-[$(0)--~(--1)]-- sh- 1 - -  1 - -  )-~ [(1--sh) a - l ] )  / '  (6.5) 

A~(~) - -  ~ (1 + ~h~) * 
c5~ - -  [1 -~- h a - -  (1 ~ she)a]  2Is" (6.6) 

o or o8 ,,,6 

/ -0,5- 

/ 
-1,0 - 

\ 

-O~S. 

ho 

-~0 - 

/ 

k=o,8 ), = 1,0 

1,? 0 

-0,S- 

-1,0 - 

o,~ A: 

0 

k =I~2 

Fig. 4. Eversion of a spherical shell -- distribution of transverse normal strains over shell 
thickness (ho/R ~ 0.2) 
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The resul ts  are  represented  in  Fig.  3 and 4, where t h e y  are  ind ica ted  b y  E (exact).  

To compare  t hem wi th  those,  which can be ob ta ined  b y  using for r the  f i rs t  

t e rms  of the  Tay lo r  expans ion  (6.1) we in t roduce  (6.3) in to  (6.1) and  (6.2), 

respect ive ly .  Figs.  3 and  4 show the  resul ts  due to a l inear  (L), quadra t i c  (Q) 

and cubic (C) app rox ima t ion .  
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