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Summary. This contribution presents a refined analytical solution for the wrinkling of sandwich plates 
with isotropic face layers and thick orthotropic cores, taking into account in-plane deformations of the 
core. A single explicit equation for the critical wrinkling load in an asymptotic sense in derived. The 
results have been verified extensively by a numerical model [1] and show that, when dealing with highly 
orthotropic cores (e.g., honeycombs), the wrinkling loads and deformation patterns can strongly depend 
on the in-plane stiffness of the core. This new theoretical finding which is of considerable practical impor- 
tance is the main motivation for this paper. Classical wrinkling formulae [2], [3], [4] can lead to significant 
errors when used in connection with highly orthotropic cores. 

1 Introduction 

Wrinkling (i.e., short wavelength buckling of  the face layers) is a common local stability pro- 
blem of sandwich plates and shells under compressive or bending loads, leading to a loss in 
stiffness of  the structure. The problem is characterized by the interaction between the sand- 

wich core and the face layer, which is bonded to the core. As a result, the critical force leading 
to wrinkling of the face layers is a function of  the stiffness parameters  of  the face layer and 

the core, the geometry of  the problem and the bonding and loading conditions. 
Classical papers dealing with analytical calculations of  critical wrinkling loads (see e.g., 

[5], [6], [7], [8]) are based on simplifying assumptions regarding the influence of  the in plane 
stiffness of  the core. More  recent papers dealing with wrinkling concentrate on numerical 
solutions (see e.g., [9], [10], [11]) or on post-buckling and interaction of global and local buck- 
ling (see e.g., [12], [13]). 

In the present paper  a rather fundamental  problem is treated, namely the analytical con- 
sideration of  the in-plane core stiffness on the bifurcation behavior in terms of  wrinkling of 
thick sandwiches. 

c Plantema [2] showed, that  for core materials with the shear moduli  G~z = Gy~ and isotro- 
pic face layers, the critical wrinkling load under biaxial compressive load is solely determined 
by the major  compressive membrane  force in the face layer. Therefore, many  of the different 
analytical models that have been set up to describe this problem use the equation for the iso- 
tropic plate on an elastic foundat ion specialized for unidirectional loading (in x-direction, see 
Fig. 1): 
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Fig. I. Uniaxial wrinkling, 3D 
and 2D model 

w h e r e  ./s denotes the plate bending stiffness and P~ the compressive force per unit width of 
the face layer. It is generally assumed here, that the whole in-plane load is carried by the face 
layers. 

The aim of the analytical approaches to this problem is the determination of 0, the reac- 

tion pressure of the core with respect to the plate (i.e., the foundation stiffness of the core mul- 
tiplied by the deflection w). The two main approaches use either the differential equation or 
the energy method to derive q. However, in-plane action of the core has been disregarded up 

to now. 
The wrinkling pattern (in z-direction) of the unidirectionally loaded face layer, and there- 

fore also for the core surface which is perfectly bonded to it, is a sinus pattern, 

w f c = w * s i n ( ~ r x ~ ,  (2) 
= Wz=O \ a s /  

where the superscripts f and c denote face layer and core, respectively, and as is the half-wave- 
length of the deformation pattern. The main two closed form solutions in use are the Winkler 
model and the model for (infinitely) thick cores, both of which have been compared and dis- 
cussed closer (see e.g., [7]) and are used in the standard sandwich literature (see e.g., [2], [14], 

[3]). 

1.1 Winkler  foundat ion model  

In the Winkler foundation model the continuous elastic medium of the core is modeled as a 
set of parallel closely set elastic springs (Winkler foundation). This model takes only the trans- 
verse core stiffness E~ into account. Neglecting the shear stiffness seems to lead only to useful 
results if the core thickness is relatively low. The face layers are assumed to undergo symme- 
trical buckling, therefore the mid surface of the sandwich remains undeformed during buck- 
ling. Using this boundary condition, ~ can be calculated (compare e.g., [14], [7]): 

Z e 2 0 : w / k W  : w E z ~ ,  (3) 

where c denotes the core thickness. Inserting this result into Eq. (1), P f  is obtained as a func- 
tion of the wavelength a~. The minimization of PS with respect to the wavelength as (for non- 
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trivial solutions of w f)  leads to the critical compressive force per unit width in the face layer 

for undirectional loading PcWt : 

E f  E~ t 

= : 6 (i - 

1.2 Mode l  for  thick cores 

In the case of the thick cores it can be assumed that the two face layers do not influence each 

other. Taking only global uniaxial compression into account, the core is considered as ortho- 

tropic plane stress problem (in x-z  direction, see Fig. 1). The face layer, which is orders of 
magnitude stiffer than the core, is generally assumed to lead to c c = 0 in the core-face X~z:O 
layer interface. 

In the differential equation approach (see e.g., [4]), this boundary condition is simplified 

by taking the core stiffness in loading direction E~: to be infinity. This leads to e~ = 0 in the 

whole core. On the other hand, the core stiffness in loading direction can be very small in rea- 
lity (e.g., honeycomb cores). Therefore, the assumption of an infinitely high stiffness seems to 
be questionable. However, this simplification appears to be based on the assumption, that the 

influence of in-plane core action can generally be neglected in this problem. 
The majority of authors ([6], [7], [2], [3] etc . . .  ) used an energy approach to this problem, 

and assumed the in-plane displacements u (in x-direction) to be zero. This is essentially the 

same assumption as mentioned above. The results are also practically the same as in the dif- 

ferential equation approach cited above. 
Using these simplifications, 0 can be calculated in an asymptotic sense, i.e., no interaction 

between upper and lower face: 

w f  ~_ ]~old f 7[ = = w - -  ( 5 )  
ax ax 

with k ~ being the effective core stiffness corresponding to this "old" model for thick cores. 
Equation (5) leads (in analogy to Sect. 1. I) to the critical force per unit width per face layer 

 ,=03 {/ 
poZd 1.89 K I E  cGcz ~ 0.85t 3 f c : E E z a z. (6) 

From experimental investigations on sandwiches with isotropic cores by [6] the following for- 

mula is recommended for design: 

Pc Id = 0 . 5 t ' ~ - E g - G  ~ . (7) rit,pr 

2 Refined analysis for thick orthotropic cores 

The simplifications that have been made to gain the results above are rather far reaching. 
Therefore, a refined theory is derived. In order to calculate the core reaction 0, the differential 
equation for Airy's stress function F of the orthotropic elastic plane stress problem for unit 
width (see e.g., [4]) is used to model a section of the core in the loading plane (see Fig. 1). 
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with the membrane stiffness 

(s) 

(9) 

~ 2 w e ,  c ~, ~ ~ ( lo )  D ;  : < ,  D;~ : 2 <  G F ( z x  - x~-x~,  D~ : z z .  

The stresses and strains perpendicular to the z-z plane are neglected (as in the other mod- 

els described above), but no further restrictions, apart from the necessary and sensible bound- 

ary conditions below, are imposed on the core deformation. 

The displacement field at z = 0 of  the core in z-direction is assumed to follow Eq. (2). The 

stresses are assumed to vanish within the infinitely thick core as z approaches infinity. The 

governing Eq. (8) requires this decrease to be o f  an exponentiaI form. To represent this, the 

following definition o f  the function F is used: 

F = C ( ~ ) 2 e x p r  #~rz 4 D/~-~ "~ sin (TrX~ (11) 

Inserting Eq. (11) into Eq. (8) yields the solutions for # 

- ~ / ~  - -  
~ , ~  = •  ~ + d ~  - 1 ~ , 4  = • - v ~  - 1 ~ (12)  

' ' D ~  

Now F and, therefore, the stresses are defined except for the constants C, i.e., C1 to C4, which 

are determined by the boundary conditions. The positive solutions for #, i.e., #1 and #2 have 

to disappear to allow an exponential decrease of  the stresses. 

Therefore the corresponding constants C1 and C2 are set to zero. The stresses in the plane 

can now be written as: 

< = C3~exp \ V ~ )  § C~e~p \ ~x VD~ V ~  ~ ) ~  s m -  , (13) 

\ az V ~ ) §  t a= V ~ ) ) s i n  ~-~ ' 

The remaining two constants Q ,  CA can be calculated using the following two boundary con- 

ditions. In an approximation, the strains in the core at the interface (z = 0) in z-direction are 

set to zero. This common assumption (see e.g., [2], [14], [1], [3]) is especially meaningful if one 

deals with rather stiff face layers on cores which show low in-plane stiffness. Such combina- 
tions are considered here. This leads to the boundary condition: 

1 
-E~ ( ~ _So-c . . . .  0 o" . . . .  0 . . . . . .  0s = 0. (16) 

The second boundary condition is, that the stress at the interface in z-direction is distributed 

as a sine wave with a certain amplitude c~,0, corresponding to the assumed deformation given 
in Eq. (2): 

cr . . . .  0 : ~,0 sin = -c). (17) 
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Using these two boundary  conditions in Eqs. (13), (14) gives the following values for the con- 

stants Ca and C4, which can be split up into the boundary stress amplitude cry, 0 and dimen- 

sionless factors Xa and X4: 

C3 = cr;,0X3 = ~ez,0 #~ _ #~ , (18) 

Using Hooke ' s  Law, the strains in the core in z-direction can now be calculated: 

e 1 c = - ( 1 9 )  

To obtain the deformation w (in z-direction) of  the core at the interface to the face layer, the 

strain e~ has to be integrated over the infinitely thick core: 

w~ = f X4 X~ c X 

oo 

x ~ - -  ~ - s m  - -  . 

Inserting Eqs. (20) and (2) into (17) gives the core reaction pressure q, and thus (in analogy to 
Eq. (5)) the effective stiffness in this new model U hick can be determined. 

0 = wl rc k~{~ k ~ k~h{~k = ~ X ~ ~ E/~-~z~ (21) 
aU ~ 1 - - / ] Z x  (4"2 -- X3#1) L'z V ~CzC �9 

Inserting Eq. (21) into Eq. (1), P~ can be calculated as a function of the wavelength a~. To 
obtain the critical wrinkling force per unit length p th i ck  PI is minimized analytically with crit 

respect to the wavelength a~ leading to 

ax,crit = 2 K f  k m i &  , (22) 

tit  ~ 0.85t E J ( k t h i c k )  2 . (23) 

These results are similar to the old model (see Eq. (6)) with respect to the influence of  the face 

layer, but the core stiffness enters the results in a very different way. 

3 Results and numerical validation 

3.1 Numerical reference model 

To validate the results obtained by the theory derived above, the semi-analytical-numerical 
approach in [1] was used. This approach models the core as a complete three-dimensional 
orthotropic cont inuum and biaxial loading of the sandwich as well as finite core thickness can 
be considered. In order to calculate the critical wrinkling load a numerical minimization 
scheme has to be used, which makes that model effectively much more complicated than the 
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theory derived in Sect. 2. However, that model is able to calculate symmetrical as well as anti- 
metrical wrinkling loads, the lower of which is considered to be decisive. That approach was 
extended in [1 l] to take orthotropic face layers into account. Moreover, the numerical model 

accounts for the three axial stress state in the core, whereas the analytical theory derived 
above is only capable of predicting the critical wrinkling load in an asymptotic sense for thick 
cores and a plane stress state. 

Very recently, another numerical model has been published by [9], who used mechanics of 
incremental deformation and modeled the infinitely thick core as well as the face layers as 

fully 2D orthotropic elastic plane strain ploblems. He concentrated on the influence of face 

layer orthotropy, rather than core orthotropy, and deals only with very stiff cores that are not 
likely to be used in classical sandwich construction. However, where applicable the new analy- 
tical model and Hwang's numerical results show good agreement. 

3.2 Parametric study 

An extensive parameter study has been performed to evaluate the influence of the core mate- 
rial parameters on the critical wrinkling load in the new analytical as well as in the numerical 
reference model. In the case of sufficiently thick cores, the agreement between the results 
obtained from both approaches was excellent. The analytical model leads to marginally lower 

critical loads due to the assumption of plane stress in the core which neglects the stiffening 
due to transverse effects. In the case of isotropic thick cores, the old theory (see Eq. (6)) gives 

a proper estimate of the critical wrinkling load. However, in the case of highly orthotropic 
cores, such as e.g., honeycomb cores, it is shown, that the old theory is not sufficient. This 
study shows, that the main influence parameters for the uniaxial critical wrinkling load of 
sandwich panels with thick highly orthotropic cores are: 

�9 Thickness of the face layer t 
�9 Young's modulus of the face layer E f 

�9 Poisson ratio of the face layer u f 

�9 Young's modulus of the core in transverse direction E~ 
�9 Young's modulus of the core in longitudinal direction E~ 
�9 Transverse shear modulus of the core G~z. 

All of these main parameters are accounted for in the new analytical model derived above, 
whereas the design formula used up to now (Eq. (6)) neglects the influence of E~ which must 
not be neglected if E~ << E~. 

3.2.1 Influence of longitudinal core stiffness/~ 

In Fig. 2 the critical wrinkling force in the face leayers is plotted over the ratio of E~/E~ on a 
logarithmic scale for a sandwich plate made of commercial NOMEX honeycomb (with 
respect to E~, G~)  and aluminum face layers. For the numerical reference model [1], the ratio 
c/t is taken to be 5000 which is a fictious number just to ensure that the two face layers do not 
influence each other. 

The symmetrical P~'~ and anti-metrical P~ t  t critical wrinkling forces per face layer per 
unit width calculated by the numerical reference model match exactly due to the sufficiently 
thick core. The critical wrinkling force calculated by the analytical model p t){[k is a little bit 
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lower, as mentioned above, but still it represents an excellent estimate. The old analytical 
model for thick cores is denoted by po~ and does not account for the parameter E~. In the 

case of real honeycombs, the ratio of E~/E~ is about 1/2000 (see e.g., [15]) which is marked by 
a vertical dashed line in the plot. Within this parameter range, the error of the old analytical 
model is definitely too large to be neglected. However, for the nearly isotropic case 

(log(E~/E~) ~ 0), the old analytical model matches very well. 
It can clearly be seen, that the wrinkling stress decreases as E~ gets smaller. This effect has 

only very recently been reported for the first time by [9] who used a numerical model, but no 
explanation was given. He concluded that E~ has an influence only if the ratio of face layer 
stiffness to transverse core stiffness is not too high, which practically excluded the usual appli- 

cation of structural sandwiches from this effect. However, apart from the NOMEX honey- 
comb shown in Fig. 2, numerous other honeycomb materials have been investigated, and 

although the stiffness ratio mentioned above has been well over thousand, it was always 
obvious, that the influence of E~ must not be disregarded. This discrepancy to Hwang's con- 
siderations can be explained by the limited parameter range Hwang investigated, which did 
not include the high grade of orthotropy that is found in the homogenized honeycomb mate- 

rial values. 
To gain a proper explanation for the decrease of the critical wrinkling force, the core 

deformation patterns should be considered. Due to the boundary conditions, the core defor- 
mation pattern has to be a sine wave on the surface and has to decrease to an undeformed 
state within an infinitely thick core. The old analytical theory assumes, that the only existing 
strains are shear and transverse strains. Therefore, the deformation pattern of the core is 
forced to look like Fig. 3. The new approach also accounts for strains in the longitudinal, i.e., 
z-direction. For the case of very small ratios of t~/E~ the deformation pattern is shown in 
Fig. 4. The strains in longitudinal direction must obviously not be neglected. In the case of 
E~ --+ 0 it is even possible to get a deformation pattern without any shear strains. So, from 
the viewpoint of deformation kinematics, the longitudinal strains are able to substitute the 
shear strains in the core for the given boundary conditions. Whether the deformation pattern 
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exhibits predominantly shear or longitudinal strains (apart from the transverse strains) is 

dependent on the energy stored in these two modes and, therefore, on the moduli G ~  and E~. 

In the case of isotropy,  shear strains are dominant. 

It is also worth noting that the region of  the core which exhibits high deformations is 
much thicker for small ratios of  E~/E~ than for high ones. This finding is in accordance with 

[16] who observed, that a higher grade of  material anisotropy leads to a longer St. Venant 
decay length. The effects o f  this can be seen in the following section. 

3.2.2 Cores of  finite thickness 

Considering cores of a given finite thickness, the effect of  the longitudinal stiffness on the 
wrinkling load can be seen in Fig. 5, which is based on an c/ t  ratio of  100. The notation is 

equal to Fig. 2, and additionally P~ t  (Winkler foundation, see Eq. (4)) is also displayed. For  
slightly orthotropic cores it can be seen, that the symmetrical Pc~,~ ~ and anti-metrical P~J  cri- 
tical wrinkling force calculated by the numerical model match well, which shows that, for the 
chosen c/t  ratio there is hardly an interaction between the two face layers and an infinitely 
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thick core can be assumed. Therefore, the analytical calculation derived within this work 
(Pct;~it ck) gives a good approximation of the critical wrinkling force. 

For a higher grade of orthotropy of the core material, the decrease of E~/E~z leads at 
some point to an interaction between the face layers, and, therefore, the symmetrical P ~  
and anti-metrical Pc~r~ critical wrinkling forces calculated by the numerical model do not 
match anymore. In this parameter region the assumption of an infinitely thick core is not 

appropriate anymore and the analytical result ( p t ~ )  starts to differ from the numerical 
results. It is noteworthy that this effect is also observed at very high ratios of c/~ (e.g., 100 in 

the case of Fig. 5) for realistic material values of honeycomb core materials. 
For further decrease of the E~/F,~ ratio, the numerically calculated critical wrinkling stress 

approaches the Winkler solution. The Winkler solution itself considers only the transverse 

strains, and no longitudinal or shear strains. At the low ratios of E~/E~, where the numerical 
resuk and the Winkier solation coincide, there are no shear strains present anymore and the 
longitudinal strains contain practically no energy due to the low longitudinal stiffness of the 
core, however a strong interaction between the two face layers exists. Therefore, The Winkler 

solution gives proper critical wrinkling stresses also for thick cores, if the core material exhi- 
bits a sufficiently low ratio of Ec/E~. The new solution presented here, i.e., p t~:~k, fails for too 

small c/t ratios, because it does not take the face layer interaction into account. 

It is obvious, that the effects described above get more pronounced for higher ratios of 

C;z/E~. 

4 C o n c l u s i o n s  

The newly derived analytical mode[ leads to a single explicit equation for the critical wrinkting 
lead and is, therefore, efficient and easy to apply in the case of sufficiently thick cores, tt 
is the only closed form solution which takes the effect of  a finite, nonzero tongitudinai core 

stiffness into account. 
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The influence of  the longitudinal  core stiffness on the critical wrinkling load has been eval- 

uated in a newly derived analytical  and a numerical  approach.  Both approaches agree, that  

the influence must  not  be neglected in the case of  a low ratio of  longitudinal  stiffness to trans- 

verse stiffness of  the core, as it happens for example in the case of  honeycomb cores. 

Fo r  making decisions whether or not  the core can be characterized as being thick, it is not  

sufficient to consider the elf ratio (as in [2], [3], [17], [1], [4] etc . . .  ), the ratios E~/E~ and 

G~z/t~ ~ have also to be considered. It is therefore shown, that  it poses a complex problem to 

determine whether a sandwich can be considered to have a thick core or not, as far as the 

question of  coupling between the face layers is concerned. 
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