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Summary — Zusammenfassung

Quasistatic Problem of a Non-Homogeneous Elastic Layer Containing a Crack. A non-
homogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers
of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the
crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain.
Considered are two cases, the crack and its load propagating at a constant velocity along the
horizontal axis, and the load being a harmonic function of time, respectively. In the both
cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude)
of the crack are given. In the limiting cases, solutions of static problems are obtained. The
results are illustrated by particular solutions concerning the cases when the crack edge load
(or its amplitude) is constant on its entire length.

Ein quasistatisches Problem einer inhomogenen Schicht mit einem RiB. Eine aus zwei
verschieden elastischen Schichten zusammengesetzte Schicht wird durch einen streifen-
formigen RiB zwischen den Schichten geschwicht. Die Oberflichen der Schicht sind einge-
spannt und die RiBoberfliche durch beliebige, die Bedingungen des antiebenen Verzerrungs-
zustandes geniigenden Kriften belastet. Betrachtet werden die zwei Fille, daB sich der Rif§
und seine Belastung mit konstanter Geschwindigkeit horizontal bewegen und daB die Last
eine harmonische Funktion der Zeit ist. In beiden Fillen werden die exakten Werte des
Spannungserhéhungsfaktors fiir beliebige Lasten (beliebige Lastamplituden) angegeben. In
den Grenzfillen werden die Werte des statischen Problems erhalten. Die Resultate werden
an Hand des Spezialfalles einer iiber die gesamte Linge konstanten Last (oder Amplitude)
erldutert.

1. General Formulation

The antiplane state of strain is known to be characterized by the particular
form of elastic displacement vector which, in a rectangular coordinate system
(z, y, z) may be represented as

u = (0,0, w(z, ¥, )].
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The only components of the state of strain and stress which do not identically
vanish are
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4 being the shear modulus.
In such a case, in absence of body forces, the equations of motion reduce to

the single equation
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where ¢ = u/o is the square of velocity of propagation of transversal elastic
waves.
In this paper we shall make extensive use of the two-gided integral Fourier
transform defined by the following formulae:
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Here the transform parameter is a complex variable, and the path of integration
in Eq. (1.3), is located within the strip ¢; << Im & < ¢, which represents the
region of regularity of F(x, y). We shall also use the following representation [1]
of F(x, y):

Flo, y) = F-(a, y) + Fr(x, ) (1.4)

in which the one-sided Fourier transforms

mezﬁafmwwwm
. (1.5)
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are analytic functions in the respective halfplanes Im & < ¢, and Im & > ;.
In the cage of a quasistatic problem in which the fixed rectangular coordinate
system (x, y, z) can be replaced by a convectional reference frame (2', y’, 2')

x=ua+c, y=y, z=2z. (1.6)
¢ being the constant velocity of motion of the system (&', y', 2’), the equation of
motion (1.2) takes the form
, Pw | P

—— =0.
ox'? oy’?
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Here 2 =1 — ¢?/cy® By applying the Fourier transform (1.3) to this equation
and to Eq. (1.1) we obtain

Zm(o‘; ?/) = —Z"LLOCW((X, y/):

AW(x, y')

Ly, y') = p &y’

a2Wis, y')

dy’z - “ZﬂZW(“’ ?//) = O‘

Equation (1.7); is now solved to yield the Fourjer transforms of the displacement
w and stresses o,,, 0y,

W(x, y') = A(x) sh afy’ 4 B(x) c¢h xfy/’,

oo §') = —iualA(x) sh afy’ + B(x) ch «fy'], (1.8)
2yl y') = pof [A(x) ch afy’ + Blw) sh afy'].

The unknown functions 4(x) and B(x) are to be determined from the boundary
conditions of the problem considered.

In the other type of quasistatic problem in which the displacement and
stresses are harmonic functions of time, the transformation

9(@; 4, t) = g*(x, y) exp (iwl) (1.9)

(» being the harmonic vibration frequency) reduces the equation of motion (1.2)
to the form
V2w* - g?w* = 0.

Here ¢ = w/cy. Let us now apply the Fourier transform (1.3) to Eq. (1.1) and to
the latter equation; using (1.9) we obtain

Z:z(,(x7 ?/) = —’&',LZOCW*((X, y) i

AW*(x, 3
I y) =p —#ﬁ (1.10)
WK y) a2y e _'

o (o o?) WH(a,y) = 0.

Equation (1.10); is now solved to yield the Fourier transforms of w, o,, and ¢y,
W*(x, y) = A(x) sh y]/(xz — %+ B(x) ch y ]/oc2 — 0%,
Zh(sy) = —ipe [A() shyVa? — o+ Bla) chyYa? — of, (1.11)

Lol y) = ]/ocz — o? [A(oc) ch y]/oc2 — 0% + B(x)shyYo? — 0'2] .

The unknown functions A(x) and B(x) are to be determined from the correspond-
ing boundary conditions.

14>
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2. Quasistatic Motion of the Crack

2.1. General solution. Let us consider an infinite, non-homogeneous and
rigidly clamped at the surfaces (y = h;, y = —h,) layer consisting of two layers
having different thicknesses and different elastic properties (Fig. 1). Let in the
plane geparating these two layers be located a flat, semi-infinite crack (x < 0,
y = 0) loaded on its surfaces by forces o,, = p(x) satisfying the conditions of

1977
of 1/ //
Ho 7|/
Ll g | [
"E & @éz -plE/ V *
& -0
Abb. 1

antiplane state of strain. Both the crack and its loading are assumed to propagate
at a constant velocity ¢ along the z-axis of a fixed, rectangular coordinate system
(%. y, 2). By introducing the moving coordinate system (x’, y', 2) (1.6) the boundary
conditions assume the form

1

wx', y') =0 for |7 <oo, ¥ =h,
2
w(',y') =0 for |@'| < oo, y = —hy,
1 2
o’ y') = oy’ y) = pl@’) for & <0, Y =0, (2.1)
1 2
w@', y) = w@,y) for x>0, y =0,
1 2
oy, y') = 0@, ¥) for x>0, "=0,

where the upper indices i = 1, 2 refer to the displacements and stresses of the
upper and lower layers, respectively. Applying the Fourier transform (1.3) to the
first three relations of (2.1) and using Eqgs. (1.8), the problem of determination of
the stress intensity factor at the crack tip is reduced to the solution of the follow-
ing two Wiener-Hopf equations: '

W, 0) = — BoBl 3 oy
P (2 2)
\ .
Wi, 0) — 2obbs 5 (o)
Hofiarx

where By, =1 — ¢*fc}, , and uy, us, ¢r,, denote the shear moduli and trans-
versal wave velocities of the respective upper and lower layers.
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Introducing the notations due to Eq. (1.5)

2

Wlf‘(_(x, 0) — W, 0) = W—(x),

1 1
2, 0) + 2, 0) = 2 (o) + Plo), (2.3)
[\]
Plx) = —Vé_; f p(e) e dar,

— o0

and using the last two relations of Eqgs. (2.1), the system (2.2) is reduced to the
single Wiener-Hopf equation

W(x) = —H(x) [Z;(x) + P(x)] (2.4)
in which,
- {1 38)

The region of existence of Eq. (2.4) is the strip

- k14 7T
—min (——, —— | < —e<Imux < 0.
( 213 lh’l 2152}1’2 )

In order to solve Eq. (2.4) by the method of factorization [2] it is necessary to
factorize, first of all, the function (2.5). Applying here the procedure described in
[3] let us write (2.5) in the form

H(x) = H(x) Hy(w). (2.6)

The function H is required to behave at infinity (Jo| — 0o) and at zero (Ja| — 0)
exactly in the same manner as H(x); H;(«) should possess no zeros and no singu-
larities within the strip [Tm «| < &, where 0 < ¢ < & < min (7/2f,hy, 7/28:h,).
According to the assumptions concerning H it may be assumed that

A(x) = 22 B-(0) R*(w), 27)
N
where
1 1+y
RE(n) = ————, A =—2I 2.8
(@) ]/oc + 4 Baiky (k- 2) (28)

and kb = hyfhy, 2 = pifps, v = 2p:1/Bs.
The assumptions concerning H,(«) are satisfied, and H,(x) — 1 in the strip

Im «] < & for [x] — oo, and hence the function may be represented in the form

[2]

o)

Hi ()’

Hy(x) = 2.9
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where
ATl
n
In H1+(£X) = 2—7[; f C_;—O_C- dC,
—cotin (2.10)
Y
In H,™(x) = f —2_—%3@,
—oo+iy

here —e; << p, <y < &1.

Functions H*(x) defined in this manner do not posses zeros and singular points
within the respective halfplanes Im &« > y, and Im & << y;; in view of the fact
that Hi(0) = Hy(co) = 1 they satisfy the additional condition H*(0) = H,*(c0)
= 1.

Applying now the procedure described in [4], Eq. (2.4) is transformed with. the
aid of Eqs. (2.6), (2.7), (2.9) to yield

v Hi (o) W=(x
—ful BV TE) o) Hy' (o) E) + B). @.11)
Here
B(x) = Br(x) HyH(o) P(o). (2.12)

If H(x) is assumed to be regular at least within the region of existence of
Eq. (2.4), it may be represented in the form [2]

E(x) = Et(x) — E-(x) {2.13)
in which
00 —183
1 EQ)
B = 35 f . %
— o0 —1ds (214)
00 —1dy
SO | B({)
E(“)_Q_ml j{‘ C—ocdé"
~ 00 —1{d;

Here 0 << 6, << 85 < ¢, and the functions E+(x) are regular in the respective half-
planes Im &« > —¢ and Im « << 0. Equations (2.11), (2.13) and the generalized
Liouville theorem enable us to write the final solution of Eq. (2.4),

ooy 14y B(x) B («)
W) = By Hi ()

S N
R (o) Hy(o)

reg. for Im &« < 0,
(2.15)

Zo(x) = reg. for Im o > —e.

These results make it possible to determine the exact value of the stress intensity
factor — i.e. the magnitude which is special interest from the point of view of the
crack stability problem [5]. This factor and the difference of displacements of the
crack edges in the vicinity of the tip is now determined by applying the Abel
theorem concerning Fourier transforms [6]; it enables us to determine the be-



Quasistatic Problem of a Non-Homogeneous Elastic Layer Containing a Crack 159

haviour of inverse Fourier transforms at [#] — 0 once the behaviour of Fourier
transforms (2.15) at [«] — oo is known.

To this end let us use Eqs. (2.8), (2.14) and the properties of functions B+ (x)
and H,*(x); it may be shown that the functions W-(x) and X (x) (2.15) assume
for x| —> oo the form

. 1+y B
W-(x) = — —_—
() by oc]/;
B
ZHa) = —,
v:(o%) =
where
o0 —1id
- f By de, 0<b<e. (2.16)
DCT[?/
—o00—148

On the basis of the Abel theorem cited above we conclude that with |z'| — 0
the difference of displacements of the crack edges and the stress ¢,, along the
positive z-axis are equal to

1 2
o) — o(@') = 2NA A+ y) ) ]/ —z for x — (—0),

Mlﬁl (2.17)
1 2 N
0, (X)) = 0,,(&") = V— for x' — (+0)
X
where
N =—}—2 B. (2.18)

Using (2.18) we can establish the exact value of the stress intensity factor in the
cage of arbitrary loading of the edges of the crack.

2.2. Constant loading of the edges of the crack. To illustrate the solution
derived let us consider the case when the crack edges are loaded on their entire
length by a constant load o,,(x, 0) = p. In view of Eqgs. (2.3);, (2.8), (2.16),
and (2.18) we may write

00— 45
[=i 1 H,H0)
= — — —2 =t L.
o plﬂ 2mi e

— 00 —14

Performing the integration and making use of Eq. (2.8) and of the fact that
H(0) = 1, the stress intensity factor N is written in the form

Brlo(k -+ 4)
= — L . 2.1

N=-r 1/ 1+ 219)
From this formula it follows that with increasing velocities of crack propagation
and with decreasing thickness of the layer, the stress intensity factor decreases.
The factor (2.19) as a function of the crack propagation velocity is shown in
Fig. 2 for the cases gy = 3u and g, = 39,, and for y, = y,, 01 = 0s.
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Moreover, from (2.19) it follows that in the case of a homogeneous layer
(uy = py = p) and non-centrally located crack (h; == hy) the stress intensity
factor is independent of the thicknesses of individual layers. Its value is then
the same as in the case of a homogeneous layer with a central crack [7]

N=—p |/

24

Here 2k = hy + by, B = |1 — o,
Passing to the limit in (2.19) with ¢ — 0 we obtain the solution of a corre-
sponding static problem, and then

— ]/ e D)
N, = pl/n(1+l). (2.20)

The variability of N, as a function of k = h;/h, for the cases uy; = 3u, and
#y = uy = p is shown in Fig. 3.

From Eq. (2.20) it follows that in the cases when the layer is homogeneous
(#y = u, = u) and the crack is not centrally located (h, == %,), or when the layer
is non-homogeneous (u; == u,) and the crack lies in its middle plane (b, = &, = &),
the stress intensity factor in the static case is independent of material constants
and of the thicknesses of individual layers. Its value is the same as in the case
of a homogeneous layer with a centrally located crack [7],

N = —p ]/,/
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2.3. Crack with stress-free edges. The solution (2.19) derived in the preceding
section may be used to determine the stress intensity factor in the problem in
which constant displacements w = F-w, are prescribed over the surfaces y = %,
and y == —h, of the strip, the crack edges remaining stress-free (Fig. 4a).

Applying the method of superposition the solution is represented in the form
of a sum of solutions of a continuous layer and prescribed displacements w = Fw,
on the surfaces y = hy, y = —h, (Fig. 4b), and of a layer with rigidly clamped
surfaces containing a crack subject to constant loads &,,(z, 0) = —&,.(z, 0) = p,
(Fig. 4¢). The displacement % and stresses &,,, ,, in the problem shown in
Fig. 4b are defined by the following relations:

2k — ¥)

-1 4+ -z I <y <<

- 14 Ttk T4 for |z| < o0, 0y < by,

W(x, y) = Wy

_ 2t y) h <y <

1 ol ) for |z| <o, —k, <y =<0,

(2.21)
T, y) = 0 for [#] < oo, — =y = kl’
2uqwy

0yl®, y) = — for |z] <oo, —hy =y = hy.

Ryl + 2)

It follows that 5,,(x, 0) = —&,.(x, 0) = py = 2uywe/ha(k 4 1), and with the aid
of Eq. (2.19) the stress intensity factor in the problem (2.19) takes the form

L A .
N =2 1“’"1/ b4 7) (L +7) 2.22)
g x4 4
v by ‘4@7 ﬂiﬂ!

L'Q\ Gy =0 N ? f = G2y %
N N [ NS z
HE IE BIE
w=w G-y Fea
4 i ¢



162 M. MATCZYRSKI:

This relation implies, similarly to the example discussed before, that with
increasing crack propagation velocities the stress intensity factor decreases. In
contrast to the earlier example, however, decreasing the thicknesses of individual
layers is accompanied by increasing values of the factor. Fig. 5.

T

Gyt

4/

ITrom Eq. (2.22) it also follows that, similarly as before, in a homogeneous
layer (uy = pp = u) with a non-centrally located crack the stress intensity factor
remains independent of the ratio %,/k, and is the same as in the case of a layer
weakened by a crack lying in its middle plane [71,

— g /£
N = — o, ]/ 7th
where § = 1 — ¢?/cg2.
Passing to the limit in (2.22) with ¢ — 0 we obtain the stress intensity factor
in a static case,

. 21, .
Vahy(k +2) (1 + 7)

(2.23)

8

The values of N, as a function of the parameter k == hy/h, for u, = 3u,
and py = p, is illustrated by the graph in Fig. 6.

Comparison of Eqgs. (2.20) and (2.23). yields the conclusion that in a static
case, in contrast to the result derived before, only when the layer is homogeneous
(p1 = pe = p) the stress intensity factor remains independent of the ratio k,/4,
and equals [7]

N, = — £
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3. Harmoniec Oscillation of Loads

3.1. General solution. In this part of the paper we shall tackle the problem
of determination of the stress intensity factor at the erack tip under the as-
sumption that the non-homogeneous layer (Fig. 1) contains a crack loaded by
harmonic loads which fulfil the conditions of antiplane state of strain. The load
applied to the edges of the crack may be written in the form

0yz = Po(®) + p(*) exp (iwt).

By the method of superposition the static and quasistatic problems may be
separated, and the boundary conditions for the latier problem assume, after
transformation (1.9), the form

1

w*(z, y) =0 for || < oo, y =hy,
2
w(z,y) =0 for |z] <co, y = —h,,
1 2
o, §) = oz, y) = p(x) for <0, y=0, 3.1y
1 2
wk(x, y) = wHz, ¥) for >0, y=0,
1 2
0%, y) = o (2, y) for x>0, y=0;

the superscripts 7 = 1, 2 referring, as before, to the upper and lower layers,
respectively. Application of the Fourier transform (1.3) to Egs. (3.1) reduces,
with the help of Eq. (1.11), the problem to the solution of the following set of
two Wiener-Hopf integral equations:

thh, Vo — o2 =

27 (e, 0),
sy Yok — o
1
W(x, 0) — th 2, Vo — 0,2

7] V‘Xz — o3?

1

W(ax, 0) == —
(3.2)
2

2y(, 0),
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where 07,2 = w/cr;,,. Using the last two of Egs. (3.1) and introducing the no-
tations according to Eqgg. (1.5),

Wl/'*(oc, 0) — Wz’*(zx, 0) = W(x),

1
I35, 0) = Zi(e) + P(w), (3:3)
0

P(s) =7;: f p(e) e da,

— 00

the system (3.2) is reduced to a single Wiener-Hopf equation

W-(x) = —H(x) [Z(a) -+ P(&)] (3:4)
where
Hx) = 2 lo? —of | thia]o? o (3.5)
Va2 — o M2 Vo2 — o
The region of existence of Eq. (4.5) coincides with the strip
—min (f 72/4h® — 0.2, ) 2?/dh? — 02) < —e <Ima < 0. (3.6)

Application of the procedure outlined by W.T. Korrgr requires the function
H(x) to be represented in the form

H(w) = H(s) Hy(®) (3.7)
where
== 1--2
H{x) = B () B*(x),
1
Ri(zx) — 1 A — o1 +4) (3.8)
Voot id’ tg hyoy + % tg hyo,

% = Aoy[o, :Vlgl/Qz,

Hi(x) being regular and non-zero within the strip Imaf < e, 0 <<e < g
< min (V 72 [4h 2 — o2, Vn2/4h22 — 022) .

Repeating now the reasoning used in Sec. 2 we conclude that in the quasistatic
case the difference of displacements of the crack edges and the stress o,, along
the positive z-axis for |z| — 0 are expressed by the formulae

1

2 —
w(x) — wx) = 20+, ]/—~x

for z— (-—0),

" (3.9)
6,:(2) = 6,ua) = % for @ — (--0),

and the stress intensity factor — by the formula

N, = N*(p, o) exp (iof) (3.10)
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where

0 — {8

Vo) = 2 [ Ry e P @.11)
—00-~§d

By using the Egs. (3.10), (3.11) we can determine the exact value of the stress
intensity factor in the case of an arbitrary harmonic loading of the crack edges
under the only assumption that the vibration frequency

o < min (weq, [2hy, wep [2h,).

The static solution is easily obtained by assuming w = 0 in Egs. (3.10), (3.11).
Superposing the both results we arrive at the final expression for the stress
intensity factor in the case when the crack is loaded by o, = po(x) + p(z) exp (twt),

namely
N = N*(py, 0) + N*(p, w) exp (1wf). (3.12)

3.2. Constant amplitude of vibration. To illustrate the foregoing considerations
let us discuss the example of the crack loaded at its edges (Fig.1) by
Oy2 = Do + P1 €08 wt; Py, py = const. In view of Egs. (3.3) and (3.11) we obtain

in the quasistatic case
00 —14d

@ 2 tVe+id

— 00— 148

N¥(py, 0) = ~py Ll f I e (3.13)

After integration and using Eq. (3.8), and the fact that H,*(0) =1 Eq. (3.13)
assumes the form

h. (tg 0" + » tg doy’)
B3 2 3 1
N*(py, 0) = V V ) (3.14)

where 0," = o,hy, 8 = A/kx. The static solution is obtained by puttingin Eq. (3.14)
o = 0; the result coincides with Eq. (2.20). Combining the corresponding results
(3.12), (2.20), and (3.14) we obtain the final form of the stress intensity factor

- P17/ k(g oy +xtg50’1 .
N pl/n<1+z> [V LR V CS"”] (8.15)

1

From this formula it follows that in the limiting case when o — min (7eq (24,
mer,/2h,), a resonance-type phenomenon occurs: arbitrarily small load com-
ponents p; provoke infinitely large values of N —»co. It is also evident that at
a constant frequency o thinner layers lead to smaller stress intensity factors
(Fig. 7). The maximum value of N at a constant frequency w is given by the

formula
k. R P k(tg 0" + = tg doy") J
N, = — —2 — \VE+ A4+ = 1 .
Po 1/75(1 + 4 [V TAY Po o)
Fig. 7 demonstrates the variability of &, with changing o for g, == 3u,, 01 = 302,
and u; = ps, 01 = 0s.
Assuming in Eq. (3.15) that £ =1 = x = 1 we obtain the stress intensity
factor as given in [8] and referring to the quasistatic case of a homogeneous
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Abb. 7

layer with a central crack,

N:_mvip+&yﬁﬁmmﬁ
7 Po G
here ¢’ = hojcp.

3.3. COrack with stress-free edges. The solution (3.15) derived in the preceding
section may be used to determine the stress intensity factor in the case when
the crack is free of stresses whereas the boundary surfaces of the strip y = hh,,
y = —h, are subject to prescribed displacements w = T (w, -~ w, cos wt), with

o < min (sepy /2Ry, meps/2hy), and  w,, wy = const.

Considering the static and quasistatic problems separately and repeating the
way of reasoning used in Sec. 2.3, the determination of the stress intensity factor
in the problem formulated above may be reduced to the determination of the
parameters p,, p; appearing in Eq. (3.15); this is reduced, in turn, to the de-
termination of stresses o,,(x, 0) in a continuous layer whose boundary surfaces
are subjected to prescribed displacements: w = TFw, in the static case, and
w = T-w; cos wl in the quasistatic case.

The displacement w and stresses o,,, 0, in the static case of a continuous
layer (Fig.4b) are given by Egs. (2.21) and in the corresponding quasistatic
case — by the following formulae:

f(@)sin oy — glo)cos oy for 0=y < hy,
wiz, y,t) = —w, cos wi
xf(o) sin oyy — g(o) cos oy for —h, =y=0,
0@, Y, 1) = 0 for —hy =y =<y,
(3.16)

moilg(o) sin oy + f(o) cos oyl for O <y =By,

Gyz(xy Y, t) = — Wy CO8 wi
14200[g(0) 8in 03y + #f(0) cos apy] for —hy <y =0,
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here
cos o7 -+ cos doy’
flo) = cos oy’ cos oy’ (bg 0,” + % tg doy’)
(3.17)
sin oy" — % sin day”
g(O') — 1 1

cos 0 cos 0y’ (tg oy + % tg 60y)

By applying the Egs. (2.21), (3.16);, and (3.17); the coefficients p, and p,
sought for are calculated

Po = Zuyw,
ho(le + 2)°
w05 (cos 6,” + cos doy”)
=

cos gy’ 008 60y’ (bg oy -+ x tg doy’)

The results are now substituted in Eq. (3.15) to yield the final form of the stress
intensity parameter

2 N
N = — 2% 1m0 o], (3.18)
Vahs (1 4 2) | Vi + 2 2 '
Here .
__ cos o,” - cos gy’ g, 3.19
mo) 2 cos ;" cos 0, Vlc(tg of + xtgdoy) (3-19)

Pagsing to the limit with ¢ — 0 in Eqgs. (3.18) and (3.19) we obtain the stress
intensity factor in the static case of a strip with prescribed displacements
w = F(wy + w;) at the boundary surfaces; the result coincides with Eq. (2.23).

Equation (3.18) also yields the resonance-type phenomenon when the vi-
bration frequency tends to min (wey [2hy, wer,[2h,). In contrast to the former
result, however, thinner layers lead to larger stress intensity factors (at a con-
stant w). ‘

The maximum of N in Eq. (3.18) at a constant value of w is given by the
formula

N, = — 2pw, 1 + w,m(o) )
Vahy 0 +4) (VE+ 2 Wo

Assuming in Eqgs. (3.18) and (3.19) £ = 1 = x = 1 we obtain the stress intensity
factor as derived in [8] and referring to a homogeneous layer with a centrally
located crack,

N:—E—Z—O—[l—l—i”l_]/__%’,coswt}
Vah wy | sin 20

with the notation ¢" = wh/cy.
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