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Summary-  Zusammenfassung 

Crack Propagation in a Laminated Composite Material Modeled by a Two-Dimensional 
Mixture Theory. A two-dimensional mixture theory is developed for wave-propagation in a 
laminated composite material. The formulated theory is applied for the treatment of a semi- 
infinite crack propagating in the composite in mode-I and I I  types of motion. The maximum 
velocity of the crack tip is determined by the minimum value of the dispersion curves of the 
relevant generalized l~ayleigh waves in ~he medium. A numerical procedure is applied for the 
determination of the dynamic stress fields induced by the propagating crack in a laminated 
composite made of glass-epoxy layers. 

RiBausbreitung in einem geschichteten kompositen Material, beschrieben durch eine 
zweidimensionale Mischungstheorie. Eine zweidimensionale Mischungstheorie wird fiir die 
Wellenausbreitung in einem geschichteten kompositen Material entwickelt. :Die formulierte 
Theorie wird fiir die Behandlung einer halbunendlichen Rii~ausbreitung im Komposit in 
~ode-I und I I  Bewegungsformen angewendet. Das Gcsehwindigkeitsmaximum der RiB- 
spitze wird durch den minimalen Wert der Dispcrsionskurve der entsprechenden ver~llgc- 
meinerten Rayleigh-Wellen im Medium bestimmt. Ein numerisches Verfahren wird ange- 
wendet fiir die Bestimmung der dynamischen Spannungsfelder hervorgerufen durch den aus- 
breitenden Ril~ in einem geschichteten Komposit aus Glas-Epoxy-Lagen. 

Introduction 

There are several papers concerning the propagat ion  of cracks in homogeneous  
media. A recent review by  Achenbach [1] presents the mathemat ica l  methods  for  
the analysis of e lasto-dynamic stress fields near propagat ing  cracks as well as a 
list of references for several investigations related to the subject. 

The problem of crack propagat ion  in composite materials is much more  
complicated than  the corresponding problem in homogeneous media due to the  
existence of const i tuent  interfaces. Accordingly,  there are only some works which 
t reat  crack problems in a composite body  made of two or three layers only;  see 
for example Aboudi  [2] and the references cited there for a crack p ropaga t ing  
along the interface between two dissimilar half-spaces, and Atkinson [3] for a 
crack propagat ing  across the  interface. The problem of the diffraction of anti-  
plane harmonic shear waves b y  a crack in a layered composite made of a single 
layer  bonded to two identical half-spaces has been t rea ted  in references [4] and [5]. 
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By modeling the multiphase medium while taking into account its micro- 
structure it is possible to t reat  crack propagation in such media. In  this paper we 
develop a two-dimensional mixture theory for a bi-laminated composite medium, 
which, by  incorporating two displacement components makes possible to t reat  the 
three-dimensionM elasto-dynamic problem of a semi-infinite crack propagating in 
the direction of the laminates while intersecting all the interfaces simultaneously. 
The mierostrueture effects in this mixture model are taken into account by  
allowing every constituent to have its own motion while interacting with the 
other. 

In  Section I we present the mixture theory which, by  means of an averaging 
process, replaces the bi-laminated composite material  in its three-dimensionM 
motion by  a two-dimensionM binary mixture model. The resulting system of four 
dynamic equations of motion are coupled by  means of terms which express the 
interaction between the constituents. A similar two-dimensionM mixture theory 
for wave propagation from a cylindrical cavity in a laminated medium has been 
formulated in [6]. For other forms of mixture theories see a recent review by  
Atkin and CrMne [7]. 

In  Section I I  of this paper the problem of a semi-infinite crack propagating in 
the direction of the layering is formulated in the framework of the developed 
mixture theory for mode-I  as well as for mode- I I  type  of crack motion. In  treating 
such a problem of crack propagation the question of the velocity of the crack tip 
has to be investigated. For cracks propagating in a homogeneous medium in in- 
plane motion, the gayleigh wave speed forms the upper limit for the velocity of 
the crack [8] ; for an interracial crack this limit is determined by  the smallest value 
of the t~ayleigh waves in the two media, [9], [10]. The situation is much more 
complicated in the ease of a composite material containing many  interfaces. In  
this paper we propose to determine the maximum crack velocity by  the minimum 
value of the dispersion curves of the relevant generalized Rayleigh waves in the 
laminated medium. The dispersion curves of these Rayleigh waves are developed 
in the framework of the formulated mixture theory and they are given for glass- 
epoxy laminates for the case of two reinforcement ratios. 

The method of solution is numerical and is essentially similar to a previous 
numerical t rea tment  of crack propagation along the interface of two dissimilar 
media [2]. 

l~esults are given for the normal stress in every constituent as well as for the 
overall average normM stress, for the case of a crack propagating in the mode-I  
type  of motion in a glass-epoxy laminated medium. The stress intensity factor can 
be extracted by  using the similar method exployed in [2]. 

Two- Dimensional Mixture Theory 

Consider a periodic array of two alternating isotropic linearly elastic layers of 
widths 2hl and 2h2 respectively. Let  z~ be a local coordinate measured from the 
midplane of each layer (see. Fig. la)  1. 

i In ~he sequel the superscript or the subscrip~ cr will take the values 1 and 2 and will 
indicate tha~ the quantities belong to either one of the constituents. 
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The eqtlat ions of mot ion  in each layer  are given by :  

~2 
(~) o~ ~ i  (~), i - -  X~ y ,  (1--3)  

where the  Eqs.  (1--3)  refer to the  equat ions of mot ion  in the  x, y and  z directions 
respect ively  and  r refer to the  der ivat ives  with respect  to x and  y for ] = x and  
y, and  to d e r i w t i v e  with respect  to z, for ] = z. I n  these equat ions ~i;" (~}, ui{"} are the  
stresses and  displacements  respect ively,  r is the dens i ty  of each const i tuent ,  and  
t is the  t ime.  

I 

r 

! "~2h 2 
~2h t 

(a) 

(b) 

Fig 1. a) A laminated half-space subjected to a oblique line load. b) A semi-infinite plane 
crack propagating in a laminated composite medium in the positive x-direction 

The  const i tu t ive  equat ions are 

'u  (~) {~)" (4--9)  (~) : (}~/t,e(") -H # . t  ia" + uj.i) (ri  1 

where these equat ions  refer to (;~x(~), %~(~), (~zz<~), ~xy{~), azz(~), %z(~) respect ively,  ~i  is the  
Kronecker  delta,  

e("~ (~) (10) ~-- 1~i, i 

and 2~ and /& are the Lamb  pa rame te r s  of the const i tuents .  
Le t  us now consider loading si tuat ions of the  composi te  med ium in which the  

u~(") d isplacements  are an t i - symmet r i c  and  the  u~ (~) and  uu (~) displacements  are 
symmet r i c  wi th  respect  to the  midplanes  of the  layers.  Note  t h a t  this mot ion  is 
quasi-plane in the  sense t ha t  the  averaged  mot ion  in the z-direction is vanishing. 
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Such a motion can be caused, for instance, when a laminated half-space, with the 
surface perpendicular to the layering, (see Fig. la) is impacted obliquely by  an 
uniform infinite line load perpendicular to the interfaces of the layers. 

We will now develop a microstructure theory which will model the laminated 
composite in this quasi-plane motion. Let  us define the average quant i ty  

~ ( ~ ) ( x , y , t ) ] - -  (1/h~) f $(~) (x, y, z~, t) dz~ 
0 

and the partial  stresses and densities as: 

where 

with 

(11) 

n : = h , / h  (13) 

where 

and 

h = h 1 47 h 2 . 

We note tha t  the stresses a (:) -(~) rr (:) (~) **, %~, ~xv, (~zz are symmetric and the stresses 
(~(a) -(~) x~, %~ are anti-symmetric with respect to the midplanes, this being due to the 
stated symmetry  and ant i -symmetry  of the displacements. Taking the average of 
Eqs. (1) and (2) according to (11), using the continuity conditions of the stresses 
a(~) and n(~) at the interfaces and their ant i -symmetry  properties we obtain the xz ~ y z  

following equations of motion: 

~2 

a__ax ~(~) 47 -~y~ -~v'~(~P) --  o~p --~t2 ~(~) q~R(x, y, t) 

[R(x, y, t)] h - ( ' ~  ~-- Oxz ~ ,  y ,  - - h i ,  t) ~- -xz'~(2~lx~ , J, ~' h2, t) = --a(x~)(x, y, hi, t) (16) 

[P(x, y, t)] h = ~(2)/~ .y~ ~ ,  y, h2, t) -~ a(v~(x, y, - -h i ,  t) ~__ --%~-(l)1~'~ y, hi, t) (17) 

ql --~ 1, q2 = - -1 .  (18) 

As it is seen, Eqs. (14) and (15) are in standard binary mixture form with R 
and P being the interaction terms. By means of an asymptot ic  method we will now 
develop constitutive equations relating the partial  stresses %x-(~P), %s("P), a(~P)zy to the 
average displacement gradients and furthermore expressions relating P and R to 
the mixture variables (average displacements and partial stresses) will be derived. 

(14) 

(15) 

(•(•p) -co) ~, y z x, y, o~p n~o~. (12) 
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Let us average Eqs. (4--7) according to (11). We get: 

[ - ( : )  ~ ~(") --~ ~. (~)] n~ : :  --q~S(x, y, t) (19) ( r  - (E~/~)  ~ - -  av " j 

-(:) ~ ~ ~y~") ~ ~J")] n~ - --q~S(x, y, t) (20) ( ~ 1  ~) - -  (EJ;,~) ~ - ~x ] 

[ ( ~ / ~ )  O-~,(")~]n~=--q~S(x,y,t)  (21) 

~2.~ ~) = ~ m  ~ ~x(~) + ~ %(~' (22) 

where 

[S(~, y, t)] h = u~(~)(x, y, h~, t) - -  u~(~)(~, y, - - h .  t) ---- --u,(~)(x,  y ,  h~, t) (23) 

and 

Note that  the anti-symmetry properties of u~ (*) have been employed in Eq. (23). 
Obtaining an expression for S(x, y, t) in terms of the mixture variables will be 

done by means of an asymptotic method and while neglecting terms of order e ~ 
where e ~- (h~ + h~)/l with 1 being a characteristic wave length. H the displace- 
ments are expanded in terms of z, while utilizing their symmetry properties and 
the obtained series are introduced in Eq. (6) the following expansion for a(z~ ) is 
obtained (see [11]): 

(~) ~(~z)[1 + 0(ee)]. (25) 

The continuity of az(~ ) across the interfaces, up to the order of approximation 
we are concerned in this paper, then implies: 

~i '  ~ ~(~. (26) 

Using Eq. (26) together with (21) provides an equation for S(x, y, t) in terms of 
the mixture variables: 

(0 ~x(1) + 9~_~ (1)] __ (22/E) ( O _~x(2) _~ 9~,,(2)] (27) S(x ,y , t )  : (;~/E) ~x 2U ~ ] ~xx ~y " ] 

where 
E : (E~/nl) + (Ee/n~). 

Substituting Eq. (27) in Eqs. (19) and (20) and 
stresses give: 

0 ~x(1 ) + ( c~ 

0 ~x(2 ) + (~ ~z(1 ) 
(r(xF) = c~2 ~x c12 ~x + 

D (~y ~v(2) + (~(yl~) = c1~ ~y ~v (1) + ca2 

~v(2 ) .+ (9  ~v(1 ) ) =  + 

using the definition of the partial 

_~ ~ (2)] + dl ~ ~ (1) (2S) ~y v ] 0y v ' 

_~ ~ (1)] + d2 ~y ~v (2), (29) ~y v ] 

) ~x ~x(2) + dl ~xx ~,(1), (30) 

~(1) + d2 ~xUx(2)' (31) 
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where 

c:: = D : E o  - ( ~ / / E ) ]  

c#  = ;(d~dE 

d= = [n2.= - -  (&~/~)] 

with ~, fi = 1, 2 and or q= ~. (32) 

Eqs. (28)--(31) together with Eqs. (22) constitute the mixture constitutive 
equations. 

The expressions relating P and R to the mixture variables will be obtained by 
using the procedure followed in [11]. (See this reference for details.) Let us first 
obtain the expression for R. Multiplying Eq. (8) by z,, expanding in powers of z~ 
and intergrating by parts gives: 

1 ~(=>( ~u, h~, t) u,(~)(x, y, h~, t ) -  ~,'~)+ (h=/3)L '~xxu~(~'(x' y' h,, t ) -  (1/#.) J , =  0. (33) 

When the definition of the interaction terms R and S in Eqs. (16) and (23) respec- 
tively are used in (33) we obtain: 

%(~)(z, y, h .  t) -- G~ ~) + (hlh/3) - - G  + (1 /~ )  R = 0,  (34) 

u~(2)(% y, h~, t) - G(2) + (hdd3) ~ s - (1I~,) R = 0. (as) 

Employing the continuity condition of the displacements %(") across the inter- 
faces and subtracting Eq. (35) from (34) furnishes: 

where 

a~ _ a 2  _ 

R - -  ( K / h 2 )  (gx(z) - -  g g 2 ) )  q- M [()~l/E) ('-~Tx~ Ux(1) q- ~-~y Uy (1)) 

- (,~lE) ~ G(~) + ~ ~g~) 

(36) 

(37) 
= K / a .  

The derivation of the expression for interaction term P can be carried out by 
applying the same steps this time to Eq. (7). For the sake of brievity we only give 
the result: 

(as) 
6q2 

Substitution of the constitutive Eqs. (19), (20), (22) and the Eqs. (36) and (38) 
into the equations of motion (14) and (15) give the following displacements 
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equations of motion: 

t2 t~ t~ t2 
- -  U~-- A - -  U ~- B - -  U + C U + D U  (39) 
~t 2 ~x 2 ~y2 ~x ~y 

where the vector [7, and the matrices A ,  B ,  C, and D are given in Appendix I. 
It can readily be checked that the two-dimensional mixture equations of 

motion which describe the quasi-plane motion of the composite decouple into two 
sets of equations in the special cases in which there's no dependance either on x 

or on y. When --~ ~- 0 for instance, the first set of equations involve only ~xu ) and 
~y 

~x 12) and they model the effectively one-dimensionM quasi-longitudinal wave 
propagation in a laminated composite. These equations have been obtained in 
X~ef. [11]. The second set of equations on the other hand involve on ly  uy (1) and 
uy(2) and they describe the horizontally polarized shear motions (SH) of the lami- 
nated medium. These equations are again one-dimensionM and have been given 
in [12]. I t  should be noticed that  the special case of a homogeneous isotropie 
material can be obtained by choosing equal material constants and densities. 

Crack Propagation in a Laminated Composite 

In this paper we will use the developed mixture theory in order to t reat  the 
problem of crack propagation in a laminated composite. Let  us consider a semi- 
infinite plane crack in the xz-plane (y = 0) propagating in the positive x-direction 
(see Fig. lb).  The location of the crack tip relative to the origin of the stationary 
coordinates is described by the function x = / ( t )  which is an arbitrary function of 

d* 
time subject to the condition that  ~-~/(t) exists. 

Let  us t reat  the following two modes of crack propagation: in the first mode the 
surface of the crack is subjected to a tensile loading in the y-direction whereas in 
the second mode there's a shear loading in the x-direction. In both cases t h e  
loading is uniform in the z-direction and the medium is assumed to be initially at 
rest. The appropriate boundary conditions on the plane of the crack y ~ 0 are: 

a(•)r• t) O, -(:)l~ •  z~, t) 0 y x ~ ,  :J20, zc,, -~- ~-- O y z k,r 

a(~)r~ + %  z~, t) = gl(x, t) y y  ~.~, 

%(~)(x, O, z., t) = 0 

for mode-I type of motion, and 

(~)~x ~:0, z~, t) ~ 0 a(~)~x t) 0 ( Y y y k  , ~ yz  \ ~ ~ z O ~  Za~ = 

a(~)lx •  z~, t) = 92(x, t) 

u~(")(x, O, z~, t) = 0 

--cx) < x < ~ 

- ~  < x < l(t)  

x > / ( t )  

(40) 

--~ < x < l ( t )  

x > / ( t )  

(41) 

for mode-II. In the above equations gl(x, t), g~(x, t) are prescribed loading func- 
tions which determine the driving mechanism of the crack. 
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I t  is clear that  with the above loading conditions the displacements u~(") are 
anti-symmetric and the displacements Ux(") , uy (~) are symmetric with respect to the 
midplanes of the layers and the developed mixture theory can be implemented. 

In the framework of the two-dimensional mixture theory, the three-dimensional 
motion induced by the boundary conditions (40) and (41) reduces to a two- 
dimensional one due to the averaging process. The appropriate boundary condi- 
tions will be as those in Eqs. (40) and (41), where this time the partial stresses and 
the average displacements will be involved. 

In order to implement the above theory fo r crack propagation in a laminated 
d composite, the extension velocity of the tip of the crack [(t) ~- - -~ / ( t )  needs to be 

prescribed. For the case of crack propagation in an isotropic medium the limiting 
velocity that  the crack tip can attain is obtained through energy considerations 
[8]. i t  turns out that  the speed of gayleigh waves is the largest velocity with 
which the crack can propagate. 

For a crack propagating along the interface of two semi-infinite homogeneous 
media, the maximum velocity of the crack tip should be smaller than the Rayleigh 
wave speeds in the two half-spaces (see gels.  [9], [10]). For the present case of a 
crack propagating in a laminated composite material an exact derivation for the 
maximum speed of the crack seems to be very difficult and to the knowledge of 
the authors no such at tempt  appears in the literature. We propose in this paper to 
determine the upper limit of the crack velocity in the composite by the minimum 
value of the dispersion curves for the Rayleigh waves propagating in the laminated 
half-space. The relevant Rayleigh waves are those which propagate in the half- 
space y ~ 0 in the x-direction (see Fig. 1 b). Those l~ayleigh waves are three- 
dimensional in nature and consequently their analysis based on exact elasticity 
should be extremely difficult. Obviously in the framework of the mixture theory 
those waves are independent of the z-coordinate and we are able to treat  them as 
two-dimensional disturbances. Our motivation to bound the crack velocity by the 
minimum of the dispersion curves is based on the well known phenomenon that  
the Rayleigh wave speed for the problem of a moving load on a half-space forms 
the critical velocity at which resonance phefiomena occur [13]. In the case of a 
moving load on a layered half-space the gay]eigh waves become generalized 
Rayleigh waves whose speed depend on the frequency and consequently the 
resonance effects occur at the minimum point of the dispersion curves, see Achen- 
bach, et al. [ 14], for a moving load on a specific type of a layered half-space. 

Based on these arguments we will construct now the frequency equation for the 
generalized gayleigh waves for our laminated half-space as described above. A 
plane harmonic wave propagating in the x-direction and decaying in the y-direction 
is given by: 

U = L ( y )  exp [ ik(x  - -  ct)],  (42) 

where /c is the wave number, c is the phase velocity and L ( y )  is the amplitude 
function. Substituting Eq. (42) in (39) we obtain: 

~ 0 L B - -  L 5- i k C  5- J = O, (43) ~y2 ~y 
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where 
J .= D -- k~A -~ ~2c~I and I is the unit matrix. 

Substituting in Eq. (43) a solution of the form 

L = G exp (2y) 

we obtain the equation 

F G  exp (~y) = O (44) 

with 

F = B2~ ~ + i ~ C  @ J .  (45) 

For a non-trivial solution we get the characteristic equation 

det 1~ = 0. (46) 

This equation turns out to be a fourth order algebraic equation in 2 ~ whose negative 
real roots 2 should be selected in order to obtain a decaying surface wave. The 
condition for the existence of Rayleigh waves for a given/c is the existence of four 
real and negative roots 2. I f  Eq. (46) has four negative real roots 2, then the 
solution for L is given by:  

4 
J~ = ~ V~ GI(])QU') e x p  (~]y) (47) 

i=i 

=[:I 
with Q(~) i ;:~(i:/ 

LiQ4I )j 
and where Qm(i) (m = 2, 3, 4) are complicated expressions of the roots 2j (] = l, 
2 ,3 ,4) .  

Note that  in Eq. (47) there are four unknowns GI (i) (?" = 1, 2, 3, 4) to be 
determined by  the four boundary conditions ouy-(~P) --~ 0, oy x-(~p) = 0 (c~ ---- 1, 2) at  the 
free surface y = 0. The condition for the nontrivial solution of GI (j) furnishes the 
desired frequency equation: 

det (A) = O, (48) 

where the explicit form of the matr ix  A is given in the Appendix I I .  This frequency 
equation determines the phase velocity c for a given frequency k. In  Fig. 2 the 
phase velocity c/% with % ---- (#1/ol) 1/2 (the shear wave speed in medium 1), is 
plotted versus the non-dimensional wave number  /oh for the two reinforcement 
ratios hl/h = 0.3 and hl/h = 0.8 for a glass-epoxy laminated composite whose 
material constants are given by: 

21 = 1.99 X 10 zl dynes/era 2 #1 = 3.03 ;4 1011 dynes/cm 2 01 --~ 2.54 gm/cm a 

)~2 --~ 2.96 X 101~ dynes/cm 2 #2 --~ 1.24 X 101~ dynes/era u ~2 = 1.18 gin/era a 

where the subscript "i" stands for glass and the subscript "2" for epoxy. 
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Fig. 2. The lowest mode of the dispersmn curves of the generalized Rayleigh waves in ~ 
laminates half-space made of glass-epoxy layers with reinforcement ratios 

hl/h = 0,3 ~nd hl/h = 0.8 

Nethod of Solution 

The method of solution of the system of equations of motion (39) together with 
their boundary conditions is numerical and is basically the same as tha t  described 
previously in Ref. [2] where the problem of a crack propagating along the inter- 
faces of two dissimilar half-spaces in contract was treated. 

Let  (~, ~, ~) be a system of moving coordinates whose origin is located at  the 
tip of the crack. The moving and s tat ionary coordinates are related by:  

= x - / ( t )  ] 

J 77 = y  (49) 

The numericM t rea tment  is applied to the t ransformed equations of motion in 
the moving coordinate system. In  this formulation the moving tip of the crack 
appears always at  ~ ~ 0. In  terms of the moving coordinate system the equations 
of motion (39) take the form: 

~2 A '  ~ ~ - - U =  U - 4 - B  ~2 U + C  U + D U - ~ - 2 / ( t ) _ ~  U+] ' ( t ) -~ -~  U (50) 
at 2 ~ 2  ~ 2  ~ ~ D~ ~t ~ 

where A '  A - -  [(t) ~ I and I is the unit matrix.  
As in [2] the resulting finite difference numerical scheme is implicit (in the 

sense tha t  more than one grid point at  the advanced time level is involved) and of 
three level (so tha t  it is possible to compute the displacement vector at  the 
advanced time from its values at  the previous steps) and its accuracy is of second 
order. The boundary conditions for the average displacement and partial  stresses 
are imposed implicitly as in [2] yielding a system of algebraic equations in the 
unknown displacements at  the boundary, and the Gauss-Seidel iteration pro- 
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eedure was employed for their solution, see [2] for details. The reliability of the 
numerical  procedure  was assessed in [2] by  comparison of the  numerical  solutions 
obta ined in several si tuations in which some analyt ical  results are known,  and 
sat isfactory agreement  was obtained. 

Results 

I n  this section results are given for mode- I  type  of crack propagat ion  in a 
laminated composite mode of glass-epoxy layers whose material  constants  were 
given previously. The loading funct ion in (40) is given by :  

�9 g~(x,  t) = ,~oH(x)  (51) 

with H ( x )  being the Heaviside step function. We choose to exhibit  the partial  
- -  = r .~- r/2P ) stresses in each constituent as well as the overall average stress ~yv vy~ -vy 

at the surface of the crack y = 0. In every case the velocity of the propagating 

crack is chosen to be constant and given by ](t)/ce = 0.6 where ce is the shear wave 
speed in the epoxy. In terms of the shear wave speed in the glass as exhibited in 
Fig. 2 this value corresponds to/(t)/cg = 0.178 which is smaller than the smallest 
value of the phase velocities which appear in this figure. 

In Fig. 3 the normal stresses at the plane of the crack y = 0 are given versus 
the distance x at two different times T = Cgt/h = 0.5, 1 where Cg = [(21 -~ 2#1)/ 
~i] I/2 which is the longitudinal wave speed in the glass. In this figure the rein- 
forcement ratio is hl/h = 0.3. In Fig. 4 the same results ar~ given, this time for 

the reinforcement ratio hl/h = 0.8. 

I I 2 
bo bo 

o_ 0 ~ 0 

b" b" , 
I-, 

- 2  , , , , - 2  , , , - 4  ~ , 

o 0.5 I o _ ~ o . 5  l o 0.5 x / h  
I ~ x/h I x/h 2 

( a )  bo bo 
~ b o ~o / ~o /---- .0 / / ,b 

- z l  , , , - 2  , , , - 4  , , 
0 ~5  I 0 0.5 1 0 Or.5 

- -  x/h ~ x/h ~ x/h 

(b) 

Fig. 3. The partial stresses Map) a(2yp) and the overall average stress ~vy versus the distance x/h ~yy 
at the plane of the crack y = 0 when a) T = 0.5 and b) T = 1.0. The composite is made of 

glass-epoxy layers with reinforcement ratio hl/h = 0.3 
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Fig. 4. Same as Fig. 3 for the reinforcement ratio hl/h ~- 0.8 

I t  is known that  one of the lnost important  concepts in fracture mechanics is 
the stress intensity factor which determines the intensity of the singularity of the 
stresses at  the tip of the crack. I t  was shown in [2] tha t  the stress intensity factor 
can be extracted from the numerical solution for the stresses at the tip of the 
crack, once the power of the singularity is known. The power of the singularity of 
the stress field in the immediate vicinity of the tip of the crack can be extracted 
from the equations of motion by assuming that  the displacements there, are pro- 
portional to re where r is the  radial distance in a polar coordinate system centered 
a t  the tip of the crack and q is an index which is to be determined by  the relevant 
boundary conditions [15]. By substituting the assumed form of the near-tip 
displacement field in the equations of motion it is found tha t  in the limit of 
r --> 0, the power of the singularity is determined by  the highest order derivatives 
in the equations of motion. For a crack in a homogeneous medium the power of 
the singularity of the stresses is equal to 1/2.  As it can be obtained from the 
mixture equations of motion (39) in our present problem this power turns out to be 
also 1/2. 

Conclusion 

A two-dimensional mixture theory has been formulated and applied to 
investigate crack propagation on a laminated composite medium. The obtained 
theory enables the t rea tment  of crack motion in mode-I  and mode- I I  type of 
motion (Eqs. (40--41)). For mode- I I I  type of motion where the applied stresses 
are tangential at  the interfaces of the crack such that  the ~y~ stresses are prescribed 
this time, a similar mixture theory, although much more complicated, can be 
formulated and applied as well. 
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Appendix I 

The  e lements  of the  vector  U ~nd the  matr ices  A ,  B ,  C and D which appear  
in the  mix tu re  equat ions of mot ion  (39) are given by:  

I, o 

L~(~)A o o o %/~2~J 

with 

B = 
0 Cl/~1 p 0 ~2/~1p C /~lp 0 c2/~1 p 

o o 

_0 c~/~ o c6/~A LC@~p 0 cg/~p 

0 

cs/O2p 

0 

D = 

0 cs/O~p 0 "7 

I 
--C5/~1 p 0 C5/01 p 

o 
o 

0 --cs/~2p 

%/~2v 0 -cs/~2vA 

r = Cll - -  (M21/E) 

c4 : dl q- n~#~ - -  (M;h/E) 

~ = cx2 ~- (M21/E) 

c2 = c12 + (M22/E) 

C5 = K / h  2 

C 8 = n2~tg 2 

C 3 : Tbl# 1 

ca =,c22 --  (M22/E) 

Appendix II  

The elements  of the  four  b y  four  ma t r ix  A in the  f requency  Eq.  (48) are: 

A l l =  c11~1Q2 (1) -~ c12)~1Q4 (1) -~ cukQ3 (1) -k dl]C 

212 = c112~Qd 2) q-C12),2Q4 (2) d- c12kQa (2) ~- dlk 

A13 = c1123Q2 (a) -~- c12~3Q4 (a) -~- c12]r -]- dl]C 

Ala : c11~aQ2 (4) -~ Cl2~aQ4 (4) -~- C12~Q3 (4) -~ dl]C 

zJel = c22~1Qa(1) -~ Cl2)qQ2 (1) -~- d2]cQ3(1) -~  c12~ 

Ae2 = c2222Qa (e) ~- c1222Qd 2) q- d2kQa (2) -k c12k 

A2a = ce2~aQa (a) -k Cle2aQd a) -k d2kQa (a) -k c12/c 

A2~ = c22A4Q4 (a) -~- c12A4Q2 (4) -~- d2kQ3 (a) Jr- clJc 

(A-l)  

t5 Acta Mech. 29/t--4 
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Aaa = Za -- kQ~ (a) 

Aa4 = 2~ --  kQe(4) 

A~I = 2~Qa (~) - Q~(1)k 

zl4a : ).3Q3(3) - -  Q~(a)k 

A44 : 2aQa(~) - Q~(a)k.  

(A-l) 

I n  these expressions Qm(i) are of the  form 

Q~(~) : N.fl)/p(~) ] : 1, 2, 3, 4 

where 

m = 2, 3, 4 (A-2) 

N2ID : F n • a F a 4  - -  FnFa~Fea - -  F21F1aFa4 

+ F21FaaIf14 + FalF13F2, - -  F31F2aF14 

N3 (j~ = i ( f  nF22F34 + F11Fa2F2a + F21~'12tfa4 -- F21-/?a2F14 

--  FalF12F24 -b FalF14F22) 

N4 ~) : FnFe~_F~3 -- FnF~2Fa3 -- F21F12F33 

-4- F~lF13Fa~ + FalFl~F23 -- FalFlaF~ 

/ (A-3) 

) 

(A-4) 

I t  should be not iced tha t  any  element  Finn in  the  above expressions is a 
func t ion  of 2j. 
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