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Summary - Zusammenfassung 

Quasistatic Problem of a 5Ton-l~omogeneous Elastic Layer Containing a Crack. A non- 
homogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers 
of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the 
crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain. 
Considered are two cases, the crack and its load propagating at a constant velocity along the 
horizontal axis, and the load being a harmonic function of time, respectively. In the both 
cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude) 
of the crack are given. In the limiting cases, solutions of static problems are obtained. The 
results are illustrated by particular solutions concerning the cases when the crack edge load 
(or its amplitude) is constant on its entire length. 

Ein quasistatisehes Problem einer inhomogenen Sehieht mit einem Rig. Eine aus zwei 
verschieden elastisehen Sehichten zusammengesetzte Schicht wird durch einen streifen- 
fSrmigen RiB zwischen den Schichten gesehw~icht. Die Oberfl~chen der Schicht sine[ einge- 
spannt und die RiBoberfl~ehe durch beliebige, die Bedingungen des antiebenen Verzerrungs- 
zugtandes genfigenden Kriiften belastet. Betrach%et werden die zwei F~lle, dal3 sich der Rift 
und seine Belastung mit konstanter Geschwindigkeit horizontal bewegen und dab die Last 
eine harmonisehe Funktion der Zeit ist. In beiden Fs werden die exakten Werte des 
SpannungserhShungsfaktors flit beliebige Lasten (beliebige Lastamplituden) angegeben. In 
den Grenzfiillen werden die Werte des statischen Problems erhalten. Die Resultate werden 
an Hand des Spezialfalles einer fiber die gesamte L~nge konstanten Last (oder Amplitude) 
erls 

][. General Formulation 

The an t ip lane  s tate  of s t r a in  is known  to be characterized by  the par t icular  
form of elastic d isplacement  vector  which, in  a rec tangular  coordinate system 
(x, y, z) may  be represented as 

u = [0, 0, w(x, y, t)]. 

* On leave from the Institute of Fundamental Technological Research (Polish Academy 
of Science), Warsaw. The paper has been prepared during author's research visit at the 
Institute A for Mechanics, Munich Technical University, sponsored by the Alexander yon 
Humboldt Foundation. 
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The only components of the state of strain and stress which do not identically 
vanish are 

1 ~w 1 Ow 
ezz = 2 8x ' sy~ 2 ~y 

Ow ~w 

/~ being the shear modulus. 

(i.I) 

In  such a case, in absence of body forces, the equations of motion reduce to 
the single equation 

1 ~2w 
V2w = (1.2) 

aT 2 ~t 2 

where cz 2 =-#/~ is the square of velocity of propagation of transversal  elastic 
w a v e s .  

In  this paper we shall make extensive use of the two-sided integral Fourier 
t ransform defined by the following formulae: 

+ c o  

F ( ~ ,  y) - -  g ~  / (x ,  y) e ~ dx ,  

--oo 

+~+~c (1.3) 

i ;~(~,y) e - i ~ d ~  ] ( x ,  y )  - 1 / ~  ., " 

- - c~+ic  

Here the transform parameter  is a complex variable, and the pa th  of integration 
in Eq. (1.3)2 is located within the strip c t < i m  c~ < c2 which represents the 
region of regularity of F(a,  y). We shall also use the following representation [1] 
of/P(~, y) : 

F(~, y) = zv-(~, y) + 2~+(~, y) (1.4) 

in which the one-sided Fourier t ransforms 

0 

1 f 
F-(~, y) = 1/--~ / i x ,  y) d ~x d x ,  

(1.5) 

F+(~,  y) - -  ~ /~  / (x ,  y) e ~ d x ,  

o 

are analytic functions in the respective halfplanes I m  cr ~ c2 and I m  a ~ c 1 . 
In  the ease of a quasistatic problem in which the fixed rectangular coordinate 

system (x, y, z) can be replaced by a convectional reference frame (x' ,  y ' ,  z') 

x = x" -t- ct ,  y = y ' ,  z = z ' .  (1.6) 

c being the constant velocity of motion of the system (x', y' ,  z ') ,  the equation of 
motion (1.2) takes the form 

82w 82w 2 
,8 ax'~ + = O. 8y,2 
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Here fl~ = 1 -- c~/cT z. By applying the Fourier transform (1.3) to this equation 
and to Eq. (1.1) we obtain 

2xz(~, y') = -- i#~W(o~,  y ' ) ,  

dW(a, y') (1.7) Xy,(~, y') ~-/~ - ,  
dy" 

d2W(c~' Y') o~2flzW(a, y') = O. 
dy'2 

Equation (1.7)3 is now solved to yield the Fourier transforms of the displacement 
w and stresses qxz, ffyz, 

W(~, y') = A(a) sh ~xfiy' + B(c~) ch ~xfiy', 

Xx,(~x, y') ~- --ittcc[A(a) sh afly' + Z ( a )  ch ~fly'], (1.8) 

2~(~, y') = / ~ f l  [A(a) ch afly' + B(or sh o~fly']. 

The unknown functions A(a) and B(a) are to be determined from the boundary 
conditions of the problem considered. 

In  the other type of quasistatic problem in which the displacement and 
stresses are harmonic functions of time, the transformation 

g(x, y, t) = g*(x, y) exp (loot) (1.9) 

(~o being the harmonic vibration frequency) reduces the equation of motion (1.2) 
to the form 

V2w * + ~ w *  = O. 

Here a == ~O/CT. Let us now apply the Fourier transform (1.3) to Eq. (1.1) and to 
the latter equation; using (1.9) we obtain 

Z~(~ ,  y) = --il~o~W*(c~, y) ,  

dW*(~, y) (1.10) 

d2W*( ~', Y) _ (o~ _ ~2) W*(er y) =- O. 
dy'~ 

Equation (1.10)~ is now solved to yield the Fourier transforms of w, a~  and ayz, 

y )  = s h  y - -  + e h  y - -  

X;*(a, y) : --i/~a [A(a) s h y  ]/~-~ -- a ~ ~- B(~) ch y ] / ~ ] ,  (1.11) 

The unknown functions A(a) and B(a) are to be determined from the correspond- 
ing boundary conditions. 

11" 
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2. quasistatic )lotion of the Crack 

2.1. General solution. Let us consider an infinite, non-homogeneous and 
rigidly clamped at the surfaces (y = hi, y = --h~) layer consisting of two layers 
having different thicknesses and different elastic properties (Fig. 1). Let  in the 
plane separating these two layers be located a flat, semi-infinite crack (x < 0, 
y = 0) loaded on its surfaces by forces au~ = p(X) satisfying the conditions of 

2" 

~x,#~,o , /  / = 

Abb. 1 

~ t  

antiplane stage of strain. Both the crack and its loading are assumed to propagate 
at a constant velocity c along the x-axis of a fixed, rectangular coordinate system 
(x, y, z). By introducing the moving coordinate system (x', y', z') (1.6) the boundary 
conditions assume the form 

1 

w(x', y') = 0  for [x'l < ~ ,  y' = h l ,  

2 

w(x', y')  ----- 0 for  [x'[ < o0, y '  = --h~, 

1 2 

%.(x', y') =a~.(x',  y') = p ( x ' )  for x' < 0 ,  y' = 0 ,  

1 

w(x', y') = w(x', y') for x' > 0, y' -- 0, 

1 2 

ay~(x', y') =au~(x', y') for x' > 0 ,  y' = 0 ,  

(2 .1)  

where the upper indices i = 1, 2 refer to the displacements and stresses of the 
upper and lower layers, respectively. Applying the Fourier transform (1.3) to the 
first three relations of (2.1) and using Eqs. (1.8), the problem of determination of 
the stress intensity factor at the crack tip is reduced to the solution of the follow- 
ing two Wiener-Hopf equations: 

1 

W ( ~ ,  O) - 

2 

W(c~, o) - - -  

1 
th ~ . ~  ~ ( ~ ,  0 ) ,  

2 
th ~ h ~  Z:~.(~, 0), 

(2.2) 

where fll,z = 1 -- s2/c~ .... and /'1, /*2, cTl,: denote the shear moduli and trans- 
versal wave velocities of the respective upper and lower layers. 
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Introducing the notations due to Eq. (1.5) 

1 2 

w-(~ ,  o) - w-(o,, o) --  w-(~,), 

1 1 

.Z~(a, O) -~ Z+(c~, O) -~ - ~ ( a )  + P(or (2.3) 

0 1/ P(o,) = ~ p(x) d"*' dx', 

- - o o  

and using the last two relations of Eqs. (2.1), the system (2.2) is reduced to the 
single Wiener-Hopf equation 

in which 

w-(~)  = - -H(~)  [Z;(~)  + P(~)] (2.4) 

(2.5) 

The region of existence of Eq. (2.4) is the strip 

( ) 
In  order to solve Eq. (2.4) by the method of factorization [2] it is necessary to 

factorize, first of all, the function (2.5). Applying here the procedure described in 
[3] let us write (2.5) in the form 

H(~) = H(oc) HI(~ ) . (2.6) 

The function H is required to behave at infinity (ra I -+ ~ )  and at zero (l~l -+ 0) 
exactly in the same manner as H(~) ; Hi(a) should possess no zeros and no singu- 
larities within the strip tim ~[ ~ el, where 0 ~ s ~ sl ~ min (~/2fllh1, x/2fl~h2). 
According to the assumptions concerning H it may be assumed that  

where 

H(a)  = 1 +_._.._~y R-(a)  R+(a), (2.7) 
#1fii 

R ~ ( ~  ) _ 1 A - -  ~ + ~ (2 .8 )  
[a • iA ' t3xhg (k + 2)' 

a n d  k = h 1 1 4 ,  ,~ = ~ I # ~ ,  r = "~/~/~. 
The assumptions concerning HI(~) are satisfied, and HI(~) -+ 1 in the strip 

IIm al ~ el for Ial --> or and hence the function may be represented in the form 
[2] 

Hl+(a) (2.9) Hi(a) HF(~) ' 
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where 

1 f In H(~) d~, 
In HI+(~ ) - -  2zti ~ -- 0~ 

- ~+~y, (2.10) 
oo-4-i?1 

1 ( In H(~) d~, 
in Ht-(~) = 2~i ~ r - a 

--co+iy~ 
here --el  < 72 < 7~ < ex. 

Functions H • (~) defined in this manner  do not posses zeros and singular points 
within the respective halfplanes I m  a > 72 and I m  ~ < 7~ ; in view of the fact 
tha t  Hi(0) = H l ( O O  ) -=~ 1 they satisfy the additional condition H1• = HI•  

Applying now the procedure described in [4], Eq. (2.4) is t ransformed with the 
aid of Eqs. (2.6), (2.7), (2.9) to yield 

~l/~l Hl-(Or ) W-(oc) __ /~+((%) HI+(~/) 2~z(0~ ) _~ E(/~).  (2.11) 
1 + 7 /~-(~) 

Here 

E(a) = R+(~) Hl+(a) P(~). (2.12) 

I f  1~(~) is assumed to be regular at  least within the region of existence Of 
Eq. (2.4), it may  be represented in the form [2] 

in which 

E(~) = E + ( ~ ) - - E - ( ~ )  

--c0--i52 

oo --i~1 
~_(~1_ ~ ( Er ~ .  

2~i J ~ -- c* 
--co--i51 

(2.13) 

(2.14) 

These results make it possible to determine the exact value of the stress intensity 
factor - -  i.e. the magnitude which is special interest from the point of view of the 
crack stability problem [5]. This factor and the difference of displacements of the 
crack edges in the vicinity of the tip is now determined by applying the Abel 
theorem concerning Fourier transforms [6]; it enables us to determine the be- 

W-(cr t + y E-(~) R-(a) reg. for I m  ~ < 0, 
#1fil HC(a) (2.15) 

Z~(c~) = E+(a) reg. for I m  cr > - -s .  
R+(~) HI+(~) 

Here 0 < 61 < 62 < e, and the functions E •  regular in the respective half- 
planes I m  ~ > - -s  and I m  ~ < 0. Equations (2.11), (2.13) and the generalized 
Liouville theorem enable us to write the final solution of Eq. (2.4), 
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haviour of inverse Fourier transforms at Ix I -> 0 once the behaviour of Fourier 
transforms (2.15) at [~1 -> ~ is known. 

To this end let us use Eqs. (2.8), (2.14) and the properties of functions E•162 

and Hl~(~); it may be shown that  the functions W-(~) and ~+(c~) (2.15) assume 
for I~] ~-~ ~z the form 

1 §  w-(~) - 

B 
G ( ~ ) -  E '  

B 

where 
c~--i6 

B =  ~zil f E(~)d~, 0 < 6 < s .  (2.16) 
- -  c o - - i ~  

On the basis of the Abel theorem cited above we conclude that  with lx ' l -+ 0 
the difference of displacements of the crack edges and the stress ay~ along the 
positive x-axis are equal to 

where 

1 2 2~(1 §  ~----~ fo r  X' --> ( - - 0 ) ,  ~(X') - -  ~(X') - -  t ' :~: 

1 ~ iV 
ayz(x') = a~(x') ----- - -  for x' --~ (q-0) 

(2.17) 

N = - l / - - - ~  s .  (2.18) 

Using (2.18) we can establish the exact value of the stress intensity factor in the 
case of arbitrary loading of the edges of the crack. 

2.2. Constant loading o/ the edges o] the crack. To illustrate the solution 
derived let us consider the case when the crack edges are loaded on their entire 
length by a constant load %z(x, 0 ) =  p.  In  view of Eqs. (2.3)3, (2.8), (2.16), 
and (2.18) we may write 

o o - - i 5  

f i 1 Hd(~) d~. 

- - r  

Performing the integration and making use of Eq. (2.8) and of the fact tha t  
H:+(0) = 1, the stress intensity factor N is written in the form 

]/  fl:h2(k § ,t) (2.19) 
N = - p  v ~ 7  " 

From this formula it follows that  with increasing velocities of crack propagation 
and with decreasing thickness of the layer, the stress intensity factor decreases. 
The factor (2.19) as a function of the crack propagation velocity is shown in 
Fig. 2 for the cases/~i = 3/~ and ~i = 3~~ and for #l =/~2, ~: = ~e. 
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o,,y 

o,: 

47 

4~ /-z* = ~2z :3 
/z~ q2 "f 

o,: 
. . . . .  /Zl_.y_z. _ ~ 

I 

Abb. 2 

Moreover, f rom (2.19) it follows tha t  in the case of a homogeneous layer 
(#1 = #2 =/~)  and non-central ly  located crack (hi ~ he) the stress in tensi ty  
factor  is independent  of the thicknesses of individual layers. I t s  value is then  
the same as in the ease of a homogeneous layer with a central  crack [7] 

H e r e 2 h = h l q - h 2 ,  / 7 = V l - - c 2 / c f  2. 
Passing to the limit in (2.19) with c -~ 0 we obtain the solution of a corre- 

sponding static problem, and then  

~//Q(k § )o) (2.20) N,  = - - p  ~(1 § 4) 

The variabil i ty of N s as a funct ion of /c : hl/h2 for the cases ,ul = 3!,~ and 
,u~ = #2 = # is shown in Fig. 3. 

F r o m  Eq. (2.20) it follows tha t  in the cases when the layer is homogeneous 
(#1 = #~ = #) and the crack is not  central ly located (hi @ h2), or when the layer  
is non-homogeneous (/~1 � 9  and the crack lies in its middle plane (hi = h~ = h), 
the stress in tensi ty  factor  in the static case is independent  of material  constants  
and of the thicknesses of individual layers. I t s  value is the same as in the case 
of a homogeneous layer with a centrally located crack [7], 

N = --PlJ 
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Abb. 3 

2.3. Crack with stress-/tee edges. The solution (2.19) derived in the preceding 
section m a y  be used to  determine the stress in tens i ty  factor  in the problem in 
which cons tan t  displacements w --~ T w  o are prescribed over the surfaces y ~ hi 
and y - -  --h2 of the sbrip, the crack edges remaining stress-free (Fig. 4a). 

Applying the method  of superposit ion the solution is represented in the form 
of a sum of solutions of a cont inuous layer  and  prescribed displacements w = ~=w0 
on the surfaces y ~ hi, y = --h2 (Fig. 4b), and of a layer  with rigidly clamped 
surfaces containing a crack subject  to cons tant  loads ~yz(x, O) ~ --~yz(X, O) ~ Po 
(Fig. 4c). The displacement  @ and stresses ~y,, ~x~ in the problem shown in 
Fig. 4b  are defined by  the following relations : 

11 2(hl -- y) - + h~(k+;,~ 
~(x, y) = Wo 

2),(h~ + y) 
h2(k § ~) 

~x~(x, y) = 0 

for Ix] < ~ ,  0 g y ~ hi, 

for ix] < ~ ,  - - h 2 g y = < 0 ,  

for lxl < ~ ,  --h2 <~ y <~ hi,  
(2.21) 

2#1w~ for Ix[ < ~ ,  - - h  2 < y < h 1. ~y~(x, y) - -  h~(k + ~) = = 

I t  follows tha t  ~vz(x, O) = --~yz(x, O) ~- Po ~- 2#lwo/h2(k + ~), and  with the aid 
of Eq. (2.19) the stress in tens i ty  factor  in the problem (2.19) takes the form 

fll (2.22) N = --2~tlw o ~h~(k -~ ),) (1 ~- y) 

r ~ o  

~=o 

Abb. 4 



162 ~I. 5~.ATCZY~ Sii.[: 

This relation imphes, similarly to the example discussed before, tha t  with 
increasing crack propagation velocities the stress intensity factor decreases. In  
contrast  to the earlier example, however, decreasing the thicknesses of individual 
layers is accompanied by  increasing values of the factor. Fig. 5. 

_ //-~2 N 2~1~o 

O,2 

o,3o,2 ~ ' ~ I , ,  
. . . . .  ~7~L'=3 ~ ii 

,~2 ~ " 1 

Abb. 5 

From Eq. (2.22) it also follows that ,  similarly as before, in a homogeneous 
layer (ttl =/~2 = #) with a non-centrally located crack the stress intensity factor 
remains independent of the ratio hl/h2 and is the same as in the case of a layer 
weakened by  a crack lying in its middle plane [7], 

where fi = ~1 - -  C~IcT 2. 
Passing to the limit in (2.22) with c --> 0 we obtain the s~ress intensity factor 

in a static case, 

- -  2 ~ t l W ~  �9 (2.23) 

The values of N~ as a function of the parameter  k = hi/h2 for ,u 1 = 3#2 
and/~1 -~ #~ is illustrated by  the graph in Fig. 6. 

Comparison of Eqs. (2.20) and (2.23). yields the conclusion tha t  in a static 
case, in contrast  to the result derived before, only when the layer is homogeneous 
~ul = #2 = #) the stress intensity factor remains independent of the ratio hl /h  2 
and equals [7] 

N~ = -  ttw~ ~-~'" 
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3. H a r m o n i c  Osci l lat ion of Loads 

3.1. General solution. In  this par t  of the paper we shall tackle the problem 
of determination of the stress intensity factor at  the crack tip under the as- 
sumption tha t  the non-homogeneous layer (Fig. 1) contains a crack loaded by 
harmonic loads which fulfil the conditions of antiplane state of strain. The load 
applied to the edges of the crack may  be writ ten in the form 

ay~ ~ po(x) + p(x)  exp (ia)t). 

By the method of superposition the static and qu~sistatie problems may  be 
separated, and the bo~mdary conditions for the lat ter  problem assume, after 
t ransformation (1.9), the form 

1 

w*(x,  y) = 0  for ]x[ < ~ ,  y = hl ,  

2 
w(x ,  y) = 0 for lxi < oo, y = --]~2, 

1 2 

~;~(x, y) - ~ ( ~ ,  y) = p(~)  for x < o ,  y = 0 ,  ( 3 . 1 )  

1 2 

w*(x ,  y) = w*(x ,  y) for x > 0, y = 0, 

1 2 

a~(x, y) = a~(x, y) for x > 0, y = 0; 

the superscripts i--~ 1, 2 referring, as before, to the upper and lower layers, 
respectively. Application of the Fourier t ransform (1.3) to Eqs. (3.1) reduces, 
with the help of Eq. (1.11), the problem to the solution of the following set of 
two Wiener-Hopf integral equations : 

1 th h 1 ]/~2 1 
w * ( ~ ,  o) ~ - - ~ :  2:~*i(~, o ) ,  

/h ] ~ -  al 2 (3.2) 
1 2 

W*(oc, O) ~ th h~. ]/~'~ -- a2 e ~'~*(cr 0), 
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where (T1, 2 ~ -  (D/CT1,2. Using the last two of Eqs. (3.1) and introducing the no- 
tations according to Eqs. (1.5), 

1 2 
W*(o~, O) - W*(o,, O) = W - ( ~ ) ,  

1 
X~(a, 0) = X+(~) + P(a) ,  (3.3) 

0 

P(a )  = ~ p(x)  e ~"x dx ,  

- o o  

the system (3.2) is reduced to a single Wiener-Hopf equation 

W-(a) = --H(a)  [Z+(~) -~ P(c~)] (3.4) 
w h e r e  

H ( ~ )  = th hi 1/s z - ~ + th h~ r  --  ~ (3.5) 

Z~ 1/~-- .1 ~ Z~ 1 / ~ - -  ~ 

The region of existence of Eq. (4.5) coincides with the strip 

--rain (~ u~/4h, ~ - -  (q2, ~ a~/4h2~ _ ~ )  < --e < Im ~ < O. (3.6) 

Application o~ the procedure outlined by W. T. KOIT]~R requires the function 
H(a) to be represented in the form 

H(a) = H(~) Hi(a) (3.7) 
where 

H ( : )  = 1 +____~x R - ( : )  R+(~ ) ,  
#1 

R•162 _ i al(1 -b 2) (3.8) 
~ ,  A : tghla 1-+-~tgh2a 2 ' 

Hi(a) being regular and non-zero within the strip lira al < el, 0 < e =< el 

< r a i n  - -  .12, V = /4h2  - -  
Repeating now the reasoning used in Sec. 2 we conclude that  in the quasistatie 
case the difference of displacements of the crack edges and the stress au~ along 
the positive x-axis for lxI -> 0 are expressed by the formulae 

1 2 2(1 ~- 2)~u 
w(x)  - -  w(x)  =- - -  ]/~--~-x for x -~ (--0), 

#1 (3.9) 
1 2 N q  

%~(x) = %z(x) = for x --> (+0) ,  G 

and the stress intensity factor --  by the formula 

~Vq -~. ~V*(p, o)) e x p  (i~t)  (3.10) 
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where 
c~--i5 
f a  

N*(p, co) -- I R+(~) HI+(~) P(~) d$. (3.11) 
2~i 1 2  

--co--i~ 

By using the Eqs. (3.10), (3.11) we can determine the exact value of the stress 
intensity factor in the case of an arbitrary harmonic loading of the crack edges 
under the only assumption tha t  the vibration frequency 

co < rain (z~c~,/2hl, arcT,/2h2). 

The static solution is easily obtained by assuming co = 0 in Eqs. (3.10), (3.11). 
Superposing the both results we arrive at  the final expression for the stress 
intensi ty factor in the case when the crack is loaded by  %~ = pc(x) + p(x) exp (iwt), 
namely 

N = N*(p o, 0) + N*(p, co) exp (icot). (3.12) 

3.2. Constant amplitude o/vibration. To illustrate the foregoing considerations 
let us discuss the example of the crack loaded at  its edges (Fig. 1) by  
ay, = P0 + Pl cos cot; Pc, Pl = const.  In  view of Eqs. (3.3) and (3.11) we obtain 
in the quasistatic case 

co--i~ 

~Tg(Pl, CO) = --Pl ]gZr r Vr + ia 
-oo-i~ 

After integration and using Eq. (3.8)2 and the fact tha t  H~+(0) = 1 Eq. (a.13) 
assumes the form 

s co) : _ p l  V ~  ~: ~(tg O'1, ~- 9g tg ~Crlt) 

where a (  = alhl, 5 = 2/kz. The static solution is obtained by putt ing in Eq. (3.14) 
~o = 0; the result coincides with Eq. (2.20). Combining the corresponding results 
(3.12), (2.20), and (3.14) we obtain the final form of the stress intensity factor 

2V = --P0 ~ P0 al' cos cot �9 (3.15) 

From this formula it  follows tha t  in the limiting case when (o -+ rain (=cT,/2hl, 
~cm=/2h~), a resonance-type phenomenon occurs: arbitrarily small load com- 
ponents Pl provoke infinitely large values of N -+ co. I t  is also evident tha t  at  
a constant frequency co thinner layers lead to smaller stress intensity factors 
(Fig. 7). The maximum value of N at a constan~ frequency co is given by the 
formula 

] / ~ - -  []/k + 2 + P-2-~ Vk(tg~" +-utg6~') ] 
Nm = --Po (1 + 2) Po a~' 

Fig. 7 demonstrates the variabil i ty of Nm with changing co for #1 = 3/g2, ~1 : 3~2,  

a n d / ~  =/~2, ~a = e2. 
Assuming in Eq. (3.15) tha t  k = 2 ~- ~ = 1 we obtain the stress intensity 

factor as given in [8] and referring to the quasistatic case of a homogeneous 
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layer with a central crack, 

N = --Po 1 + ~oo / - - f i - -  cos ~t  

here cr' = hOO/CT. 

3.3. Crack with stress-]ree edges. The solution (3.15) derived in the preceding 
section may  be used to determine the stress intensity factor in the case when 
the crack is free of stresses whereas the boundary surfaces of the strip y = hhl, 
y = --h2 are subject to prescribed displacements w = @ (w0 q- Wx cos oot), with 

oo < rain (=cTt/2hl, azcT2/2h2), and wo, wl = const.  

Considering the static and qu~sistatio problems separately and repeating the 
way of reasoning used in See. 2.3, the determination of the stress intensity factor 
in the problem formulated above may  be reduced to the determination of the 
parameters  P0, Pl appearing in Eq. (3.15); this is reduced, in turn, to the de- 
termination of stresses cruz(x , 0) in a continuous layer whose boundary surfaces 
are subjected to prescribed displacements: w = ~=w 0 in the static case, and 
w = TWl cos mt in the quasist~tic case. 

The displacement w and stresses a~z, %z in the static case of a continuous 
layer (Fig. 4b) are given by Eqs. (2.21) and in the corresponding quasistatie 
case - -  by the following formulae: 

/ / ( a )  sin ( ~ l Y  - -  g(6) COS s~y for 

w(x, y, t) = --wl  cos oJt [Y'](a) sin a2Y --  g(cr) cos s2Y for 

%~(x, y, t) = 0 for 

%~(x, y, t) = --wl  cos egt 
/*lal[g(a) sin cqy q- 1(r cos cqy] 

/z2~[g(~) sin r + .J(r cos r 

O<=y<=hl,  

--h2 <= y <= O, 

--h2 <= y ~ hi, 

(3.16) 

for 0 ~ y =< hi, 

for - - h ~ y ~ 0 ,  
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here 

/ ( ~ )  = 
COS (71t -~ COS (~ff 1' 

g ( ~ )  = 

By applying the  Eqs. (2.21), (3.16)3, 
sought  for are calculated 

2/~lWo 
19~ - -  h2(k + Z) ' 

cos a I '  cos d(71' (tg (71, -7 ~ tg 6(71' ) ' 

sin (71' - -  z sin ~(71' 
cos a 1' cos da 1' (tg (71' -~ x tg 6a1') 

(3.17) 

and (3.17h the coefficients Po and Pl 

#1w~(71( e~ ~1' + cos ~(71') 
cos (7i' cos 6(7 i '  (tg c~ i" + x tg 6(71") 

The results are now subst i tuted in Eq. (3.15) to yield the final form of the stress 
in tens i ty  parameter  

N - -  

~ e r e  

1 -4- wlm(~-------~) coscot]. (3.18) 2#1w~ "]/k 2 Wo 
1/~h2 (1 + ~) + 

m((7) ~= cos a 1" § cos 6(71' ~/ al' (3.19) 
2 cos a~' cos 6(71' k(tg a i '  + z t g  d(71') 

Passing to the limit with c -~ 0 in Eqs.  (3.18) and (3.19) we obtain the stress 
in tens i ty  factor  in the static case of a strip with prescribed displacements 
w = • (w 0 + wl) at  the boundary  surfaces; t he  result  coincides with Eq. (2.23). 

Equa t ion  (3.18) also yields the resonance-type phenomenon when the vi- 
brat ion f requency tends to  rain (~rc~%/2hl, =ceJ2h2). I n  contras t  to  the former  
result, however, th inner  layers lead to larger stress in tens i ty  factors  (at a con- 
s tan t  co). 

The m a x i m u m  of N in Eq. (3.18) at  a cons tant  value of 09 is given by  the 
formula  

Nm - -  l/-~h~ (1 + Z) § % " 

Assuming in Eqs. (3.18) and (3.19) k = 2 = z = 1 we obtain  the stress in tensi ty  
factor  as derived in [8] and referring to a homogeneous layer with a centrally 
located crack, 

1/~-~ w 0 //sin 2(7 

with the nota t ion  ~' = coh/cr. 
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