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Summary - Zusammenfassung 

On One Variational Principle for Irreversible Phenomena. The present paper exhibits 
a variational principle in which variation and differentation with respect to time are not 
permutable. The formulation is equally valid for systems with finite and infinite number of 
degrees of freedom. The merit and efficiency of the method is demonstrated by means of 
several examples. The numerical aspects of the variational principle are also studied. Special 
attention is paid to the linear and nonlinear heat conduction problem. Heat conduction with 
cylindrical symmetry and temperature dependent material properties is discussed in details. 

Zu einem Variationsprlnzip irreversibler Erscheinungen. In dieser Arbeit wird ein 
Variationsprinzip angegeben, bei dem Variation und Ableitung nach der Zeit nicht vertausch- 
bar sind. Die Formulierung gilt fiir Systeme mit endlich vielen Freiheitsgraden wie auch fiir 
solche mit unendlich vielen. Vorziige der Methode werden an Hand einiger Beispiele demon- 
striert. Untersucht werden auch numerisehe Aspekte des Variationsprinzips. Besondere 
Betonung liegt dabei auf lineare wie nichtlineare W~rmeleitungsprobleme. Die W~rme- 
leitung zylindersymmetrischer Probleme und temperaturabh~ngiger Materialeigenschaften 
sind im Detail erSrtert. 

1. Introduction 

The present paper exhibits a variational principle for purely irreversible 
phenomena. The development is based on the following well known facts. 

a) For almost all important  processes of irreversible physics the exact La- 
grangian of the problem in the sense of classical mechanics does not exist. For 
example, the parabolic differential equation of heat conduction in solids, even in 
the linear case, has not any Lagrangian density function. 

b) In  order to describe the corresponding phenomena by the variational 
technique, some artificial restrictions must be made, concerning the basic rules 
of variational calculus. The variational principle of ROSEZ~ [1] and CHAMBERS [2] 
may serve as a good example of a restricted variational principle. In  this varia- 
tional formulation the functional of a problem contains one physical quanti ty 
(temperature, ~or example) but this quanti ty is represented by two different 
symbols; one is subject to variation and the other is not varied at all. By setting 

* Dedicated to the memory of Prof. Dr. R~sr STOJANOVIC, teacher and friend. 
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the two symbols the same after the variat ion process has been performed, the 
exact differential equation of the process in consideration is obtained. 

c) The merit  and efficiency of the corresponding variational formulation 
should be testified by  the possibility of obtaining approximate solutions using 
some of the direct methods of variational calculus. 

In  the present paper we will assume that the variation and di//ercntiation with 
respect to time o I a /unc t ion  are not permutable processes if the physical system is 
non-conservative. In  other words, the commutat ive properties of the variations 
and a differential with respect to t ime is a privilege of conservative physics. 

At this point it is worthwhile to enumerate some of the assumptions on which 
the theoretical t rea tment  is based. The main ones are 

i) There is a one to one t ime correspondence between the paths actually 
describing the natural  motion and infinitely near (varied) motion. As H6T,I)n~ 
pointed out [3], this supposition assures tha t  the variat ion and integration pro- 
cesses are permutable.  

if) Time is not  varied during the process of motion, i.e., natural  motion and 
varied motion have the same terminal  configurations and the t ime of transit  
is the same in the actual ~nd varied path. 

The fact that we are imposing special rules for the variations of first deriva- 
tives with respect to t ime is very important  because we can take this rules as 
a measure of nonconservativi ty of particular system. This technique has led the 
author to the present s tudy because one can develop a variational principle for 
any differential equation, ordinary or partial, describing a nonconservative 
process. This technique can be used for obtaining approximate solutions. Special 
a t tent ion will be paid to the problem of linear and nonlinear heat  conduction 
in solids. 

2. The Variational Principle 

In  Lagrangian formulation of field theory, the basic dynamical  equations are 
derived from an action, integral by introducing suitable Lagrangian densities. 
However, it is well known tha t  the general equations of dissipative physics in use 
at  the present t ime can not be derived from Hamil ton 's  principle. Hence, as a 
consequence of the fact, tha t  the differential equations of a dissipative process are 
not equivalent with the exact functional (variational) derivative of a Lagrangian 
density, all basic properties of variational calculus (strong and weak relative 
extermums, fundamental  lemma of variational calculus [10], etc.) are not appli- 
cable to nonconservative mechanics. 

I t  seems tha t  the inability to include dissipative forces in the compact from of 
Lagrangian analysis lies in the fact tha t  the dependence of a dissipative force of 
velocity affects the process of variation of velocities of a system. The pr imary 
purpose of this note is to introduce the variational rules for velocities of a physical 
system, in accordance with the mechanism of dissipation. In  other words, we will 
abandon the well known rule: " the  variat ion of the velocity is equal to the 
derivative of the variat ion" in dealing with noneonservative physics, and in- 
troduce some incommutable rules in accordance with the specific dissipative 
mechanism. 
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The incommutable rules have been employed by  many  authors in non- 
holoaomie mechanics. The use of these rules can be traced to the works of T. L~w- 
CIVI~A and A~ALJ)I [15] and ScsLov [16]. 2{:EIMARK and F v r i ~ v  [17] and LVl~E 
[18] have pointed out tha t  the commutat ive rules of variational calculus are 
quite arbi t rary as far as conservative mechanics is concerned. They claim tha t  
these rules are adapted  in accordance with the differential equations of con- 
servative mechanics. 

I t  seems reasonable, accepting this point of view, to adapt  the incommutable 
rules in such a way t h a t  the physically admissible values for the dynamical 
variables of a dissipative system are those for which the first variat ion of an 
integral vanish. 

For  our purposes we will write the general differential equation of a physical 
sys tem in the form 

( ) ( Ou ~U,x~, t )  = 0  (1) ~u ~u , xi, t - t  CfD U, ~t ' ~x~ ~ U, Ot' ~x i 

where xi are the coordinates, t denotes t ime and u is the field variable. The par t  i 
~ in (1) is the "Lagrange pa r t "  which is derivable from a Hamil ton 's  principle 
of the form: 

tl 

f f  ( ) I = L u, O-T' ox---[' x~,t d V d t .  (2) 

to V 

In  other words, the variational equation 

($I ----0 

together with the boundary conditions 

~u]v = 0, on the boundaries of V for every moment  t 

and 

(3) 

(4) 

(~u[t. -~ (Su[tl = 0, everywhere in V, including the boundaries of V, (5) 

~u Ou ) 
is equivalent with the equation ~z u, - - ,  - - ,  xi, t ~ 0, in the strict sense 
of classical variational calculus. ~t ~x~ 3 

Note, tha t  the t ime interval  [to, ~1] is arbi t rary  and d V = H dxj, is the elemen- 
t a ry  volume of geometrical space. ~=1 

The nonconservative par t  qD of (1) can not be derived from a variational 
principle of Hamil ton 's  type.  Usually, the par t  ~D is connected with the mechanism 
of dissipation of the system under consideration. In  order to be able to derive the 
differential Eq. (1) using the variational integral (2) we will introduce the 
dissipative characteristics of our physical system through incommutat ive rules of 
variat ion and differentiation with respect to time, of the function u. 

i Henceforth, the explicit dependence of ~ will be omitted except where it is necessary or 

desirable, thus ~L u, Ot ' ~x i ' xi' t is simply written ~o~, etc. 
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Let 

~xi ~xi 

= ~t ' ~t ' u ' x i ' t  du  

(6) 

be the incommutat ive rules of the system considered where 0 is a suitably chosen 
functional, which is equal to zero if the system is conservative. 

Let  us take tile variation of (2) with respect to u using (6). This step gives z 

tl 

, . ,  (~I = -EE. (~u § 
0 

to V 

e--------~ 7 [  ~u + O . du d V  dt. (7) 

Using integration by  parts  the final te rm is of the form : 

to V 

t l  

i T /  \ oxi ! 
V to S 

(s) 

where S is the boundary of V, and [L] is the variational (functional) derivative 
~L 0 0L 0 0L 

defined by [L] ~ - -  

We will assume tha t  the functionals L and 0 are selected in such a way, that  

and 
[ L ] ~  (9) 

~L 
- -  0 ~_ ~ o .  (10)  

Supposing tha t  8u is arbi trary along the actual trajectory, and boundary con- 
ditions (4) and (5) are fulfilled, the variational equation (8) M = 0 is equivalent 
with the equation of motion (1) 

~0z q- ~0s = 0. 

I f  the boundary conditions (4) are not valid, i.e., the function u is not specified 
on the boundary S of V, then an appropriate nmnber of boundary conditions will 
be supplied during the course of the variational analysis. Clearly, the ineom- 

2 Repeated indices are summed throughout�9 
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mutative rules (6) do not change the outstanding feature of Hamilton's principle 
tha t  it implies boundary conditions as well as differential equations. 

Let  us now consider the case of a dynamical nonconservative system with 
n-degrees of freedom, xi (i = 1, 2 . . . .  , n)  are regarded as the generalized co- 
ordinates and Qi are generalized nonconservative forces which, in the general 
case, are given functions of position, t ime and velocities. The conservative part  
of the system can be completely described by a Lagrange's function L(Xl,  x2 . . . .  , 
xn ; 21, 22 . . . . .  2n ; t). Hence, the action integral of the conservative part  is 

tl 

I = f L dt.  (11) 
to 

Let us define the incommutative rules in the form 

d 
&ri = - ~  ~xi @ Ak ~ (~, ~, t) ~xk, (12) 

where the system of functions Ak ~ is chosen in accordance with the equations 

OL Ai  k = Qi.  (13) 

Using (11) and (12) we find 

Q 

)1 dI  = OL dxi -{- e--- 7 --~ dx~ @ Ak i dxk dt .  

to 

Integration by parts and use of Eq. (13) gives: 

t~ 

to 

If we suppose the standard boundary conditions 

tie = 0 (15) 

then, for arbitrary variations ~xi, the equation ~I = 0 is equivalent with the 
Euler-Lagrange equations 

d ~L OL 
dt  02~ ~xi Qi (i = 1, 2 . . . .  , n ) .  (16) 

Finally, it should be noted, tha t  the variational principle presented in this paper 
may be employed for obtaining approximate solutions. The applications of well 
known methods of Ritz and partial integration are straightforward and do not 
require any general clarifications. 

3. Applications of the Theory 

The theory just developed is now applied to various problems of classical 
mechanics and heat conduction. 
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A .  Whi t taker '  s E q u a t i o n s  [ 2 0 ]  

Let us consider a holonomic mechanical system of n degrees of freedom. If x ~ 
are regarded as the generalized coordinates, for a large class of dynamical systems 
the kinetic energy is given by a quadratic form of generalized velocities ~i (i = 1, 
2 . . . . .  n): 

1 
T = -~  aijJci~ i . (17) 

aij is the fundamental metric tensor of second order which is a function of position 
x i. Suppose that  there exists the generalized potential 

I I  ~- H ( x  i, t) (18) 
and the Lagrangian function is 

1 
i = -~  aii~i~i - -  I I ( x  i, t) .  (19) 

Hence the action integral is of the form 

tl 

I = / L dt .  (20) 
to 

Let us assume that  our system is subject to external resisting forces which are 
directly proportional to the velocities, the dissipative function of which is of the 
form 

2~v = bij~i~ i, (21) 

where b~ i is a symmetrical tensor which is frequently a function of position. 
Let  the rule for the velocity variation be of the form 

d 
~ = --~ dxi  - -  aJSbl8 ~x z , (22) 

where a is is the contravariant tensor with the property ([4], p. 14) 

a~Jaki -~ ~k ~, (23) 

where ~j  is Kronecker delta. After performing the usual manipulations, we find, 
using (19), (22) and (23), 

t l  

- -  a i y  %- Iron, i] 2~2" + b i i 2 J  - -  ~x ~ OX i dr, 

to 

or, if 61 is to vanish for all variations, then 

ai~& j + [mn,  i] "2"2 n + b~j~ci - -  ~I1 = 0 (24) 

which is the system of equations of motion in tensorial form in the presence of 
dissipative forces. The symbol [ran, i] is the first Chirtoffel symbol. 
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B.  A Numerical  Example  

Using the same variational formulation it is possible to obtain the differential 
equations of the first order as the consequence of variation of an action integral 
with the specific variational properties of the first derivative. To be more specific 
let us consider the almost trivial example 

-~ - -2xt ,  x(0) ~ 1, 0 ~ t ~ 1. (25) 

Consider the action integral 

1 

I ~ f (~ q- x2t) dt --  x t=l (26) 
0 

with the velocity variation rule 

d2 : d dx ~- ~ 5x. (27) 
dt 

1 

Note a t  this point tha t  the te rm f .~ dt in (26) should not be integrated before the 
o 

process of variation is finished. This requirement is the direct consequence of the 
fact tha t  we are imposing special rules for the variation of velocity. Actually we 
are faced with the situation typical for many  branches of physics. As B. DEWITT 
pointed out ... "For  most  of our purposes t h e / o r m  of the action functional will 
have more importance than  its actual value." ([5], p. 1). The last te rm in (26) 
involving only the function evaluated at  the boundary has been added to Eq. (26) 
because the variat ion ~x is not specified at  t = l, hence this te rm plays the role 
of a natural  boundary condition. I t  can easily be verified tha t  the variation of 
(26) with the rule (27) is 

1 

0 

hence, 6I ~ 0 is equivalent to Eq. (25). 
I t  should be noted tha t  all of the problems which are t reated in this section 

are also amenable to numerical t reatment .  
Let  us demonstrate the application of the l~yleigh-t~itz direct method for 

obtaining an approximate  solution of Eq. (25). I t  is obvious tha t  ~ = 0 when 
t = 0. At the same t ime Eq. (25) is invariant  with respect to a t ime transformation 
i = --t .  Chosing the form of the trial polynomial we have to take into account 
these two properties and the given boundary condition. We shall assume: 

x = 1 -~ A t  2 zr BP  (28) 

and use our technique to find A and B. In  order to describe the specific nature of 
Eq. (27) we will introduce two kinds of velocities 

2 ~ 2 A t - ~  dBt a 

Actu Mech. XIX/3 -4  t8 
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a n d  (29) 

- -  2 a t  4 -  4 b t  a 

where a and b are alias for A and B. Now, let us write (27) in the form 

a,b d dx 4 -  2 ~x a,~ (30) 

and the action integral (26) 

1 

• = f o,0 + d r -  z , = 1  (31) 
0 

Introducing (28) and (29) into (30) and integrating this equation with respect to t 
f r o m  0 t o  1 w e  g e t  

t A~A 4- 1 A b B  4- 2 BdA 4- 1__ BSB.  (32) & + ~b = ~ + ~B + -7 --~ ~ 2 

When we compute I given by (31) we find 

I A~ i B2 1 1 B I = a  4- b 4---~ + - ~  4--~ A 4- 3 4- 1-- A ..... (1 4- A + B ). 

Now w e  h a v e  

1 AdA 4- l__ BcSB 4- 1 1 c~I = da 4- ~b + -~ 5 T cSA 4- ~ bB 4- 1--Ac3B4 
(33) 

t B ~ A - - b A - - ~ B  = 0  
+ 7  

Introducing (32) into (33), collecting corresponding terms with bA and dB, the 
equation M = 0 will yield: 

- E B  5 A 4  , -- 
6 1.2 2 

7 A 4  . 7 B _  1 
12 lO 3 ' 

09 
08 
07 
06 
95 
04 
03 
02 
01 

EXACT " ~  
- -  APROXIMATE 

o'2 o'4 & ~ ' T - - - ~  

Fig. 1 
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with the solution A = --32/35 and B --  2/7. Hence, the approximate solution is 
of the form 

x - 1 - 32 t~ + 2 t'. (3~) 
35 7 

The approximate and exact solutions are presented graphicaUy in Fig. 1. I t  is 
seen tha t  the agreement with the exact solution is quite satisfactory. 

C. Applications to Heat Conduction in Solids 

In  this section we will apply the previous considerations to problems which 
are described by  partial  differential equations. The transient heat conduction in 
solids is chosen to demonstrate the feasibility and efficacy of the variational 
principle. Special at tention will be paid to nonlinear heat conduction and heat 
conduction through cylindrical bodies. Various boundary conditions are also 
studied. 

Let  us consider the action integral 

t~ 

/ f c I =  L at -kT~=~\~x~l j  
t o  V 

where T is tile temperature,  ~ is the thermal diffnsivity Xl, x2, x 3 are rectangular 
3 

coordinates, dv = [ I  dxl, t is the t ime and e is an arbi trary constant parameter  
i - -1  

dimensionally equal to T. The following commutat ive rules are introduced 

- 

(36) 

~(a@)=_at~ ~T+~--~ ~T~t ~T. 

From (35) and (36) it is seen tha t  there is no loss of generality in assuming tha t  the 
numerical value of e is s = 1. We now- take the first variation of I i.e. 

tl 

6I =- e6 - - ~  ~- cr ~ - -  6 dv dt. (37) 
' a x  i 

to v 

Substituting (36) and integrating by parts we have 

tl  tl 

6I = ~ ~ c~ ~ ax~ 2] dt 6T + c~ X ~ d- e(6T) to dv, (38) 
to V to V 

where S is the boundary of the body. If  we suppose tha t  

the equation 6I = O is equivalent with 

aT a ~2 T 
-- ~ . ( 4 0 )  

at /~-~= axi 2 

Acta Mech. XIX/3-4 I9 
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This equation is the well known transient heat conduction equation in linear 
form. 

The action integral (35) may be easily written in other systems of orthegonal 
coordinates. For example in the case of cylindrical coordinates the corresponding 
action integral is of the form 

(ff]{ , 
I - - .  e - ~  + - ~  r \  ~r ] @-~ \ ~0 ] -t- r ~ dvdt (41) 

t f 0 Z 

with the commutat ive rules 

8 8 •  0 8 8 -0 
~r Or ~z ~z 

~t e 

~ d = 8  0 
~0 ~0 

~T 
ST. 

~t 

(42) 

I t  is easy to show that  8I = 0 is equivalent with the heat conduction equation it, 
cylindrical form 

~T [ ~T ~ ~T ~ ~T ~ ] 
+ - -  - -  @ - - - - -  + . (43) 

Ot [ ~r 2 r ~r r 2 002 Oz 2 ] 

In  the case of temperature dependent thermal properties i.e. if thermal con- 
ductivity k and thermal capacity c are g~ven functions of temperature,  the 
corresponding action integral is 

t ,  //{ , ~T k2(T) ~. ( OT 12 dv dt. (44) 
I - -  e - ~ - +  2 ~-l \~xiI I 

to V 

At the same time the commutat ive rules are 

0 
0 - - - - - - 8  

exi Oxi (45) 

3 ( 0-ft -) = --ore 8T + --lc(T)s k(T)~Tet ST. 

The variational equation dl ~ 0 together with (45) is equivalent with the equation 

c(T) ~ / -  = v _ _  k(T) . (46) 
i=1 Oxi 

The dimension of constant parameter  e in (44) and (45) is the same as c(T) k(T) ST. 
I f  our system constains a heat source the rate of which per unit volume and 

unit t ime is denoted by A = A(X, y, z, t), then the action integral (44) should be 
modified in the following way 

Q 

.] 2 i=, \ Oxi ] 
to V 

and the rules (45) remain unchanged. 
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In  the next section, by  the help of several examples we will demonstrate the 
procedure of obtaining approximate solutions using direct methods of given 
variational formulation. 

D. Heating o[ an In/ ini te  Cylinder 

We now turn t,o an examination of approximate method for the solution of 
heat conduction problems based on the variational principle stated in this paper. 
The application of the method to a problem with cylindrical symmet ry  was 
selected because it is known tha t  various approximate methods are often in- 
apropriate in dealing with heat conduction in spherical and cylindrical bodies. For 
example, the monograph devoted to the Biot variational principle [6] does not 
contain any problem from this area. La~DNZR and Po~LE [7] and GOOI)MA~ [8] 
have demonstrated that ,  for problems involving polar or spherical symetry,  the 
integral method is inappropriate unless a special modification in the assumed 
temperature  profile is made. We shall demonstrate that  the variational technique 
can be applied without any modifications in the temperature  profiles. 

The problem we wish to solve is transient heat conduction in an infinite 
circular cylinder with constant heat flux through the surface. The cylinder is at  
zero initial temperature.  Thermal properties will be taken to be constant so the 
governing equation is linear. If  the axis of the cylinder coincides with the z axes, 
the initial and boundary conditions are independent of the coordinates 0 and z, 
the temperature  is a function of r and t only and differential equation and corre- 
sponding boundary condition are of the form 

e ~t ~T~-~ + -;- - g J  ' 

DT k - - p = 0 ,  r = R ,  t > 0 ,  (49) 
Dr 

where k, c, p are given constants and R is radius of the cylinder. 
Let  us consider the action integral 

t l  /~ t l  R 

t o f ~ o ;  to T = q  

(50) 

where the time interval [to, tl] - is arbi trary and the boundary r --  a depends of the 
character of temperature profile. The commutat ive rules are (42) i.e. 

~__~ = ~  ~__ 
8r Dr 

(~(D~.T / D ~T@ 1_ DT (ST. 
= D----t e e r  8 t  \ d r /  

(51) 

As we mentioned previously, the first term on the right hand side of (50) should 
not be integrated before the process of variation is performed. I t  is easy to show 
that  dI = 0, together with (51) will yield the Eqs. (48) and (49) if we assume tha t  
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dTl~_ a --  0. The last term at the right-hand side of (50) plays the role of a natural  
boundary condition because the temperature is not specified at  the boundaries. 
In  accordance with the real conditions ot heating we will s tudy two phases of the 
process. In  the first phase the heat front is penetrating into the cylinder and when 
it reaches the axis of the cylinder the second phase begins. I f  we choose the 
parabolic distribution during the first phase the assumed profile will be 

T I = [ @  (r-l)2 for for 0<r<ll<r<R (52) 

where 1 = l(t) is the location of the heat front measured from the center of the 
cylinder. The penetration distance l(t) satisfies the initial condition 

l(0) = R. (53) 

Note, that  the profile (52) was selected in such a way that  the boundary condition 
(4.9) is satisfied and T[l= ~ = 0. The penetration t ime v is the root of the equation 
l(T) = 0. I t  is clear now, tha t  we have to choose a = l in the lower bound of (50). 
Substitution of (52) into (50) and (51) and integration of these equations with 
respect to r from 1 to R yields, for e = 1, 

t l  [%-+-- 
x =  - T Ts  3 

to 

6k to 

(54) 

1 ~p ( n R  + 5l) ial.  6i = (a~) - 4~ T (55) 

I t  is interesting to note, tha t  the action integral is of the Bolza type [10]. 
If  we substitute (55) into M ~ 0 we have 

{1 

to 

§ ~ (17 -- I) Ol 11. 
to 

Integrat ing the first term, we get the following differential equation 

o, 1 i ( R  - l) (11R -t- 5/) § ! (5R --  l) == 0 .  
r 

(56) 

For the second phase we will choose the temperature  profile in the form 

2pR 
(57) 
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and the lower bound in (50) is a = O. Substituting (57) into (50) and (51), the 
variational equation 6I -- 0 for the second phase is 

du k 
c dt - -  R e. (58) 

With condition (53) the solutions of (56) and (58) are easily obtained. 
The solution of (56) is 

a n d  the penetration time lr = 0 is 

4 kt 
- -  2 0  - -  (59)  

1 cRe 
5 - - - -  

R 

The solution of (58) is 

ere 
~ - - - 0 , 1 3 7 .  (60) k 

hence 

k 
u = (t - 3) (61 )  

cRe 

2 p R let 
(62) 

Note, that  the exact solution for long times are given in ref. [1t] in the form: 

(.63) 

I t  is seen that  the agreement with the approximate solution (62) is satisfactory. 
The same result was obtained and compared for both phases with the exact 

solution in ref. [9], using the Galerkin method. 

E. Semi-In/ ini te  Body with Temperature Dependent Heat Capacity 

As an illustration we shall treat a nonlinear problem. Consider a semi-infinite 
body that  occupies the region x > 0. The constant heat flux F is applied to the 
surface x --  0. The initial temperature of the body is zero. We assume the heat 
capacity to be a linear function of the temperature as follows 

c(T) --  c0(1 + aT),  (64) 

where c o and ~ are given constants. The thermal conductivity k is assumed 
constant. Hence the mathematical form of the problem is 

~T t2T 
c(T) = k - -  (65) 

~t ~x e 

~T 
k - -  - -  F ,  x = 0 ,  t > 0 .  (66)  

x 5  
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Consider the following action integral 

to 0 to 0 

with commuta t ive  rule 

(67) 

\ 0t ] ~t e ~t 

The t ime interval  [to, tl] is a rbi t rary  and the bound  xl depends on the assumed 
tempera ture  profile. Before proceeding with the calculations, note t ha t  d I  = 0 of 
(67) together  with (68) is equivalent  with (65) and (66) if TIx ~ = 0. For  relatively 
small values of parameter  c~ in (64), it is reasonable to suppose tha t  the solution of 
(65) and (66) is not  drastically different t ha t  in the case c~ = 0. For  the linear 
var iant  of the same problem, several authors  supposed tha t  the adequate  trial 
solution, which is expressed in terms of the generalized coordinates, should be 
assumed as a polynomial  [7], [8]. Following the natura l  requirement  tha t  the 
trial solution must  be relatively simple, the temperature  field is taken as 

z ( 0 - - x )  3, (69) T = O ~  

where z is the surface tempera ture  

T(0,  t) - :  z (70) 

and 0 = O(t) is the depth of penetrat ion.  Note  tha t  the coordinate z is not  in- 
dependent  of 0. F r o m  (69) and (.66) we have 

FO 
--  O. (71) 

3/~ 

Subst i tut ing Eq. (69) into (67) and (68), taking e = 1 and integrat ing with 
respect to x f rom 0 to 0 we have, respectively, 

l l  

1 l , tl 
I =  z ~ + 2 -  1-d 0 - - 2 -  ~0 

(72) 

F 1 1} 
However,  the coordinates 0 and z are not  independent  and we have a constrained 
opt imizat ion problem. I t  is well known tha t  the solution to this problem is the 

1 ( 0 ~  + z~6) = 1 [0(&)" + z(~O)] 
2- T 

l •  +col70~&+ 114z~30 q_ 141 zOOz + - - - -  
3 z20 

~0 (73) 
35 0 
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same as t h a t  ob t a ined  b y  ex t remiz ing  

tt 

1 9 k - -  - -  F z  + 2 z - -  ~ dt - -  (zO) (74) I ' =  zO + -~ Oz + ~-d o T " 
to 

where 2 is a cons tan t  Lagrange  mul t ip l ier .  
Tak ing  t h a t  the  f irst  va r i a t i on  of (74) is equal  to zero and  .using (73) we get  

tl 

~ '  = - ~  (75) t~ 

tx 

+ dz coot + -G CoZO + -id Co~,Oz~ + ~ T V j 
to 

3 z20 1 z30 9 k -  
+ c30 CoZ~ + ~o --0-- + c~ + ~ Co~ 0 no o 2 

I n t e g r a t i n g  the  f i rs t  t e rm  and  cancel ing i t  wi th  the  las t  in (75), the  equa t ion  
d I '  = 0 is equ iva len t  with the  fol lowing di f ferent ia l  equat ions  : 

1 coO$ + 1 CoZO _~_ 1 1 ~ _  9 z _ _  F 4 -  2 ~ O ,  ( 7 6 )  

z z F2 3 z20 1 1 zSO 9 ]~ - -  0. (77) 
1 CoZg -" - -  - -  -t- CoOCZZ~ q- 02 ]2 35 o ~5 ~ o ~  o lo 3~ 

These two equa t ions  toge the r  wi th  (71) form a comple te  set  for f inding 0, z and  
2. E l imina t i ng  ), f rom (76) and  (77) and  using (71) we ob ta in  the  following diffe- 
r en t i a l  equa t ion  for the  surface t e m p e r a t u r e  

13 23 7 F 2 
CoZ~ + i ~  C~ 30 k - -  0. (78) 

I n t e g r a t i n g  wi th  respect  to  the  in i t ia l  condi t ion  z(0) = 0 we have  

13 Z~ _~_ 23 ccZa 7 F 2 
- -  = - -  t .  ( 7 9 )  
7 36 3 kc o 

The re la t ionsh ip  be tween  the  surface t e m p e r a t u r e  and  t ime  is shown in Fig .  2. 
Unfor tuna te ly ,  the  exac t  so lu t ion  of th is  p rob lem is no t  known  and  the  d i rec t  
compar i son  is no t  possible.  F o r  the  l inear  case cr - -  0, we have  f rom (79) 

z = l . 1 2 1 F  l/T--~o. (80) 

The exac t  so lu t ion  for ~ = 0 is z - -  1.128 F V c0k0 ant i  the  error  is a b o u t  0.7~/o . 
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Fig. 2 

Using the heat balance method Goodman has obtained for this problem 

z =  1.15 F ]//3~yt. In  a different variational approach [14] the author has ob- 
/ 

VOo~,o /T 
rained z = 1..128 F ], 5 

V 

I t  should be noted tha t  the procedure used in this example with two dependent 
coordinates can be used only in the ease when a Lagrangian of the problem exists. 

Discussion 

1. The variational principle set out in this paper has been found to be applicable 
to a wide range of problems of dissipative mechanics and heat conduction. All 
considerations arc based on the supposition tha t  the process of variation and 
differentiation with respect to t ime is not commutat ive for nonconservative 
physical systems. 

2. The variational principle presented in this paper is structurally different 
from the variational formulations of GLANSDORSF and PRmOGINS [19], BIOT [6] 
and a variational principle given by the author et. al. ([12], [13], [14]). But  
apparently the numerical results obtained by  the help of these formulations are 
more or less the same. In  addition, it is felt that ,  due to the excellent agreement 
between the results of Example (D) obtained by the variational method and 
Galerkin's method, there is a direct relationship between Galerkin's method and 
the variational method in the ease of linear problems. However, from the stand- 
point of approximate solutions the variational approach offers some advantages 
such as the use of dependeDt coordinates, Lagrange's multipliers and the natural  
boundary conditions. 
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,3. I t  appears t ha t  a s tudy  of conservat ion laws of noneonserva t ive  mechanics 

by  the  help of var ia t ional  principle developed herein could have in teres t ing  
physical  implicat ions.  An  inves t iga t ion  abou t  this  problem will be reported on 

elsewhere. 
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