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Summary 

Exact solution is given to the problem of a penny-shaped crack embedded in a trans- 
versely isotropic elastic half-space when arbitrary normal displacements are prescribed 
at its faces. A new integral representation of the kernel of the governing integral equation 
allowed to obtain closed form expressions for all the quantities of interest like, stresses 
inside and outside the crack, stress intensity factor, work done to open the crack, directly 
through the given displacements. Several illustrative examples are considered. 

Introduction 

The elastic crack problems considered in the literature generally assume the 
stress distribution a t  the crack faces known, and the displacements are to be 
determined. Investigation of the materials with rigid inclusions led to another  
formulation of the crack problem, namely, the displacements are considered 
prescribed a t  the crack faces, with the other quantities to be determined. The 

problem so formulated is called here ' inverse crack problem'.  
The exact  solution to the axisymmetric inverse crack problem was given by  

Olesiak and Sneddon [1] for isotropic body using the coupled integral equations 
method. Here, the non-axially-symmetric problem is solved in a closed form for 

the case of transversely isotropic medium. The problem is reduced to a new type 
of integral equation which can be solved b y  a straightforward procedure. One 
can compute the total  force, the moments,  the stress intensi ty factor, etc., 
directly through the given displacements without  calculation of the stresses. 
Several examples are considered in order to illustrate the advantages of the new 
method. 

Formulation of the Problem and Its Solution 

Consider a transversely isotropic space weakened in the plane z ~--0 b y  a 
penny-shaped crack @ ~ a. Both  sides of the crack are deformed b y  a smooth rigid 
inclusion. Stresses in the plane z----0 are to be determined. The normal dis- 
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placements of the crack faces are prescribed as 

w = w(~, ~b), z = 0 +, 0 =< ~ ~ a 

w = - - w ( ~ ,  ~ ) ,  z = 0 - ,  0 =< e < a .  

The tangential stresses are zero all over the plane z ---- O. Due to the symmet ry  of 

the problem, it can be reduced to the problem in a half-~pace z => 0 with the 
boundary  conditions a t  z ---- 0 

w = w(~, r  o =< ~ =< a;  
(1) 

w = 0 ,  ~ > a .  

This problem may  be called in a certain sense an inverse crack problem, because 

usually the stresses are given, and the displacements of the crack faces are to be 
determined. The direct crack problem was solved in [2] and the relationship 
between the displacements of the crack faces and the stresses was established as 

/ / gx 5o g~o L { ~o/~ ~). (2) 
~(e, ~) = 4H 1/._v:~_~ 1 /~_  eo ~ \ - 7 !  

q 

Here the L-operator is defined as 
o o  

L(k)/(y, ~b) ---- Z /J,I/,(y) ei=r (3) 
Tt~-- oo 

and ]~ is the Fourier coefficient o f / ,  namely, 

2az 

/~(y) = ~ l(y, 0) e - ~  d0.  (4) 

0 

The following properties of the L-operators were stated in [2]. 

L(Ic) L(k,) ---- L(/&I); L(1) ] = / .  

The quant i ty  H in (2) stands for 

H =  

2 
Yl,2 N Z~ ~/N2 - - C a ] / C l l ,  

(yi -k 72) cn 
2~(cllc~3 - c~3) 

N :  (CnC3a --C~a --2ClsC,,)/2CnC,4 

(5) 

(6)  

de 

I" 

and c~ i are elastic constants of the material  of the elastic space. 
Now (2) can be considered as an integral equation with respect to the yet  

unknown stress a. An exact solution in closed form can be obtained by using the 
methods similar to those of [2]. Application to both sides of (2) of the operator 
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yields 

2zH ~o dee O de L w(~, 4,). 
~ ~(00, 4,) = - L ( ~ ) ~  ~ - r= 

0 r 

I-Iere the properties (5) of the L-operators were used along with the integral 

X 

The next operator to be applied is 
0 

Y 

The result is 

d r dr L(r2) ~ d e 
zt2Hya(y, 4,) = --L ~y gy~ _ r---I-~ ~r gO~ _ r2 

0 r 

and one finally gets the solution 

0 r 

(7) 

(s) 

(9) 

Formula (9) is valid inside the crack only. The stresses outside can also be expressed 
directly through the given normal displacements w. One can use for this purpose 
the relationship between the normal stresses inside and outside the crack [2], 
namely 

~(Q, 4,) = - #l/0~_-r-2- ~ # _ y= L ~(y, 4,) y dy ,  for O > a .  (10) 

0 

Substitution of (9) into (10) yields after integration with respect to g 

z~H~2] /~- -a  2 L ( Q - 1 )  i (  . . / ~ - - a 2 \ d  
o (11) 

doe .~o 
L(-~.)  w(Oo, 4,) 

1 / ~ - -  r~ , . . .  

Here the following rule of differentiation under the integral sign 

d i ~'(t)dt -- l i tdF(t) (12) 
dx ~ x ]/~ _ t ~ 

0 0 
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and the integral 
a 

t 

were employed. 
Introducing the stress intensity factor N as 

N = lim [a(~, 4~) V~ - ~ ]  
~ - + a +  

one immediately gets from (1!) 

where 

N(r = lira N(x, dp) 
~ ' - '>a  

a 

z 

which gives the possibility to evaluate the stress intensity factor directly through 
the given displacements and avoiding the necessity to evaluate the stress distri- 
bution. 

The work done in opening the crack is given by 

2 ~  a 

w = f f o(e, w(e, e de de. 
0 0 

Substituting (9) in the last expression and integrating by parts gives 

2 ~  (2 

W ---- 2z~H f f N2(x, ~) x dx ddp, 
0 0 

where N(x, dp) is given by (13); which presents a non-axisymmetric generalization 
to the axisymmetric case considered by Sneddon [5]. 

Integration by parts in (11) leads to 

L(~-I) f rdr d ~  ~od~o L ( 1 )  
a(e, 4) : x~--~ ~ (~2 _ r~)a/2 L(r2) -~r ]/0o ~ -- r ~ ~o w(~o, d?). (14/ 

0 r 

Using the rule of differentiation, 

F(~) dQ F(a) a ~ dF(~) 

~r ]/Q~_ ~ = r ]/a-~~-- r 2 + r ]fl~ _ r ~ 
T I" 
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and the condition w(a, d~) -= O, expression (14) can be rewritten as 

G 

] 0"(5, 4 )  = y~2--H (52 " r2)3/2 ~ 050 5 o L  W(5o, qb) . ( 15 )  

o r 

Change of the order of integration and integration by  parts leads to another form 

2~ a l f f  W(qo, 4,o) qo O~5o dr (16) 
aCs, qb) = 4 ~ H  (5' + eo 2 --  25~0 cos (r --  6o1) a/2" 

0 0 

Expressions (14)--(16) are equivalent, and it is a question of convenience which 
one to use in each particular case. 
The resultant force P can be obtained by integration of (9), namely 

a 2g 

P = f f o(v, ee) y dv d , .  
0 0 

(17) 

Substitution of (9) into (17) and integration leads to 

2~ a d a lfdcfrdr fw(5,*)Sd5 (lS) P ~ --~r2---H ~a-~-~# dr ]/5*-- r2 
0 0 r 

Using (12) and integrating by  parts, one can get another equivalent represen- 
tation, namely 

2~ a a 

P = ~r--~ H dqb (a ~ _7 #)a/~ ~e 2 __ r2 
0 0 r 

Several additional forms can be obtained by  integration in (19) with respect 
to r and consequent use of various available integral representations for the 
elliptic integral of the second kind. One of such alternatives gives 

2 g  a a 

fw f P =  ~r2H ddp a - -  r ~ dr 

0 0 r 

w(q, r 5 d5 
(a2_e2) Vq2_ r2 (20) 

One can also evaluate the resultant moment of the stresses exerted by  the rigid 
inclusion. Introducing the complex moment M = M ~  + iMu,  one can deduce 

2~ a 

M = - - i f  f ~/,, r ,'*~ a~ ar 
0 0 

(21) 

3 Acta Mech. 61,/1--4 
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Substitution of (9) into (21) gives 
2x[ a a 

M = =~---~- e'* de ] / ~  dr J ]/~'i _-- ~ "  (22) 
0 0 r 

Integration by parts yields another form, namely 
2 ~  a a f . f r~(aa~- 2r~) dr f w(e, 4 L) e Z (2a) 

O O 

As one can notice 
r2(3a ~ - -  2#) d r a 

( a  S - -  r2) 31~ dr y ~ _  r 2" 

Examples 

I t  is of interest to consider the case when the displacements can be given by an 
expansion 

oo 

woo, = Z Q (24) 

Substitution of (24) into (9) gives the stresses as 

1 ~ /'(Inl + 3/2) 
= , Z r  a(0'~b) 2] /~H =-  /'(Inl + 1) ~l"[eln~" for e----< a. (25) 

Using (19) the resultant force is 
~ 6 b  2 

P--- -4H Co. (26) 

The resultant moment is given by (22) as 

3~a a 
M = - - i  ~ C_ , .  (27) 

Substitution of (24) into (14) or (15) yields the expression for the normal stresses 
outside the crack 

1 ~ aUln'+3e in6 ( 3 3  5 a~) 
~(e,r = - -  2----~.=Z C. (2 Inl + 3 )  e s"j+a F , -~  + l n l ; y  + Inl; (28) 

for ~ < a. 

The Gauss hypergeometric function in (28) can be expressed in elementary 
functions [4] 

( 3  3 5 ) (--1) '~(3+2n) d" 
F , .-~ -{- n;  -~  + n;  z = n!  ]/1 - -  z dz---'d 
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The stresses in (28) become singular when ~. --> a. Using integration by parts in (14) 
the singular and the nonsingular parts can be written explicitly 

1 oo 
'~(Q'r 2~-H Zc.=_~ - -  

[- 1 1 (29) 
o 

I _V~ 2 - a s 0 

which yields the stress intensity factor as 

V 
N(a, ~) = 2]/2:~H .=-ooZ C~ alntei"r 

The hypergeometric function in (29) can also be expressed in elementary func- 
tions [4], namely 

, -~- -}- n, ~- -}- n; = (--1)" 2nn___.~. T+ 1 V1 _ z ~ .(1 ] /z  

a 2 [ . 1 + 1  

F y ,  In] + ~ ;  Inl + -~; 

o : > a .  

sin-11/;]. 
(30) 

(31) 

For the case of axial symmetry formulae (25) and (29) give 

i-H for Q ~< a 

:Formula (31) corresponds to the results reported in [1]. 

Discuss ion  

I t  i.s of interest to mention some properties of the solutions obtained. Expres- 
sion (14) can be rewritten as 

,~(e, 4,) = - / () 1 r d____f__r L(#) d eo deo L 1 
.~z~ L ~ Ve - r~ Xr ~ - -  r~ To W(~o, ~). 

0 r 

(32) 

Comparison of (32) with (9) shows that  the stresses inside and outside the crack 
can be expressed in a similar way with the only difference in the upper limit of 
the first integral. 

Multiplication of both sides of (10) by Ot~le*"r and integration over the area 
outside the crack results in 

2~ c~ 2~ a 

f f ~(e, r e'"'e'"* de dr = -- f f ~(0, 4)~ln]+leincb d o d*. 
0 a 0 0 

(33) 

3* 
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F o r  n ~-- 0 a n d  n ~ 1 the  in tegra ls  in (33) a re  p ropor t iona l  to  the  r e su l t an t  force 

a n d  the r e su l t an t  m o m e n t  respect ive ly .  Express ion  (33) shows t h a t  the  no rma l  

stresses inside a n d  outs ide  the  crack  a re  in equi l ibr ium.  

All  the  resul ts  of this  p a p e r  a re  va l id  for  the  case of i s o t r o p y  p rov ided  t h a t  

H ---- (1 - -  v~)/~E, where v is the  Poisson ra t io  a n d  E s t ands  for  the  e las t i c i ty  

modulus .  
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