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Summary. A Green's function approach based on the laminate theory is adopted for solving the two- 
dimensional unsteady temperature field (r, z) and the associated thermal stresses in an infinite hollow 
circular cylinder made of a functionally graded material (FGM) with radial-directionally dependent prop- 
erties. The unsteady heat conduction equation is formulated as an eigenvalue problem by making use of 
the eigenfunction expansion theory and the laminate theory. The eigenvalues and the corresponding 
eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function 
solution for analyzing the unsteady temperature. The associated thermoelastic field is analyzed by making 
use of the thermoelastic displacement potential function and Michell's function. Numerical results are 
carried out and shown in figures. 

1 Introduction 

A functionally graded material (FGM) is characterized by continuously changing material 
properties due to a graded composition from one surface to the other surface. For non-homo- 
geneous materials such as FGMs, the governing equations of the unsteady temperature field 
and the associated thermoelastic field in an infinite hollow circular cylinder are presented in 
complex forms according to position dependent material properties. Therefore, the theoretical 
treatment for these equations is difficult, and an exact solution is almost impossible to obtain. 

Tanigawa [1] reviewed some basic problems for nonhomogeneous structural materials. 
Obata and Noda [2] discussed unsteady thermal stresses in a functionally gradient material 
(FGM) plate, and Obata et al. [3] analyzed the two-dimensional unsteady thermal stress in a 
F G M  hollow circular cylinder by using the Laplace transformation and the perturbation 
method. Ootao and Tanigawa [4] treated three-dimensional transient thermal stress analysis 
in a nonhomogeneous hollow sphere, and Tanigawa et al. [5] studied transient heat conduc- 
tion and thermal stress problems of a nonhomogeneous plate by use of the Laplace transfor- 
mation and multi-layers approximation approach. 

On the other hand, the Green's function approach for homogeneous materials has been 
well known. Carslaw and Jaeger [6] explained the use of Green's functions in the solution of 
the equation of conduction in their book, Parkus [7] described the Green's function for tem- 
perature, and Boley and Weiner [8] discussed the Green's function technique in their book. 
However, there is little work about Green's function for nonhomogeneous materials such as 
FGMs. Diaz and Nomura [9] used a Green's function approach for two-dimensional elastic 
problems. Nomura and Sheahen [10] used a Green's function based on the Galerkin method 
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to analyze steady thermal stresses in a two-dimensional FGM plate. Kim and Noda [11] used 
a Green's function based on the Galerkin method to analyze the three-dimensional transient 
temperature for thermal stresses of a functionally graded material. Kim and Noda [12] used a 
Green's function based on the laminate theory to analyze the three-dimensional heat conduc- 
tion equation of functionally graded materials. 

Many workers have studied the thermal stress problems in homogeneous cylinders 
subjected to nonstationary heating, because there are many practical applications in modern 
engineering. Many kinds of transient thermal stress problems in homogeneous cylinders are 

treated in several books, e.g., by Parkus [7], Boley and Weiner [8], and Nowacki [13]. But 
there is little work done to determine the thermal stresses in nonhomogeneous cylinders such 

as FGM cylinders. Obata and Noda [14] discussed steady thermal stresses in a hollow circular 
cylinder and a hollow sphere of FGM. Ootao, Akai, and Tanigawa [15] studied three-dimen- 
sional transient thermal stresses in a nonhomogeneous hollow circular cylinder due to a 
moving heat source. Tanigawa et al. [16] treated the one-dimensional transient thermal stress 
problem for nonhomogeneous hollow circular cylinders. 

In this paper, we discuss the Green's function technique based on the laminate theory for 
an infinite hollow FGM cylinder subjected to temperature variations along both r- and z-axis. 
Since almost all FGMs are materials whose compositions are dependent on a function of one- 
directional position from a metal surface to a ceramic surface, it is assumed that the thermal 
properties of FGMs are dependent on the one-directional position. As for the analytical treat- 
ment, introducing the analytical technique for the laminate theory and taking into account 
the bounds that the number of laminae becomes sufficiently large, the unsteady temperature 
solution for a two-dimensional FGM hollow circular cylinder with an infinite length is formu- 
lated by the Green's function approach based on the laminate theory. An approximate solu- 
tion of the eigenfunction expansion method for each layer is substituted into the governing 
equation to yield an eigenvalue problem. The eigenvalues and the corresponding eigenfunc- 
tions resulting by solving an eigenvalue problem for each layer constitute the Green's function 
solution for obtaining the two-dimensional unsteady temperature distribution. The associated 
thermoelastic field is analyzed by making use of the thermoelastic displacement potential 
function [17] and Michell's function [18]. 

As an example, a FGM hollow circular cylinder with an infinite length, which is made of 
zirconium oxide and titanium alloy, is selected. Numerical results, such as the temperature 
distribution and the thermal stress distribution, are shown in the figures. 

2 Analysis 

We consider the two-dimensional unsteady temperature field and the associated thermoelastic 
field in an infinite hollow circular cylinder (r, z) made of a functionally graded material whose 
thermal properties vary with the radial coordinate r. The inside and outside radii of the 
hollow circular cylinder are ra and rb, respectively, and it has an infinite length in z-direction. 
We assume the thermal condition that the inside and outside surface are heated to To + Ta(z) 
and To + Tb(z), where To, T~(z) and Tb(z) are the initial temperature, and an arbitrary even 
function at r = r~ and r = rb, respectively. Assuming that the number of laminae becomes 
sufficiently large and the thermal properties of each layer are constants, we consider a lami- 
nated medium consisting of L layers in the temperature field and the associated thermoelastic 

field. 
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2.1 Two-dimensional steady temperature 

Assuming that the thermal properties are dependent on the r-directional position and that the 
temperature is independent of the hoop direction position, the solution of the steady-state 
heat conduction equation for the i-th layer is assumed to be [19]: 

oo 
T~(r, z) = f {/0(/3r) A~ + Ko(/3r) B~} cos (/3z) d/3, (1) 

0 

where T/~( = T](r, z, ~) - To) and/3 are the temperature difference from the initial state and a 
parameter, respectively. 

Thus, we can obtain the steady state solution Ti~(r, z) by using the continuous conditions 
of temperature and heat flux at the interfaces, and the nonhomogeneous boundary conditions 
at the inside and outside surface as: 

T l S : T a ( Z )  at r = r ~ ,  

Ti~=T[+l at r = r i ,  i = 1 , 2 , . . .  ( L - l ) ,  

OTi ~ ate+ 1 
k i~ f - r  = k i + l ~ -  r at r = r i ,  i = l , 2 , . . . , ( L - 1 ) ,  

TL~=Tb(z)  at r = r b ,  

where ki is the thermal conductivity of the i-th layer. 

(2.1) 
(2.2) 

(2.3) 

(2.4) 

2.2 Two-dimensional unsteady temperature 

The governing equations of the unsteady-state problem in the absence of a heat source and 
the initial conditions for each layer are given as 

100i 
~720i -- /~i Ot at ri-t  <_ r < ri , i = 1, 2 , . . .  , L (3) 

O i ( r , z , O ) = F i ( r , z ) = - T i ~ ( r , z )  at r i_l<_r<_ri ,  i = 1 , 2 , . . . , L  (4) 

where 

g72_ 02 0 02 
Or 2 F ~Or 40z 2 , 

and 0i and Ai are the temperature change and the thermal diffusivity of i-th layer, respectively. 
Using the eigenfunction expansion theory and the separation of variables, we can obtain the 
solution of Eq. (3) as [19] 

z, = cos  ( g z )  e-(4  
rn,=l 0 (5 )  

at r i _ z < r < r i ,  i = 1 ,2 , . . .  ,L ,  

where c~(/3) are constants to be evaluated. Substituting Eq. (5) into Eq. (3) yields an eigen- 
value problem, 

0 o~ m 
rOr r + ~ i ~ = O  at ri-1 < _ r < r i ,  i = 1 , 2 , . . . , L ,  (6) 
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where a ~  and ~p~,,~ are eigenvalues and eigenfunctions to be evahmted, respectively. Applying 
the initial conditions of Eq. (4) to Eq. (5), the coefficients c,~(fl) are obtained as 

~ ( ~ )  _ 2 1 ~ kj /~A/ ,  ~') ~ ( ~ ' )  cos (Z~') a/d~', (7) 
7r ~,,~ j=l ~J  0 r=-rj-i 

where the norm N,~ is defined as 

rj 

7"=-7"j_ 1 

Substituting Eq. (7) into Eq. (5) and introducing Green's function, the solution of Eq. (3) 

yields 

Oi(r,z,t) = ~ f r'Gij(r,z, t l / , S , t ' ) [ t ,=oFj ( r ' ,S )dr 'dz / ,  (9) 
j=l  0 r:ri-~ 

where Gi~(r, z, t lr', z', t')lt,=0 is defined as 

oo 

~, tS ,=0  . . . . .  
0 

(lO) 

2.3 Determination of  eigenfunctions and eigenvalues 

The general solution ~{~,, of Eq. (6) can be written as [19]: 

r +DimYo cxm = r at r i . l _ < r < r , i ,  i = l , 2 , . . . , L ,  (11) 

where J0 and Y0 denote the Bessel function of the first and second kind of order zero, respec- 

tively, and C{,~ and D{~ are coefficients to be evaluated. 
Applying the continuity conditions of temperature and heat flux at the interfaces to 

Eq. (11), the simultaneous equations for Ci,~ and D~,~ are written in matrix form as 

D{,~ = L P21 P22 J k Di+l,~ ' ' ' 

where 

1 

DET 

1 
PJ.2- 

D E T  

1 P~_I- 
D E T  

Y0 ~ ~ 
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1 
P~2 = - -  

DET 

~]r / "~i OZm O~rn O~m 
- -  J1 ~ ri) 

Therefore, the eigenvalues c~,~ are determined from Eq. (12) and the homogeneous boundary 
conditions at the inside and outside surface, and the corresponding eigenfunctions for all 
layers are determined from Eq. (12). 

2.4 Thermal stress analysis 

We consider the unsteady thermal stresses in a FGM hollow circular cylinder due to the two- 
dimensional unsteady temperature change along both the r- and z-axis. We assume that the 
mechanical boundary conditions are traction free and that there is symmetry along the z-axis 

as follows: 

(Trr(ra,z) : (Tr~( r ' a , z )  = 0  at  r = r ~ ,  0 < z < c o ,  (13.1) 

~.~(r~, ~) : ~,.~(r~, ~) = 0 ~t  r = r~,  0 < ~ < ~ .  (13.2) 

When the material properties are functions of the r-directional position, the two-dimen- 
sional basic equation for the thermal stress of a F G M  hollow circular cylinder without exter- 
nal forces is as follows: 

A 2 A 2 M i ( r , z ) = O  at r i- i  <_r<r i ,  i = 1 , 2 , . . . , L ,  (14) 

l + ' { c h { T i S ( r , z ) + O i ( r , z , t ) }  at ri l <_r<_ri, i = l , 2 , . . . , L ,  (15) V2r = 1 - vi 

where Mi(r, z) and r z, t) denote Michell's function [17] and Goodier's thermoelastic dis- 
placement potential function [18], respectively, and c~i and ui are the coefficient of linear ther- 
mal expansion and Poisson's ratio of the i-th layer, respectively. 

Considering the form of the temperature, we can obtain the solution of Eq. (14) as: 

Mi(r , z) = e~ [/r0(/3r)/~i @ K0(/~T) ~/ @ r~rl(/3 r) P /n  t- 'Pf(l(/3r) @i] sin (/3z) d/3, 
0 

(16) 

where I0, K0, I1 and K1 are the modified Bessel functions, respectively, and Ei (/3), Fi (/9), Pi (fl) 
and Qi (/3) are coefficients to be evaluated. 

Finally, we can obtain the solution of Eq. (15) as 

\1  - ~,~ ~ ~ {r~rl (/3r) A~ - rK1 (/3r) B~} cos ( 9 4  g/3 
0 

o~:l OZm 
0 

(17) 
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Thus, we can obtain the thermal stresses and displacements in the i-th layer as: 

(~.)~ = 2G~ [Oz 

(~ )~ - -  2 ~  [ ~  {(2 - -~) A~M~ - -  

( ~ ) i  = 2Gi [ ~  { ( 1 -  ui) Zl~Mi - - -  

O@ O~ M~ 

( u J i -  Or O r O z '  

O@ 
( ~ ) ~  : ~ + 2(1 - ,,~) a 2 ~  - - -  

where Gi is the shear modulus. 

~iA2M~- Or 2 j + Or 2 1 - ~  

~iA2M{ rot  J ~ rcOr 1 - ~i ai(Ti~ + 0{) , 

02M~ 
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(18.1) 

(18.2) 

o~Mi]  o~r 1 +,,~ ~(T,~ ~ + 0{)] 
J ~ Oz 2 1 - ,{ J 

(18.3) 

cOz2 j -I- O-~zJ , (18.4) 

C~Z2 

(18.5) 

(18.6) 

The unknown coefficients Ei, Ei, Pi, Q{ given in Eq. (16) are determined so that Eqs. (18) 
should satisfy the mechanical boundary conditions given in Eqs. (13) and the following conti- 
nuity conditions of stresses and displacements: 

(a~'~')i ---- (~<)i+I at r = ri, i = i, 2,... , (L - 1) (19.1) 

(Grz)i : -  (Crrz)i+l a t  r : r i ,  i : 1 ,  2 , . . .  , ( L  - 1) (19.2) 

(~,)~ : (~,)~+~ at r = r~, i : 1 , 2 , . . . ,  (L - 1) (19.3) 

(~)~ = (~)~+~ ~t r = ~ ,  i : 1, < . . . ,  ( L -  1). (19.4) 

3 Numerical results and discussion 

Numerical calculations are carried out for a FGM hollow circular cylinder with an infinite 
length made of zirconium oxide and titanium alloy. The material properties, the volumetric 
ratio of the metal, V~ = (1 + / ~  -/~)M, and the porosity as a function of the position 
P = Ap(/~ - / ~ )  (1 +/~a - -  -~) are used in Ref. [1], respectively. /~ denotes the dimensionless 
position defined by/~ = r/(rb - r~). 

As an illustrative example, we consider that the inside and outside surfaces of the cylinder 
are subjected to partial heating as follows: 

T ~ ( ~ ) = T 0 + T l c o s ( ~ 2 / 2 )  at ~ = ~ a ( = r ~ / ( r b - ~ ) ) ,  0 < ~ < 1 ,  

T b ( ~ ) = T 0 + T 2 o o s ( ~ / 2 )  at } t = i ~ b ( = ~ / ( r ~ - r ~ ) ) ,  0 < ~ < 1 ,  

Ta(~)=Tb(z)=To at / { = / ~ = / ~ b ,  Z_>I, 

where To, T1 and T2 denote the initial and arbitrary temperatures, respectively. 
For the numerical calculations, we used the dimensionless quantities as follows: 

T = ( T  - T o ) / T o ,  ~ = ~/(~b - r ~ ) ,  ~ = ~ t / ( r b  -- r~) ~ , 

where 2P, 2, ~- and , ~  denote the dimensionless temperature, the dimensionless position in the 
z-direction, the Fourier number and the thermal diffusivity of the metal, respectively. 
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Fig. 1. Unsteady dimensionless tem- 
perature distribution with dimension- 
less position at r = 0.01 (T1 = 0.5 K, 
T 2 - 1 . 5  K, To = I.0 K , ~ a  =5,  M = I, 
P =  O) 

Fig. 2. Unsteady dimensionless tem- 
perature distribution with dimension- 
less position at -r = co, (T1 = 0.5 K, 
2/72 =1.5 K, % = 1.0 K , / ~ a -  5, dldr= 1, 
P =  o) 

Figures 1 and 2 show the dimensionless temperature  distr ibution of  a F G M  hollow circu- 

lar cylinder with dimensionless posit ion.  After checking the convergence of  the series in the 

temperature  solution, the t runcated numbers of  the series are selected as m = 50, and the 

number  of  layers L - 50 is used in Eq. (9). 

Tables 1 and 2 show the convergence of  the thermal stresses with the number  o f  layers L 

at two kinds of  the Four ier  number,  respectively. The convergence of  the steady solution is 

faster than that  of  the unsteady solution, but  the convergence of  the solution at the small 

Four ier  number  r = 0.01 requires many layers in order to achieve a high degree of  accuracy. 

Tables 3 and 4 show the convergence of  the thermal stresses with the number  of  eigenva- 

lues m at two kinds of  the Four ie r  number,  respectively. The convergence of  the steady and 

unsteady solution is very fast, and the effect of  the number  of  eigenvalues is small in compari -  

son with that  of  the number  of  layers. When the t runcated numbers of  series and  the number  

of  layers are selected as ra = 50 and L = 150, it  can be considered that sufficient convergence 

for the solution is achieved. 

Figures 3 - 6  show the variat ion of  the unsteady thermal stress dis tr ibut ion versus the 

dimensionless radial  posi t ion for different values of  the Four ier  number  in a two-dimensional  
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Table 3. Thermal stresses versus the number  of eigenvalues m 
for three kinds of dimensionless position at ~- = oo (L = 50, 
T1 = 0.5 K, T2 = 1.5 K,/~a -- 5, M =  1, P = 0) 

The number  of 10 50 
Eigenvalues m 

R R~ - 0 .5  

z = 0 . 1  

R-Ra - 0 . 9  

~--0.I 

R Ra 0.9 
z = 0 . 5  

(7~,. 0.045 260 906 0.045 260 906 
o-,-~ -0 .014450528 -0 .014 450 528 
(7o0 -0 .284169957 -0 .284 169 957 
(7~ 0.106 478 126 0.106478 126 

o>~. 0.024773 148 0.024773 148 
(7r~ 0.000 087 057 0.000 087 057 
(70o - 1.218 152585 - I .218152585  
(7~z - 0.075 763 344 - 0.075 763 344 

(7~.  0.016624085 0.016624085 
o-~ 0.000498 131 0.000498 131 
(700 -0 .806496959 -0 .806496 959 
o-~ 0.097 342 374 - 0.097 342 374 

Table 4. Thermal stresses versus the number  of eigenvalues m for three kinds of dimensionless position at 
T = 0 . 0 1 ( L  150, T ~ = 0 . 5 K ,  T 2 = 1 . 5 K ,  R o = 5 ,  M - 1 ,  P = 0 )  

The number  of 10 20 30 40 50 
Eigenvalues m 

R - R~ = 0.5 
z = 0 . 1  

/~ - / ~ a  = 0.9 
z=O.l 

/ ~ - / ~ a  = 0.9 
z = 0 . 5  

o% -0 .004 990 571 -0.004 990 594 0.004 990 594 -0 .004 990 594 -0 .004 990 594 
(7~z 0.012591250 -0 .012591227 -0 .012591227 0.012591227 -0 .012591227 
(7oo 0.837114726 -0 .837111976 -0 .837111976 -0 .837111976 -0 .837111976 
(7z~ 0.397972296 0.397969486 -0 .397969486 0.397969486 -0 .397969486 

G~ 0.015209839 0.015 209 815 0.015209815 
~7.rz -0 .004 603 013 0.004 603 002 -0 .004 603 002 
(7oo -0.231288 367 0.231290902 -0.231 290902 
(Tzz 0.719268 104 0.719265404 0.719265404 

0.015209815 0.015209815 
0.004 603 002 -0.004 603 002 

-0.231 290902 -0 .231290902 
0.719 265 404 0.719 265 404 

~Tr~ 0.01l 197520 0.011 197504 0.011 197504 0.011 197504 0.01l 197504 
cr~.~ -0 .016802477 0.016802408 -0 .016802408 0.016802408 -0 .016802408 
~00 -0.099242961 0.099244772 -0 .099244772 0.099244772 0.099244772 
crzz 0.502 749 858 0.502 747 960 0.502 747 960 0.502 747 960 0.502 747 960 

F G M  a n d  h o m o g e n e o u s  h o l l o w  c i rcu la r  cy l inder ,  respect ively.  In  these  f igures,  t he  d i s t r ibu -  

t ion  a n d  va lues  o f  h o o p  stress  (7oo a n d  axia l  s t ress  (7zz are  s imilar ,  b u t  the  d i s t r i b u t i o n s  o f  the  

r ad ia l  s t ress  (7r~ a n d  shea r  s tress  (7~z are  d i f fe ren t  f r o m  them,  a n d  these  va lues  are  m u c h  smal-  

ler t h a n  those  o f  (7oo a n d  (7zz at  the  s ame  F o u r i e r  n u m b e r .  Thus ,  h o o p  stress  (7oo a n d  axia l  

s t ress  (7~z a re  the  g o v e r n i n g  s tresses  in  a F G M  a n d  h o m o g e n e o u s  h o l l o w  c i rcu la r  cy l inder ,  a n d  

it  is s h o w n  t h a t  these  u n s t e a d y  com pr es s ive  s tresses  a t  the  c e r amic  side a re  g rea t e r  t h a n  t h a t  

o f  the  s t eady  state.  

F igu re s  7 - 1 2  s h o w  the  t w o - d i m e n s i o n a l  u n s t e a d y  t h e r m a l  s tress  d i s t r i b u t i o n s  w i th  the  

d i m e n s i o n l e s s  p o s i t i o n  for  the  F o u r i e r  n u m b e r s  T = 0.01 a n d  ~- = e~, respect ively.  H o o p  stress  

(7oo a n d  axial  s t ress  (Tz~ a t  the  h e a t e d  sur face  are c h a n g e d  s ign i f ican t ly  a c c o r d i n g  to the  va r i a -  
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Fig. 3. Thermal  stress ~r~- of  a F G M  and homogeneous  hollow circular cylinder (T1 = 0.5 K, T2 - 1.5 K, 
R~ = 5, P = O) 
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Fig. 4. Thermal stress ~rz of a F G M  and homogeneous hol]ow circular cylinder (T1 = 0.5 K, T2 = 1.5 K, 
/ ~  = 5, P = O) 
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Fig. 5. Thermal  stress croo of  a F G M  and homogeneous  hollow circular cylinder (T1 = 0.5 K, T,~ = 1.5 K, 
k~ = 5, P = 0) 
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Fig. 6. Thermal stress a~z of a F G M  and homogeneous hollow circular cylinder (T1 = 0.5 K, T2 = 1.5 K, 
P~ =5, P=0)  
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Fig. 7. Two-dimensional unsteady 
thermal stress distributions cr~T with 
dimensionless position at ~-= 0.01 
(T~=0 .5K,  T 2 = l . S K ,  / ~ = 5 ,  
M = I , P = 0 )  

Fig. 8. Two-dimensional unsteady 
thermal stress distributions ~r~ with 
dimensionless position at z = 0.01 
( T t = 0 . 5 K ,  T ~ = I . S K ,  / ~ = 5 ,  
M = I , P = 0 )  

Fig. 9. Two-dimensional unsteady 
thermal stress distributions o00 with 
dimensionless position at ~-= 0.01 
( T I = 0 . 5 K ,  T 2 = l . 5 K ,  f~a=5 ,  
M--= 1, P = 0) 
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Fig. 10. Two-dimensional unsteady 
thermal stress distributions cruz with 
dimensionless position at ~-= 0.01 
(T1-0 .5K,  T2=1.SK, /~a=5, 
M = I , P = 0 )  

Fig. 11, Two-dimensional unsteady 
thermal stress distributions c~00 with 
dimensionless position at ~-= eo 
(T~=0.5K, T2=1.5K, 2 ~ = 5 ,  
M = I , P = 0 )  

Fig. 12. Two-dimensional unsteady 
thermal stress distributions cr~.~ with 
dimensionless position at T =  eo 
(TI=0.5K,  T2=l..SK, /~a=5, 
M = I , P = 0 )  
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tion of  the dimensionless time, while radial stress cr,.~, and shear stress cr,.z on the internal posi- 

tion are changed significantly. That  is, the maximum compressive hoop and axial stress were 

produced on the ceramic surface at a very small time, while the maximum tensile radial stress 

occurs on the internal position of  the cylinder. 

3 Conclusions 

A Green's function approach for analyzing the unsteady temperature field and the associated 

thermoelastic field in a two-dimensional F G M  hollow circular infinite cylinder with one- 

directionally dependent properties is proposed. Green's functions for analyzing the tempera- 

ture field are formulated by using the laminate theory and the proper eigenfunction expan- 

sion. The eigenvalues and the corresponding eigenfunctions for each layer satisfy the continu- 

ity conditions of  temperature and heat flux at the interfaces. The associated thermoelastic 

field is formulated to satisfy the continuity conditions of  thermal stresses and displacements 

at the interfaces with Michell's function and the thermoelastic displacement potential func- 

tion. Therefore, by a comparison of the numerical results with the number of  layers, we show 

that the proposed method is simple and accurate. The proposed method has a potential of  

being used to aid the calculation of  the optimum material distribution in a F G M  hollow circu- 

lar cylinder. 
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