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Summary. A Green’s function approach based on the laminate theory is adopted for solving the two-
dimensional unsteady temperature field (r,2) and the associated thermal stresses in an infinite hollow
circular cylinder made of a functionally graded material (FGM) with radial-directionally dependent prop-
erties. The unsteady heat conduction equation is formulated as an eigenvalue problem by making use of
the eigenfunction expansion theory and the laminate theory. The eigenvalues and the corresponding
eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green’s function
solution for analyzing the unsteady temperature. The associated thermoelastic field is analyzed by making
use of the thermoelastic displacement potential function and Michell’s function. Numerical results are
carried out and shown in figures.

1 Introduction

A functionally graded material (FGM) is characterized by continuously changing material
properties due to a graded composition from one surface to the other surface. For non-homo-
geneous materials such as FGMs, the governing equations of the unsteady temperature field
and the associated thermoelastic field in an infinite hollow circular cylinder are presented in
complex forms according to position dependent material properties. Therefore, the theoretical
treatment for these equations is difficult, and an exact solution is almost impossible to obtain.

Tanigawa [1] reviewed some basic problems for nonhomogeneous structural materials.
Obata and Noda [2] discussed unsteady thermal stresses in a functionally gradient material
(FGM) plate, and Obata et al. [3] analyzed the two-dimensional unsteady thermal stress in a
FGM bhollow circular cylinder by using the Laplace transformation and the perturbation
method. Ootao and Tanigawa [4] treated three-dimensional transient thermal stress analysis
in a nonhomogeneous hollow sphere, and Tanigawa et al. [5] studied transient heat conduc-
tion and thermal stress problems of a nonhomogeneous plate by use of the Laplace transfor-
mation and multi-layers approximation approach.

On the other hand, the Green’s function approach for homogeneous materials has been
well known. Carslaw and Jaeger [6] explained the use of Green’s functions in the solution of
the equation of conduction in their book, Parkus [7] described the Green’s function for tem-
perature, and Boley and Weiner [8] discussed the Green’s function technique in their book.
However, there is little work about Green’s function for nonhomogeneous materials such as
FGMs. Diaz and Nomura [9] used a Green’s function approach for two-dimensional elastic
problems. Nomura and Sheahen [10] used a Green’s function based on the Galerkin method
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to analyze steady thermal stresses in a two-dimensional FGM plate. Kim and Noda [11] used
a Green’s function based on the Galerkin method to analyze the three-dimensional transient
temperature for thermal stresses of a functionally graded material. Kim and Noda [12] used a
Green'’s function based on the laminate theory to analyze the three-dimensional heat conduc-
tion equation of functionally graded materials.

Many workers have studied the thermal stress problems in homogeneous cylinders
subjected to nonstationary heating, because there are many practical applications in modern
engineering. Many kinds of transient thermal stress problems in homogeneous cylinders are
treated in several books, e.g., by Parkus [7], Boley and Weiner [§8], and Nowacki [13]. But
there is little work done to determine the thermal stresses in nonhomogeneous cylinders such
as FGM cylinders. Obata and Noda [14] discussed steady thermal stresses in a hollow circular
cylinder and a hollow sphere of FGM. Ootao, Akai, and Tanigawa [15] studied three-dimen-
sional transient thermal stresses in a nonhomogeneous hollow circular cylinder due to a
moving heat source. Tanigawa et al. [16] treated the one-dimensional transient thermal stress
problem for nonhomogeneous hollow circular cylinders.

In this paper, we discuss the Green’s function technique based on the laminate theory for
an infinite hollow FGM cylinder subjected to temperature variations along both r- and z-axis.
Since almost all FGMs are materials whose compositions are dependent on a function of one-
directional position from a metal surface to a ceramic surface, it is assumed that the thermal
properties of FGMs are dependent on the one-directional position. As for the analytical treat-
ment, introducing the analytical technique for the laminate theory and taking into account
the bounds that the number of laminae becomes sufficiently large, the unsteady temperature
solution for a two-dimensional FGM hollow circular cylinder with an infinite length is formu-
lated by the Green’s function approach based on the laminate theory. An approximate solu-
tion of the cigenfunction expansion method for each layer is substituted into the governing
equation to yield an eigenvalue problem. The eigenvalues and the corresponding eigenfunc-
tions resulting by solving an eigenvalue problem for each layer constitute the Green’s function
solution for obtaining the two-dimensional unsteady temperature distribution. The associated
thermoelastic field is analyzed by making use of the thermoelastic displacement potential
function [17] and Michell’s function [18].

As an example, a FGM hollow circular cylinder with an infinite length, which is made of
zirconium oxide and titanium alloy, is selected. Numerical results, such as the temperature
distribution and the thermal stress distribution, are shown in the figures.

2 Analysis

We consider the two-dimensional unsteady temperature field and the associated thermoelastic
field in an infinite hollow circular cylinder (r, z) made of a functionally graded material whose
thermal properties vary with the radial coordinate r. The inside and outside radii of the
hollow circular cylinder are r, and 7, respectively, and it has an infinite length in 2-direction.
We assume the thermal condition that the inside and outside surface are heated to Ty + 7, (2)
and Tg + T,(2), where Ty, T,(2) and T(z) are the initial temperature, and an arbitrary even
function at r = r, and r = 3, respectively. Assuming that the number of laminae becomes
sufficiently large and the thermal properties of each layer are constants, we consider a lami-
nated medium consisting of L layers in the temperature field and the associated thermoelastic
field.
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2.1 Two-dimensional steady temperature

Assuming that the thermal properties are dependent on the r-directional position and that the
temperature is independent of the hoop direction position, the solution of the steady-state
heat conduction equation for the i-th layer is assumed to be [19]:

Tis(r,2) = ;fo{lg(ﬁr) Ai + Ko(Br) B} cos (82) dB, 1)

where Tﬁ( =T/(r,z,t) — T()) and [ are the temperature difference from the initial state and a
parameter, respectively.

Thus, we can obtain the steady state solution 7;°(r, z) by using the continuous conditions
of temperature and heat flux at the interfaces, and the nonhomogeneous boundary conditions
at the inside and outside surface as:

T =Tuz) at r=r,, (2.1)

TP =T;y at r=r, i=12..(L-1), (22)
oty ot .

ki =5 = Fin a:l at r=mr, i=12,...,(L-1), (2.3)

T, =Ty(2) at r=my, _ (2.4)

where k; is the thermal conductivity of the ¢-th layer.

2.2 Two-dimensional unsteady temperature

The governing equations of the unsteady-state problem in the absence of a heat source and
the initial conditions for each layer are given as

VQGLZ)\—i—a—t— at o1 <r<r, i=1,2,...,L (3)
0;(r,z,0) = Fi(r,z) = -T,°(r,z) at r_y <r<m, 1=1,2,...,L (4)
where
VZ= 8‘2 _Q 8_2

ar2  ror = 922"

and 0; and \; are the temperature change and the thermal diffusivity of i-th layer, respectively.
Using the eigenfunction expansion theory and the separation of variables, we can obtain the
solution of Eq. (3) as [19]

o0 o<

0i(r,z,t) = 3. [ cm(B) Qim(om, 1) cos (Bz) e @)t g, (5)
m=1 0

at Ti_1§T_<_TZ', i:1,2,...,L,

where ¢, () are constants to be evaluated. Substituting Eq. (5) into Eq. (3) yields an eigen-
value problem,

3} By, o? ‘
@{T g;m}+_?80im:0 at riy <r<r, 1=1,2,...,L, (6)

A
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where a., and ¢, are eigenvalues and eigenfunctions to be evaluated, respectively. Applying
the initial conditions of Eq. (4) to Eq. (5), the coefficients ¢,,{6) are obtained as

T3

/ / r'Fi(r',2) ojm (1) cos (B82) dr' d, (7
0

=T

2 1 &k
Cm(ﬁ)*;mz)\—j

=1
where the norm N,, is defined as
L P . _
M=) L[ e 0
r=r;1

Substituting Eq. (7) into Eq. (5) and introducing Green’s function, the solution of Eq. (3)
yields

L oo 7
bi(r,zt) =Y, [ [ v'Gij(r,z,t| v, 2, |peg Fi(r', 2) dr' d2 (9)
j=1 0 r=rjy

where Gy;(r, z,t |7, 2, t'}l,._, is defined as
J ¥=0

2 1 ks 2 2
Gij(ry 2, 8|7, 20wy == Z N /\J Dim (T gojm(r)/cos cos (37) et At g3,

m=1 " ™

(10)

2.3 Determination of eigenfunctions and eigenvalues

The general solution ;,, of Eq. (6) can be written as [19]:

gDZm(T) szj()<\/>\v )+Dzm%<\/>\— ) at T‘Z;1S7“§7“7;, i:1723~'-7L7 (ll)

where Jy and Y; denote the Bessel function of the first and second kind of order zero, respec-
tively, and Cy,, and Dy, are coefficients to be evaluated.

Applying the continuity conditions of temperature and heat flux at the interfaces to
Eq. (11), the simultaneous equations for Cj,, and D, are written in matrix form as

Com\ _1P1 P2ifCum o .
(Dzim)vi:le PQQ:] (Di+1,m at r=m;, i=1,2,...,L, (12)

where
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kb o) () 0( )
Pp= — Vv 2o - Y, ) b
%2 DET{ kA Jo(\/;\—Z ) 1( v Tiyl 1 \/)\»Z \ o Tiyl

w435 ) 1(350) )

Therefore, the eigenvalues «;, are determined from Eq. (12) and the homogeneous boundary
conditions at the inside and outside surface, and the corresponding eigenfunctions for all
layers are determined from Eq. (12).

2.4 Thermal stress analysis

We consider the unsteady thermal stresses in a FGM hollow circular cylinder due to the two-
dimensional unsteady temperature change along both the r- and z-axis. We assume that the
mechanical boundary conditions are traction free and that there is symmetry along the z-axis
as follows:

Opr(Ta,2) = 072(16,2) =0 at r=r,, 0<z<00, (13.1)
Orr(rh,2) = 0ps(19,2) =0 at r=ry, 0<z< 0. (13.2)

When the material properties are functions of the r-directional position, the two-dimen-
sional basic equation for the thermal stress of a FGM hollow circular cylinder without exter-
nal forces is as follows:

APAPMi(r,2) =0 at 7o <r<m, i=1,2....L, (14)

1+y I

Vquﬁz-(r,z,t): ozz{T (r,2) +0:(r,z, )} at rg <r<wr, i=1,2,.. ,  (15)

)

where M;(r,z) and ¢;(r, z,t) denote Michell’s function [17] and Goodier’s thermoelastic dis-
placement potential function [18], respectively, and «; and v; are the coefficient of linear ther-
mal expansion and Poisson’s ratio of the i-th layer, respectively.

Considering the form of the temperature, we can obtain the solution of Eq. (14) as:

Mi(r, 2) :fo 16(8r) B + Ko(Br) Fy+ 11 (Br) P, + r Ky (8r) Q] sin (62) 8, (16)

where /y, Ko, [1 and K; are the modified Bessel functions, respectively, and E;(8), F;(5), Bi(8)
and Q;(0) are coefficients to be evaluated.
Finally, we can obtain the solution of Eq. (15) as

di(r, z,t) = (1+VZ >/iﬁ {rI1(fr) A; — rK1(0r) B;} cos (Bz)dB
)

1+ vy AZCm(ﬂ) - LY ﬂz)t
TN i (s O tAPIL A3 1
(1 ” ) gzlo/ W Oim(Qm, 7) cos (Bz) e 3 17
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Thus, we can obtain the thermal stresses and displacements in the i-th layer as:

(o), = 2G; [;% (WAZMZ- - %@V@ % - 1 f Z ai(T7" + 92-)} : (18.1)
(099), = 2G; [% (yiAzMi ~ —6;;\/177) fg; - 1 i : o (T + 92)} : (18.2)
(02); = 2G; [?98; {(2 ) AM, — %Zgi} %2% - 1 - '; oi(T3* + ei)} , (18.3)
(0r2); = 2G; [a% (1—v) A*M; - ‘—9;—%} %} : (18.4)
= s
(us); = %ﬁz +2(1 - ) AM; ~ 3;2\24' ; (18.6)

where G; is the shear modulus.

The unknown coefficients E;, F;, P;, (}; given in Eq. (16) are determined so that Eqs. (18)
should satisfy the mechanical boundary conditions given in Eqgs. (13) and the following conti-
nuity conditions of stresses and displacements:

(Om); = (Om)iy at r=r, i=1,2,...,(L-1) (19.1)
(0r2); = (Or2)iq At 7=y, i=1,2,... (L-1) (19.2)
(Ue); = (up);, At 7T=ry, i=1,2,... (L-1) (19.3)
(uz); = (uz);y, at r=mny, i=12,... (L-1). (19.4)

3 Numerical results and discussion

Numerical calculations are carried out for a FGM hollow circular cylinder with an infinite
length made of zirconium oxide and titanium alloy. The material properties, the volumetric
ratio of the metal, Vj, = (1 4+ R, — R)M, and the porosity as a function of the position
P=A,(R~R,)(1 + R, — R) arc used in Ref. [1], respectively. R denotes the dimensionless
position defined by R = r/(ry — 7).

As an illustrative example, we consider that the inside and outside surfaces of the cylinder
are subjected to partial heating as follows:
To(Z) = To+ Ticos (nz/2) at R= Ro(=r./(rs —1a)), 0<z<1,
Tb(Z):T0+T2COS(7TE/2) at R:Rb<:’l"b/(7’b‘7"a)), 0
Ta(z):Tb(Z):Tg at R:Ra:Rb, 521,

where Ty, T} and T denote the initial and arbitrary temperatures, respectively.
For the numerical calculations, we used the dimensionless quantities as follows:

T=(T-T)/Ty, z=2z/(n-7a), 7=Ant/(rs—7a),

where T', 2, T and ), denote the dimensionless temperature, the dimensionless position in the
z-direction, the Fourier number and the thermal diffusivity of the metal, respectively.
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Fig. 1. Unsteady dimensionless tem-
perature distribution with dimension-
less position at 7=0.01 (T} =0.5 K,
T,=15K, Tp=10K, R, =5 M =1,
P=0)

Fig. 2. Unsteady dimensionless tem-
perature distribution with dimension-
less position at T =00, (71 =05 K,
T,=15K, Tp=10K, R, =5 M =1,
P =0)

Figures 1 and 2 show the dimensionless temperature distribution of a FGM hollow circu-
lar cylinder with dimensionless position. After checking the convergence of the series in the
temperature solution, the truncated numbers of the series are selected as m = 50, and the
number of layers L = 50 is used in Eq. (9).

Tables 1 and 2 show the convergence of the thermal stresses with the number of layers L
at two kinds of the Fourier number, respectively. The convergence of the steady solution is
faster than that of the unsteady solution, but the convergence of the solution at the small
Fourier number 7 = 0.01 requires many layers in order to achieve a high degree of accuracy.

Tables 3 and 4 show the convergence of the thermal stresses with the number of eigenva-
lues m at two kinds of the Fourier number, respectively. The convergence of the steady and
unsteady solution is very fast, and the effect of the number of eigenvalues is small in compari-
son with that of the number of layers. When the truncated numbers of series and the number
of layers are selected as m = 50 and L = 150, it can be constdered that sufficient convergence
for the solution is achieved.

Figures 3—6 show the variation of the unsteady thermal stress distribution versus the
dimensionless radial position for different values of the Fourier number in a two-dimensional
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Table 3. Thermal stresses versus the number of eigenvalues m
for three kinds of dimensionless position at 7= oo (L = 50,
T, =05K, T, =15K,R, =5,M=1,P=0)

The number of 10 50
Eigenvalues m

Orr 0.045260 9506 0.045260 906
” . Orz —-0.014450528 -0.014450528
=01 o) —-0.284169957  —0.284 169957
Oz 0.106478 126 0.106478 126

Wy,
|
1l

=)

o

Orr 0.024773 148 0.024773 148

R-R,=09 Ore 0.000087057  0.000087057
7=0.1 oep  ~1.218152585 —1.218152585
0. —0.075763344  -0.075763344
O 0.016624085  0.016 624085
R-R,=09 O 0.000498 131 0.000498 131
7=0. o —0.806496959  —0.806 496959

Oz —-0.097342374 -0.097342374

Table 4. Thermal stresses versus the number of eigenvalues m for three kinds of dimensionless position at

r=001(L=150,Ty =05K, Ty =15K, B, =5, M =1, P=0)

The number of 10 20 30 40 50
Eigenvalues m
o —0.004990571 -0.004990594 —0.004990594 —0.004990594 —0.004990 594
R—R,=05|0, —0.012591250 -0.012591227 -0.012591227 —0.012591227 -0.012591227
z=0. ogg —0.837114726 —-0.837111976 -0.837111976 —-0.837111976 -0.837111976
0 —0.397972296 —0.397969486 —0.397969486 —0.397969486 —0.397969 486
Tpr 0.015209839 0.015209 815 0.015209815 0.015209815 0.015209815
R-—R, =090, -0.004603013 —0.004603002 —0.004603002 —0.004603 002 —0.004 603002
z=0. oge —0.231288367 —0.231290902 -0.231290902 -0.231290902 —0.231290902
sy 0.719268 104 0.719265404 0.719 265404 0.719265404 0.719265404
O 0.011197520 0.011 197504 0.011 197504 0.011197504 0.011197 504
R—R, =090, -0.016802477 —0.016802408 —0.016802408 —0.016802408 —0.016802408
z=0. ogg  —0.099242961 —0.099244772 -0.099244772 —0.099244772 —0.099244772
o,  0.502749858 0.502747960  0.502747960  0.502747960  0.502747 960

FGM and homogeneous hollow circular cylinder, respectively. In these figures, the distribu-
tion and values of hoop stress ogy and axial stress o, are similar, but the distributions of the
radial stress o, and shear stress o,, are different from them, and these values are much smal-
ler than those of ¢y and o, at the same Fourier number. Thus, hoop stress oy and axial
stress o, are the governing stresses in a FGM and homogeneous hollow circular cylinder, and
it is shown that these unsteady compressive stresses at the ceramic side are greater than that
of the steady state.

Figures 7—12 show the two-dimensional unsteady thermal stress distributions with the
dimensionless position for the Fourier numbers 7 = 0.01 and 7 = oo, respectively. Hoop stress
ogp and axial stress o, at the heated surface are changed significantly according to the varia-
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Fig. 3. Thermal stress o, of a FGM and homogeneous hollow circular cylinder (77 = 0.5 K, Ty = 1.5 K,
R, =5,P =0)
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Fig. 7. Two-dimensional unsteady
thermal stress distributions o, with
dimensionless position at 7 = 0.01
(I, =05K, T,=15K, R,=5,
M=1,P=0)
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Fig. 8. Two-dimensional unsteady
thermal stress distributions o, with
dimensionless position at 7= 0.01
(Ty =05K, T,=15K, R,=35,
M=1P=0)

Fig. 9. Two-dimensional unsteady
thermal stress distributions ogg with
dimensionless position at 7= 0.01
(Ty =05K, T,=15K, R,=5,
M=1,P=0)
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Fig. 10. Two-dimensional unsteady
thermal stress distributions o, with
dimensionless position at 7= 0.01
(W =05K, Tp=15K, R,=5,
M=1P=0)
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Fig. 12. Two-dimensional unsteady
thermal stress distributions o,, with
dimensionless position at T =00
(T) =05K, T, =15K, R,=35,
M=1,P=0)
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tion of the dimensionless time, while radial stress o, and shear stress o, on the internal posi-
tion are changed significantly. That is, the maximum compressive hoop and axial stress were
produced on the ceramic surface at a very small time, while the maximum tensile radial stress
occurs on the internal position of the cylinder.

3 Conclusions

A Green’s function approach for analyzing the unsteady temperature field and the associated
thermoelastic field in a two-dimensional FGM hollow circular infinite cylinder with one-
directionally dependent properties is proposed. Green’s functions for analyzing the tempera-
ture field are formulated by using the laminate theory and the proper eigenfunction expan-
sion. The eigenvalues and the corresponding eigenfunctions for each layer satisfy the continu-
ity conditions of temperature and heat flux at the interfaces. The associated thermoelastic
field is formulated to satisfy the continuity conditions of thermal stresses and displacements
at the interfaces with Michell’s function and the thermoelastic displacement potential func-
tion. Therefore, by a comparison of the numerical results with the number of layers, we show
that the proposed method is simple and accurate. The proposed method has a potential of
being used to aid the calculation of the optimum material distribution in a FGM hollow circu-
lar cylinder.
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