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Summary  

The work develops the principle of virtual power for finite velocity fields for so-called 
simple materials (or first-gradient theory) without further constitutive assumptions when 
the body is swept out by a singular surface which is either a ]ree singular surface (such as 
usual strong discontinuities of continuum mechanics) or a thermodynamical singular surface 
(a so-called interface between phases). The formulation given on exemplary eases first 
shows how to systematically construct the new "internal" contact forces which exist at  the 
discontinuity, as well as the new inertial contributions which arise from mass transfer 
across the singular surface and the acceleration of particles attached to it. Then i t  is shown 
how various virtual velocity fields generate all the dynamical field equations as well as 
transversality conditions when the description of external forces allows for them. The 
principle of virtual power here is so formulated that,  when combined, for real velocity 
fields, with the first principle of thermodynamics in global form, i t  yieids directly the so- 
called energy theorem both in the bulk and ~t the singular surface. Then the corresponding 
rates of entropy production are deduced after introduction of the second principle of 
thermodynamics. While one does not claim to obtain here essentially new equations, the 
present formulation of the principle of virtual power paves the way for useful complex 
extensions which are difficult to deal wi~h through other avenues (e.g., electromagnetic 
continua with "junctions" such as piezoelectric semiconductors). 

1. Introduction 

Several  au tho r s  [1], [2], [3] have  po in t ed  ou t  the  in te res t  of using the  energy  

m e t h o d  known  as the  "p r inc ip le  of v i r tua l  power"  (for f in i te  ve loc i ty  fields 

r a the r  t h a n  inf ini tes imal  d i sp lacements )  r a t h e r  t han  the  classical  "vec to r i a l  

a p p r o a c h "  based  on the, s t a t e m e n t  of g lobal  or  local  ba lance  laws, in the  de- 

sc r ip t ion  of some phenomenologica l  theories.  This  m e t h o d  of deducing  field 

equa t ions  of a mechanis t ic  n a t u r e  is p a r t i c u l a r l y  su i ted  to  the  case of complex  

15" 
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continua such as those exhibiting a microstructure as also electromagnetic 
continua. However, this type of formulation does not  seem to have been given 
for continuous media swept out by  singular surfaces and/or lines. The aim of 
this paper  is precisely the extension of the formulation of the principle of virtual 

power, using finite velocity fields, to describe this kind of situation, thus giving 
to tha t  principle a range of application as wide as tha t  of the classical vectorial 
approach while, of course, it retains all the advantages which it already owns 

in so far as field equations and further thermodynamical  considerations are 
concerned. 

I t  is salient to recall what do we understand here by  a singular surface. I t  
may  be a strong discontinuity in the well known sense granted in continuum 
mechanics (e.g., a shock; this is a mathematical  modelization of a thin tran- 

sition zone across which steep gradients of field quantities accompanied by  
dissipative processes occur). More interesting for our purpose is the case of an 

inter/ace between two phases which, in many  cases, can also be conveniently 
simulated by  a strong discontinuity, but  the latter then has material properties 
(surface densities, velocity field, internal energy, temperature,  entropy) in the 

same way as the bulk phases exhibit such material properties: a material surface 
is embedded in a three dimensional domain and splits it in two domains of which 
the material fields may  suffer discontinuity across the said surface. In  this case 
the balance equations for the surface material densities are also boundary  con- 

ditions - -  jump relations - -  for the bulk parameters.  These new balance equations 
can be stated by analogy with bulk balance equations, in addition accounting 

for fluxes from the adjacent three dimensional domains [4], [7]. Another method 
is to integrate bulk equations tha t  describe the behavior of mat ter  in the thin 
interphase layer over the thickness of the said layer and thereby obtain balance 

laws for so-called true and excess (surface) quantities [8] (also [13]). 
The extension of the formulation of the principle of virtual power to the 

case of bodies swept out  by  strong discontinuities which model shock-like dis- 
continuities or interfaces may  be tackled from various sides, but  we choose 
the one that  seems the most  natural.  We shall not  repeat  here the basic arguments 
given elsewhere (e.g. in [3]). We only need to recall tha t  a virtual power is a 
linear continuous form on a set of virtual velocities. The dual quant i ty  to a 
"veloci ty"  is a "force".  The selection of a space of admissible velocities fixes, 
via this duality, the degree of refinement of the description of forces acting 
on the system. For so-called internal/orces for which one ult imately needs to 
construct constitutive equations we suppose tha t  the principle of objectivi ty 
applies, which, in turn, implies tha t  the dual "velocity field" is objective [1], 
[2], [3]. This is what  distinguishes "internal forces" from other types of forces 
in continuum mechanics. We s tar t  the present s tudy by  considering the simple 
purely mechanical quasistatic example (i.e., in the absence or neglect of acceler- 
ation in the bulk and mass transfer across the singular surface) and focus the 
at tention on the double-faceted nature of the "new power" (internal or contact) 
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due to the interaction between the three dimensional domain and the singular 
surface. Then we give a systematic procedure to construct the relevant virtual 
power by  introducing a relative velocity field which, in a way, complements 
the objective velocity field (e.g., the rate-of-strain tensor) introduced in regular 
domains [3]. This procedure will allow one to enlarge, without further difficulty, 
the field of application of the principle to more involved mechanical and electro- 
magnetic cases. 

The first extension given here consists of the study of a purely mechanical 
continuum that  contains a material deformable singular surface (which we 
later call a thermodynamical singular sur/ace or inter~ace). In this case the three 
surface balance laws or conditions (two jump conditions a n d  one transversality 
condition) are deduced in a natural way from the principle of virtual power, 
while they must be somewhat postulated in the vectorial approach. Moreover, 
the combination of the principle of virtual power (for real velocity fields) with 
the global statement of the first principle of thermodynamics yields directly 
the energy theorem in global form, which exhibits the economy of thought in 
the present approach. We conclude with the thermodynamics that  follows 
straigthforwardly thereoff. Although none of the resulting equations is new, 
we think that  the methodology is very valuable and suits the mathematically 
oriented professional. Further  works in fact  will develop the usually messy case 
of electrodynamics (compare [9]) and the exemplary case of elastic piezoelectric 
semiconductors in which junctions are considered as thermodynamical singular 
surfaces and where the method proves its efficiency by  providing heretofore 
unknown equations 1. 

2. Not~ion 

We use the classical notation of nonlinear continuum mechanics [3] either 
in rectangular tensor components or in intrinsic notation. The three dimensional 
body B occupies the simply connected open set D of physical Euclidean space 
E* at  time t. An absolute l~ewtonian chronology is used. The unit outward 
normal to ~D, the regular boundary of D, is noted n. All subsequent reasonings 
are made in the present (Eulerian) configuration of the body. 

Le t  X(t) be a singular surface which sweeps out  D, having absolute, non 
material (with respect to the matter  of B), velocity v with respect to a fixed 
Galilean frame Rc and unit oriented normal AT. The unit binormal to ~2~, the 
boundary of 2:(t) on ~D (cf. Fig. 1), is noted v. We indicate by  7(t) a singular 
curve on X(t) moving with the absolute velocity ~ with respect to RG and having 
unit binormal .4 and tangent K. 

1 A brief note on the subject has already been published [10]. 
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8D -Z" 

Fig. 1 

The absolute particle velocities of "part icles" belonging to D and 27(t) are 

noted v and ~, respectively, or vi and ~i in Cartesian components. The Einstein 
summation conventioa on dummy indices is understood. We have the 

Definition. - -  A singular sur/ace (line) is called a thermodynamical  singular 
sur/ace (line) or interface i/  material quantities are attached to that sur/ace (line), 

hence a sur/ace (line) density o/energy can be de/ined on it. Otherwise it is said 
to be free. 

Note that  
~ i  - -  vi  = z ~ i  ( 2 . 1 )  

is the velocity of a material "particle" tha t  belongs to Z(t), with respect to 

X(t), so tha t  in the case of a free singular surface ~) reduces to v. On the other 
hand we always have 

~3. N---- v -  N (2.2) 

since z,3 is tangent  to 27 (equivalently, its normal component  vanishes x~.  N : 0). 
The cut of the material  body D b y  a singular surface X(t) requires the intro- 

duction of the following notation. D + and D-  are two non-material subregions 
(cf. Fig. 1) such as D = D • O X ( ~  D-.  Then the material velocity v is defined 
as follows 

f 

v-~ = / (2.3) 

( 

where H is the characteristic (Heaviside) function of a set. 

vH(D• if x E D ~  

v if x E ~D* 

uniform limit of v(D~) for D~ ~ x --* 27~ along AT* 
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When the two subregions are glued back together we adopt  the following 

notation which is self explanatory (cf. Fig. 2) 

D + @ D-  +-~ D - -  27, ~D+ �9 ~D- ~-~ ~D - -  27, Z~ <-+ 27, (2.4) 

the lat ter  with a unique choice of the normal oriented from the (--)  to the ( + )  

side of 27, i.e., N = N -  --~ - - N  +. 
The symbolisms [ . . .~  and (.. .) indicate, respectively, the jump and the mean 

value of their enclosures across, or at, 27(t), i.e., 

1 
~-A] = A + - -  A-,  (A) = 7 (A+ + A-)  (2.5) 

where A • are the uniform limits of a field A (x E Do) a t  x E 27(t) in approaching 

2:(t) on its faces X • along the normals N ~. 
When X(t) presents a singular line we use the same notation as the one intro- 

duced above but  we replace v • b y e %  A ~ by  Y]% D~ by  27• ~D~ by  ~X% X~ b y  

y~ and N by  d ,  where, if A denotes a field defined in the bulk, .4 is the equivalent 

field on the surface X. 

Tb 

. . . . .  %8D§ 

ro 

Eig. 2 

3. The Principle of Virtual Power in Presence of a Free Singular  Surface 

3.1 Quasi-Static Mechanical Example 

In  order to apply  the principle of virtual power to a discontinuous material  
region we cut the medium in two subregions D + and D-  by  the non material  singular 
surface 2:(t) having absolute velocity v. We construct the expressions of 
virtual powers in D +, D-  and on ~D +, aD-,  27 + and 27- b y  using the method (the 
"recipes") known for regular three dimensional regions [3]. Then we glue back 

together the two subregions. 
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The expressions of various powers are (cf. [3] and note (ii) below) 

P,*(D-) = - f  chTDi-]* dv, 
D -  

Pa*(D-) = f (/cvc* + cog<)*) dv, 
D -  

P~*(~D-) = f TCvC* da, 
O D -  

P~*(z ) = f ~r,-(~c* - ~,*) da, 
X- 

PI*(D +) = - f  uq~+n+*~,ii dv (3.1) 
D+ 

Pa*(D +) = f (/i+vd * + + +* q)qvi4 ) dv (3.2) 
D+ 

P~*(~D +) = f Ti+v~ +* da (3.3) 
(~D + 

P**(X +) ---- - f  x,+(v,+* - v,*) da (3.4) 
2:+ 

where we employed the convention (2.3) and correspondingly at tr ibutes a ( + )  or 
(--)  superscript to the generalized forces introduced by  duality. These forces, 

• / i •  4- aq, Cq, Ti �9 and or-i• are, respectively, a symmetric intrinsic stress tensor, 
volume forces, volume "double"  forces, and surface tractions a t  8D• or Z• 

(D~:~)* is the strain tensor built from (vi• * where an asterisk denotes a virtual 
field or the value of an expression in such a field. We have the following notes. 

N o t e  ( i ) .  - -  The choice of signs in the expression of powers is a question of con- 
venienee. Nevertheless, a simple physical interpretation m a y  be given to justify 
this notation. Indeed, P~*(D • is the power developed by  the internal forces 
which are opposed to deformation (Pi* = --P~e~), while the opposite signs in the 
new contribution Pr • are due to the fact  that  the traction forces are exerted 
on either side of X. 

N o t e  ( i i ) .  - -  The presence of relative velocities in the expression of P~*(X• is due 
to the fact  tha t  the singular surface is non material. In  the absence of Z'(t) we have 
v + = v -  ---- v and Pc*(Z • = 0. 

I t  is obvious that  when we put  the two subregions D + and D -  back together 
the contact forces on Z • become internal/orces for the whole system, so tha t  the 
principle of virtual power, for an absolute Newtonian chronology but  in quasi- 
statics (inertial terms discarded), takes the following form 

0 = Pi*(D + @ D- @ X) q- Pe*(D+ @ D-)  + P**(aD+@ aD-) 
with 

Pi*(D+@ D- @ X) ---- P~*(D+@ D-) + P~*(Z) 

Pi*(X) = Pc*(X +) + Pc*(Z'-) 

P~*(D+@O -) : Pk*(O +) + Pk*(f2-); k :  i ,d ,c ;  

O• : (D• or 8D• 

Accounting for the notation 

f Adv= f A+dv+ f A-dv 
D - - X  D + D- 

f Ba,~= f B+aa+ f B-aa 
O D - - X  OD + ~ D -  

f [Cid~= f [c~a~= - f  c+ & -  f o- d~= f (~+-c-)a~, 
X X -  X + X -  X -  

(3.5) 

(3.6.1) 

(3.6.2) 

(3.6.3) 

(3.7) 

(3.S) 

(3.9) 
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the  l a t t e r  in reason of the fac t  t h a t  27 ---- X-  and  N -~ N -  ---- - - N  +, %re can t rans-  

f o r m  Eq.  (3.5) to 

where  

0 = Pi*(D - -  27) + Pi*(X) + Pa*(D --  X) + P**(OD - -  X) (3.10) 

P i * ( n  - -  Z) -~ -f dv, p,* = ~iiDi~. (3.11) 
D--X  

P,*(27) ---- - f  da, ~p , ,  = [~T,(v, ,  - v , , ) ]  (3.12) 
X 

Pa*(D - -  27) = f (/ivi* -~ qSi~vi*~) dv (3.13.1) 
D--X  

P~*(OD - -  X) = f Tivi* da. (3.13.2) 
OD--X 

I n  this la t te r  fo rmula t ion  we see t h a t  the  powers  developed b y  at-a-diistance (or 
body)  and  con tac t  forces have  the  same  form as in the absence of singular  surface, 

the  presence of the  la t te r  having only  for effect  to define these fields a lmost  
everywhere  (hence the  no ta t ion  D - -  27 and  ~D - -  27) and  to induce the addi t ional  
v i r tua l  power  (3.12) which accounts  for the relat ive mot ion  of the med ium and 

the  singulari ty.  

Introduction o[ the set o/ relative velocity/ield: Vrel(27 ) 

The  cons t ruc t ion  of the  power  of " in t e rna l "  forces on bo th  sides of Y/(t) m a y  be 

pe r fo rmed  following a sys temat ic  procedure  analogous to the one used for  a 
regular  b o d y  Pg*(D - -  Z) [3]. I n  fact ,  the in t roduct ion  of a relative veloci ty  field 

a t  points  on 2: ex tends  the  object ive  veloci ty  field 7Job i in t roduced for  points  in 
D - -  27 in [3]. We  can define the set  of v i r tua l  relat ive veloci ty  fields. 

Vrel (2 : )  = {V~ + - -  ~j,  V F  - -  ~j} (3.14) 

a t  all x C 2:(t) [see Appendix  A: General  method] .  The  two fields which span  
7Jr~1(27 ) are  objective. L e t  J-~+ and  Y j -  be the internal  forces in t roduced b y  dual i ty  
so t h a t  we can write 

zPi* ---- J's+(vs + - -  us)* - -  ~Ti-(vs- - -  vs)* = [~Ts(vj* - -  ~s*)]]- (3.15) 

Then  we can say  t h a t  sP~ is bui l t  b y  imposing the principle of ob jec t iv i ty  to 
the  " in te rna l "  forces S • in the  same w a y  as P i  is bui l t  b y  requir ing t h a t  Pi(D) be 
a l inear fo rm on a set  of objective generalized velocities. The  condit ion equivalent  
to the rigidifying of the v i r tua l  ve loci ty  field (Di~ = 0 in the  bulk) is (v+) * = (v-)* 
= v*, hence the  free s ingular  surface becomes a mate r ia l  surface in a rigidifying 
v i r tua l  motion.  
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3.2 Application o] the Principle o / V i r t u a l  Power and Local Equations 

On assuming tha t  Eq. (3.10) holds good for 311 virtual velocity fields v*, 
(v~)* and v* and any  element of volume and surface in D - -  X and on ~D --  X 
and 27, we obtain the following local field equations after using the generalized 
divergence theorem (see Appendix B) 

0 = t~i, j + / ~  in D - -  X (3.16) 

T~ = t~in ~ on 3D - -  X (3.17) 

~_T~ • = t ~ N j  on X -~ (3.18.1, 2) 

0 ---- ]'~7"~-[] across X (3.19) 

where the a priori nonsymmetric Cauchy stress tensor is defined by  

tii = ai~ - -  ~ii  (3.20) 

and the local s ta tement  of the balance of angular momentum is simply obtained 
by  taking the skewsymmetric par t  of (3.20), hence 

ttii] -~ qS ~p I . (3.21) 

The l ump  condition (3.! 9) is generated by  arbi t rary v* (which are obviously 
continuous across 57). In  the present case Eq. (3.19) means that  the internal 

contact forces o ~ on either side of Z' are equal; but  this is due to the fact  that  we 
discarded inertial effects (see next  paragraph). 

The combination of Eqs. (3.18.1, 2) and (3.19) here yields the continuity of the 
traction across Z': 

[t~i'[] N i = 0 across Z'. (3.22) 

3.3 Dynamical  Mechanical  Example  

The s tudy of the dynamical  case requires the construction of the virtual power 
of inertial/orces due, on the one hand, to material particle acceleration in D --  Z 
and, on the other hand, to mass trans/er across Z(t). As emphasized in [3] the 
very expression of inertial forces is given by  Newton's  expression. :For the quant i ty  
due to mass transfer across the singularity a little work is needed (see Appendix D 
for detail). In  the present case (]ree singular surface), the expression of the inertial 
power of inertial forces takes on the following form 

where 

P~*(D) = P~*(D - -  X) + Pa*(X) (3.23) 

dv~ 
Pa*(D - -  X) = ~ - ~  vi* dv (3.24.1) 

D - - Z  

po*(x) = f m vd da (3.24.2) 
X 
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with the normal mass flux or mass trans/er 

m = r - -  v ) .  N .  (3.25) 

The principle of virtual power in global form is then stated as follows 

P,,*(D --  2:) -f- P,*(2:) = Pi*(D --  2:) + Pi*(2:) 
(3.26) 

+ Pa*(D - -  27) + Pc*(~D - -  27). 

The application of this for any  virtual velocity fields v*, (v~)* and v* and 
any  element of volume and surface leads to the following dynamical  set of local 

equations 

dv~ 
O - ~  = tli,j + / ~  in D - -  2: (3.27) 

T~ ~ t~n~ on ~D - -  2: (3.28) 

J ~ :  = t ~ N j  on 2:~: (3.29) 

and 

m[v,]] = [~T,] across 2:(t). (3.30) 

On combining (3.29.1, 2) and (3.30) we obtain the jump condition 

[ev~(vj - -  vl) - -  tii] NI  = 0 across Z(t). (3.31) 

We note tha t  the dynamical  s tate across 2? - -  here, the mass transfer - -  is 

responsible for the inequality of "internal  contact  forces" on the two sides of X, 
so tha t  only the contribution present in Eq. (3.31) is continuous across the 
singularity and not the traction ~ alone. 

4. T h e  Principle of Vir tual  P o w e r  i n  Presence  of a T h e r m o d y n a m i e a l  

Singular  Surface 

4.1 Dynamical  Mechanical  Example  

The method of constructing virtual powers due to material quantities at tached 
to, or defined on, a singular surface is quite identical to tha t  used for material  
quantities defined in the bulk. The fields defined on 27 are denoted b y  a super- 
imposed caret (A) in order to distinguish them from those defined in the bulk, 
e.g., ~ is a mass density per unit  area on 2:, etc. The s ta tement  of the principle of 
virtual power may  now be written in a compact  manner  as 

tp~ ,  = t p i ,  + tpd,  + tpc ,  (4.1) 
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where the left superscript t stands for "total" .  More precisely, 

tp , = P~*(D -- 27) + P~*(S) + P~*(2), 

t p i *  = PI*(D -- 27) q- P~*(27) "q- P~*(,F,), 

tPa* = Pa*(D -- 27) § P~*(27), 

t P c *  : P~*(~D -- 27) + Pc*(~2), 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where P(D -- X), P(27) and P(27) denote, respectively, powers developed in the 
bulk, on either side of 27 and on 27, with the following expressions (see Appendices 
C and D) 

Po*(~) : f Ira(v, - ~,)] ~,* d~, (4.6) 

Pi*(X) = - - f  rPi* da, (4.7) 
X 

f dv~ P~*(D -- X) = e - ~  vi* dr, (4.8) 

D--X 

P~*(27) = 0 ~ 0~* da, (4.9) 
X 

Pi*(D -- X) = - f  p,* dr, (4.10) 
D--X 

P~*(X) = - - f  ~ *  da, (4.11) 
Z 

Pa*(D -- 271 = f (/ivi* + q~ijvi*i) dv, (4.12) 
D--X 

X 

P~*(~D -- X) ---- f Z,v** da, (4.14) 
OD--X 

po*(e,v) = f ~,~,, dl, (lAg) 

where 

p,*  = okjo~ i ,  ~p,* = [ ~ j ( v j *  - ~s*)] ,  ~ *  = ~kjb~i (4.1~) 

where bki is the strain rate tensor constructed from ~ for "particles" belonging 

to 27, and d--/ = e--t + ~5" V = ~- /+  v .  V + �9 

With the usual arguments of localization, hence for any virtual fields v*, 
(v• ~* and D0* and any element of volume, surface and line, accounting for 
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the change f rom volume to surface gradients ,  (~2 is the  mean  curva tu re  of 27) 

v = k  + ~D, D =  N . V  
(4.17) 

1 
~ = P ~  V~, P ~  = ( ~  - -  N~N~, f~ = - - - ~  V . N 

project ing when needed on 27 or on its no rmal  and  using the var ious  generali- 
zat ions of Stokes '  t heorem (Appendix B), we ob ta in  f rom (4.1) the following local 

equations,  f irst  in the fo rm 

dvi 
e - ~  = tij,i + / ~  in D - -  27 (4.18) 

T i  ~ t~jnj on ~D - -  27 (4.19) 

d 
- j  + [m(v~ - ~ ) ]  = [Y-s] + (~j + 29N;) ~j + L on 27 (4.20) 

along with [for all (v• * and  (D~)*] the  " in t e rna l "  t rac t ion  

~- 27• (4.22) ov-i •  t~iN i on 

and  the t ransversa l i ty  condit ion 

~ijN i = 0 on 27. (4.23) 

On account  of Eqs.  (4.22) and  (4.23) we can also write Eq.  (4.20) in the  more  

usual  fo rm 

0 ~ -~- [e(v~ - -  ~i) (vj - -  ~'s) - -  tii]] hri = I~itis + ]i on 27(t). (4.24) 

with Va ~- 0, 
equa t ion  

4.2 R e m a r k s  

a) On set t ing ~ -~ 0 or d ~ / d t  -~ 0 and ]~ = 0, and  the cons t i tu t ive  equat ions  
of the " h y d r o s t a t i c "  t y p e  

tlj = --P~i~, "i~j = - -aPi~  (4.25) 

in the  absence of mass  transfer ,  Eq. (4.24) provides  Lap lace ' s  

n'P] -{- 2f2a ----- 0 (4.26) 

where the  surface tension a is the  two dimensional  analog of a pressure.  
b) I f  we do no t  account  for  a g rad ien t - theory  on 27, i.e., we take  ~i,j - -  0, 

then  we m a y  say  t h a t  the  t he rmodynamica l  s ingular  surface is rigid since b l i  -~ 0. 
I n  this case ti~" d isappears  f rom the local equations.  
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c) I f  X is nothing but  a / r e e  singular surface (no material  quantities with a 
superimposed caret) we have ,3 = v continuous across ~' and [m]] = 0 so that  

Eq. (4.20) reduces to 
- v ) ]  = = 

which is none other than Eq. (3.30). 
d) Notice tha t  the more complex is the medium considered, the more "ad- 

vantageous" is the principle of virtual power as compared to the classical vectorial 
approach. Indeed, in order to obtain the above-deduced local equations from the 

vectorial approach one needs to postulate 
(i) in a global form the equation of balance of momentum and angular 

momentum inside the volume as well as a t  the singular surface. 
(ii) in local form, Cauchy's lemma on a surface cut and its two dimensional 

equivalent, as also the transversali ty condition for tlt. 
e) The systematic procedure based on the principle of objectivity for "internal 

forces" allows one to t reat  more involved mechanical cases such as the possibility 
of having a singular line 7 on the singular surface, without further difficulties. 
In  fact, for a / ree  singular line, tPd* and tPc* are not  altered. We just  have to add 

the contributions due to the inertial forces, here, precisely, the mass transfer 
across ~(t) - -  see Appendix D - -  for t p .  and those due to the relative velocity 

of the singular surface and the free singular line (~ ,*  = ~i[~+~(~ * - -  ~*)]). We thus 

obtain the additional equations 

~- tiiA ~- along yl (4.28) 

= a c r o s s  7 ( 4 . 2 9 )  

where 

~- ~(~ - -  91) At. (4.30) 

The combination of (4.28) and (4.29) then yields 

[ ~ ( ~  - -  ~) - -  ~j]] A~ = 0 across ~. (4.31) 

The similarity between the structure of this last  equation and Eq. (3.31) for a 

free singular surface must  be emphasized. The "internal  contact"  forces o 7~• are 

equal if there is no mass transfer across the singular line 7(t). 
f) If  we wish to render our description finer, we may  alter tPd* by  intro- 

ducing a traction ~,  on 27 - -  7 and a lineal force ], on 7, so tha t  

Pd* = f (/,v,* + r 4v + f (}d;,* + ~,jvi. i + ~D~,*) da + Jr/,v,- - * al (4.32) 
D--X 2--y 

where ~ = ~ for a free singular line in the same way as ~ = r~ for a free singular 

surface. Accounting for these additional terms, the transversali ty condition (4.23) 

and the local line Eq. (4.31) are replaced by  

~ = ~g-_hTj on X - -  ~, (4.33) 
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and 
~Ovi(vi -- ~i) -- t~i] Ai = ]i along ~. (4.34) 

In these conditions Eq. (4.20) is replaced by  

0 - ~  + [q(v~ - ~)  (vj - ~) - t~] 2v~ = P ~ j  + L + 2 ~ L  on 27 - r.  (4.~5) 

The vector field _~ is a so-called double normal traction in certain theories of 
membranes and second-gradient theories of continua (see [3, pp. 48--49]). If we 
let the singular surface coincide with the boundary of the three dimensional 
domain then using appropriate notations we deduce equations similar to those 
obtained from a second-gradient theory in the bulk (compare [1] and [11])! 

5. Thermodynamics 

5.1 The Energy Equation 

Whenever there exists a thermodynamical singular surface in D we can state 
the first principle of thermodynamics in global form as 

d ( E ~ - K ) ~ -  d d-7 ~ (~ + ~) = P~ + Qh (5.~) 

with the self-evident definitions 

E(D -- X) = f ~e dv, ~(X) = f ~ da (5.2) 
D--X X 

K ( D - - X ) = f l ~ v 2 d v ,  ~ /~( , )  : / 1  ~32 da (5.3) 

D--Z Z 

P~ = f (/~v, + r dv + f T,v, da + f (/,~, + 5~,.~) da + f ~,~, dl (5.4) 
D--X ~D--X X ~X 

and 

Q~ = f ~h d v -  f q . - d a  + f ~ d a -  f ~-~ dl (5.5) 
D--X ~D--X X ~X 

where e, $, h, h, q and ~ are, respectively, the internal energy per unit  mass in 
D --  2~ and on 27, the heat supplies per unit  mass in D --  27 and on Y.', and the 
heat flux vectors at  ~D -- Z and across 827. 

Accounting for the transport theorems recalled in Appendix B and combining 
the ]irst principle o/thermodynamics with the principle o/virtual power (4.1) written 
/or real velocity ]ields, we obtain the so-called energy theorem in the following 
global form 

dE dE 
d-7 + - ~  + *P~ + 2oAZ) = Qh (5.6) 
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where we have defined the excess rate o] kinetic energy ffge. by 

X 

(5.7) 

After localization Eq. (5.6) yields the equations 

de e F = p ~ + ~ h - V . q  in D--X (5.8) 

-d--/- + m (e - -  8) + ~ (v - -  e)~ + []'q~]] N~ 

(5.9) 

On assuming, as it looks natural, the transversality condition 

�9 N = O  (5.10) 

and accounting for Eqs. (3.25) and (4.16), instead of Eqs. (5.8) and (5.9) we have 

de 
~-/=a~iD~ j + ~ h - V . q  i n D - - X  

~ + ~ (e - 8) + -~ (v - e)  ~ (v, - ~j) - t~j(v~ - ~ )  

= ~ j b ~ j  + ~ - V .  q on S .  

-k q ~  Ni 

(5.11) 

(5.12) 

These equations are the same as those deduced in other works based on the 
vectorial approach (cf. [4], [5], [6]). 

Whenever 27 is o; free singular surface, on account of Eq. (3.31) the local 
equatiort (5.12) reduces to 

o r  

~(e-~)(v j - -v j ) - - t , jv ,  q-q~--INi=--O across Z (5.13) 

m-_e-}-v~:[tijvi--qj~Ni across Z (5.14) 

which is the classical jump relation from which the Hugoniot equation follows 
in the s tudy of hydrodynamics or elastic shocks when q ---- 0; see [12, Eqs. (4.4.2) 
and (7.4.10)]. 
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5.2 Second Principle o/Thermodynamics 

This is naturally expressed in global form as 

4-7 + d--i" = 

with 

and 

N ( D  - -  27) = f Qv dr, ~(S) = f ov da 
D - - Z  IZ 

(5.15) 

(5.16) 

f'f  AP = O -~ dv --  q . n d a + 0 ~ da --  -~ ~1" v dl 

D--X  OD--X X ~X 

(5.17) 

where ~ and ~ are, respectively, the entropies per unit mass in D -- 27 and on X 
while 0 and ~ are thermodynamical temperatures attributed to the bulk and the 
surface, respectively. The second assumption holds only when 27 is a thermo- 
dynamical singular surface (in particular when 27 possesses an internal  energy 
and an entropy so that  ~ = ~ / ~ ) .  In writing (5.17) we have also assumed that  
the entropy fluxes are nothing but heat fluxes divided by the corresponding 
temperature, although this is certainly not true in general, but  for so-called 
simple thermodynamic processes (see [12, p. 129]). 

Accounting for the generalized divergence and transport theorems of Appen- 
dix B, we deduce from (5.15) the following local inequalities 

+ 
~ ~  >-(Oh-V'q)-q'g= 0 i n D - - X  

and 

(5.18) 

on ~.  

(5.19) 

When 27 is a free singular surface the latter reduces to the classical "jump 
inequality" (cf. [12, Eq. (4.6.10)]). 

~( v i -- vi) + ~-~1 Nj ~ 0 across Z. (5.20) 

6.3 Clausius-Duhem Inequality 

We introduce Helmholtz free energies W and kP such that  

T : e - - ~ O  in D - - X ,  O = d - - ~ O  on 

16 A e t a  Mech .  60/3-4 

2:. (5.21) 
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Accounting now for the local equation of energy and Eqs. (5.18), (5.19) we 
obtain the so-called Clausius-Duhem inequalities 

--9 --~ + ~1 "~ -]- (~jDii --  -~ q " gO ~ 0 in D --  2: (5.22) 

- m ~(0 - 0) + ( ~  - ~ )  + -g (v - e)~ (5.23) 

+ Ht,(v, - ~,) - q~ ( 1 -  ~)~ N~ > on2: .  

When 27 is a / t ee  singular surface these reduce to 

(5.24) 

This is obtained by eliminating the fields which carry a superimposed caret except 
for .5 that we must set equal to v and 0 -1 which we must set equal to (0-1). The 
same equation can be obtained by straightforward combination of Eqs. (5.14) and 
(5.20). This shows that  the identification 0 -1 ~ (0 -1} for a / ree  singular surface is 
a necessity. 

For illustration purposes and further comparison with other works it is 
salient to consider the special case of the hydrostatic type of behaviour for the 
nondissipative contributions in Eqs. (5.22) and (5.23). That  is, we consider 

with 
= ~ ( e - * ,  0), ~v = ~(0-~ ,  0) 

q~ = ~ i  = 0, hence tij = aij = tji, tlj = #~j = tj~ 

(5.25) 

and (5.26) 

p -- ~9_ i, ~ .= _ ~0_--- i 

' -  80' ~ = - - ~ "  

(5.27) 

(5.28) 

Then Eqs. (5.22) and (5.23) yield the remaining entropy productions 

~B = --~ (riiD~i + q"  V >= 0 (5.29) 
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and 

1 +)~/ (5.30) - V +  { ( ~ - -  ~P) § ~(O -- O) § 2 (v 
J 

(+ -- -~ ~jNj(v~ -- +~) -{- q#Vqi -- ~ 0 

where Dbi~ is transverse, i.e., satisfies DbliN i ----- 0. Equation (5.30) can be written 
in several forms. In particular because of the continuity of ~ at  X we have 

(5 .31)  

Similarly, because of the continuity of both 0 and 

D,~,~(v, - +~) N~ = .~ <~,~,jNj) ~vd + -~ [ % g v 3  ((v,) - +,) (5.32) 

and this shows that  the velocities and the temperature inverses of the bulk and 
the surface intervene in a very similar way in combinations which involve either 

the jump of the bulk quanti ty (e.g. ~-v~]or tl --1 tl) or the differencebetween themean 

of the bulk quanti ty (e.g., @} or ) and the surface quantity (e.g., ~ or-~-). 

On account of previous remarks we note that  as the thermodynamical Mngular surJace 
reduces to a ]tee singular surface, these differences must vanish i.e., 

<v> = + = v ,  = T "  (5.33)  

Equations (5.29) and (5.30) agree with the entropy production established by 
other authors by different means (e.g., [6], [7], [8]). Authors who define the fields 
attached to the singular surface by means of an average through a layer thickness 
may find richer possibilities (in this regard see [13] where an additional term 
involving N. @ -- ~) appears in (5.30)). This cannot be the case here since z~. N 
= 0 (Eq. 2.2)). However if we assume that  ~ has such a normal component in 
addition to v, without changing the previous notation, instead of (2.1) we may write 

*) ---- v -[- z*~ ~ ~=vN, ~,5. N : O, (5.34) 

and look at the thermodynamical dual of the normal component ~ (obviously an 
objective quantity). It is possible from Eq. (5.12) to show that the power de- 

veloped by b~v reads 

~(+~) = - { [ ~ # , ~ / ~  + (~,~) ~,} +>~. (5.35) 

16' 
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For the simple case (4.25), this transforms to 

p ( ~ )  = : ~ ,  s = [[p:~ § 2 ~ o .  (5.36) 

Obviously, ~ -= 0 corresponds to Laplace's equation (4.26). If Oiv 4= 0, by argu- 
ments of irreversible thermodynamics then s is generally nonzero and there is a 
deviation from Laplace's equation. This is a result obtained by  ~ .  Gatignol [13] 
using the average through a transition layer. 

A p p e n d i x  A :  

Virtual Power  of Tract ions at a Free Singular Surface 

A.1 Indirect Method (reminder) 

The medium is cut in thought in two subregions D + and D-  separated by  a 
free singular surface. The whole velocity field a t  27 is characterized by  three 
independent and continuous velocity fields which are v +, v-  and v. The virtual 
powers are constructed for both subregions and these are then glued back together. 
We obtain thus 

Pi*(Z)  ~- - f  [ s , ( v ; *  - da.  (A 1) 
Z(t) 

A.2 General Method 

This formulation relies on the construction of a set of relative velocity fields 
7ire ] at  27 in the same manner as the objective set 7]05 j is introduced for internal 
forces in the bulk [3] and for the same reason (objectivity of internal forces). 

The three absolute velocities v § v-  and v may be combined to generate 

Tvr01(z) = {v§ - . -  - (A 2) 

Only two of the three relative velocity fields thus introduced are linearly in- 
dependent and are therefore sufficient to construct P~(27). Two cases seem natural 

and deserve special attention 

(i) ]'v'] is eliminated from the set (A 2) leaving 

V r e l ( 2 7  ) = {V + - -  ~), V -  - -  ~)}. 

By duality we thus have 

P~*(Z) : - f  [3~s(vj * - ~s*)] da 
Z(t) 

(A 3) 

(A 4) 

which is none other than Eq. (A 1). 
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(ii) [[vl] is kept .  I n  order no t  to favor  v + or v -  in taking one of the remaining 

two relative velocities in the set (A 2) we consider their mean  value a t  X and, 

instead of (A 3), consider the linearly independent  set, 

= - ( A  5)  

B y  dual i ty  we thus  write 

P,*(X) = - - f  {Ki~.vj*-I q- Fi((vs*) - -  v,*)} da. (A 6) 
Z 

The equivalence of (A 4) and  (A 6) is obtained whenever 

R = F = ( A  7)  

I f  one uses (A 6) direct ly in the principle of virtual  power (3.5) then one can show 

t h a t  the local equations deduced will be exactly the same as those deduced in 

section 3 once the " in termedia te" ,  internal contac t  forces K and F have been 

eliminated f rom the final equat ions (without  using (A 7) obviously !). 

Note. - -  Le t  A �9 ?F be the inner p roduc t  where A is int roduced b y  dnal i ty  with 

W. I t  is obvious tha t  the absence of 7] implies au tomat ica l ly  the absence of A in 

the  subsequent  formulat ion.  The ve ry  form of the expression (A 6) incites us to 

look for the physical  s i tuat ion for  which (v} --~ v a t  X. On account  of the brief 

remark  just  made,  v* ---- (v*) implies F = 0 and then the local equations on 2: 

are shown to reduce to 

[t~j] N~ = 0,  m[v~] = 0 (A 8) 

separately.  The second of Eqs. (A 8) offers two al ternat ives : 

(a) either m 4= 0 and •v] ---- 0. I n  this case Pi*(X) -~-- 0 after  Eq. (A6) and the 

singular surface cannot  be of the shock type.  

(fi) or ~-vl] 4 0 and m ~-- 0. Then  we have no mass transfer  across the dis- 
cont inui ty  which m a y  be called a discontinuity o] contact. 2 

I n  brief we have just  shown tha t  for a continuous medium presenting a dis- 

continuity,  v = (v) is valid only  in the absence of transfer  of mass. I t  is no t  

difficult to  prove the reciprocal s ta tement .  Indeed,  m~ = 0 gives v �9 �9 N--~ v �9 N 

which, in turn,  yields v .  N = (v) �9 N and  since the tangential  component  m a y  be 

chosen arbitrari ly,  then wi thout  loss in generali ty we m a y  write v = (v) (com- 

pare  [6]). 

2 Such a case where Pi*(X) reduces to 

X X 

is standard in the extremum energy principles used ~or rigid-plastic bodies where K is the 
scalar tangential stress (cf. [16, sec. 64]). 
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Appendix B: Generalized Divergence and Transport Theorems 

We recall tha t  

d 0 ,? 8 8 ~ ~ .  (B ,) 
a-7 = 8-7 + v .  v ,  d-i = 8-i + ~"  v = ~7 + v .  v + �9 

Then we have (for the proofs see [4] and [15]) 

Transport Theorems/or Volumes and Sur]aces 

} f ~ d v =  -~ § 1 6 2  d v §  [ r  

D--Z D--Z X 

f f f 
Divergence Theorems in Volume and on a Sur/ace 

f v. Agv+ f [A].Nda~//.nda 
D--X X -- 

(B 2) 

where 

(B 3) 

(B 4) 

f (~ + 2DN). A da § f [A] .  A dl = f A.  ~ al (B 5) 
x-r ~ ox-r 

~ = Pi~Vi, P~i = ~it -- NiNi, 2D = - -V .  N.  

D--~ D--X X 

We also note that  

(B 6) 

(B 7) 

Appendix C: Balance of Mass 

The mass contained in a material volume is constant with time. Mathematically 
this may be expressed in the following manner 

(a) in the absence o] a thermodynamical singular sur/ace 

d ~dv-~O or ~ d v = O  

D D--X 
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(b) in the presence o] a thermodynamical singular sur/ace 

.~ o dv + -~.[ O da = O with D = Z - - 7  

D - - Z  

or ,~. 

Accounting for volume and surface transport theorems we obtain: 

In the absence of singularity 

de 
d - - / + # V ' v = O  i n D .  (c 1) 

In the presence of a free singular surface (m - -  ~(v -- v)" N) 

de 
d - ~ - ~ V . v = O  in D -- 2:, ~-m] ----- 0 across ~ .  (C 2) 

In the presence of a regular thermodynamical singular surface 

de 
d-t -~ ~V " v = O ~u D - - Z ,  

d0 
d-7 -~ ~(~" ~) ~- [m]  -- 0 on 2:. (C 3) 

In the presence of a free discontinuity line on the thermodynamical singular 
surface (~ = ~(i, - ~). A) 

de d~ 
d7 + q V ' v - - 0  i n D - - X ,  d-7 + ~(~" ~) + ~ ' m ] = 0  

[d~'~ ---- 0 across 7" 

on ~ ' - - 7  

(C 4) 

Appendix D: Virtual Power ot Inertial Forces 

The total inertial quanti ty is defined as follows 

(a) in the absence o/singularity 

I(D) -~ -~ Ov dv (D 1) 

D 

(b) in the presence o /a  thermodynamical singular sur/ace 

d f  ~ f  " a  I(D �9 X) -~ -~ Ov dv + -~ Ov d . (D 2) 

D - - X  " X 

Accounting for volume and surface transport theorems as well as for the balance 
of mass (Appendix C) we obtain the inertial quantities as 
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(a) in the absence o] singularity 

I(D) = f finert dv 
D 

(D 3) 

(b) in the presence o/a  thermodynamical singular surface 

l(D @ Z) = f ~finer~ dv ~- f ]iner~ da 
D--Z, X 

(D 4) 

where we have defined the following inertial forces per unit volume or surface 

�9 inertial force per unit volume due to the acceleration of particles 

d v  
] i ne r t=~  in D - - 2 2  (D5) 

d--/ 

�9 inertial force per unit surface on X (two contributions) 

X iinert = ~inert ~_ tinert 

�9 contribution due to mass transfer across X(t) 

(D 6) 

~/inert  = [ m ( v  - ~)] l  (D 7) 

* contribution due to acceleration of the "particles" attached to X 

d~3 
]inert = ~ d-/" (D 8) 

We note tha t  for a free singular surface (0 = 0, ~) = v, ~-m] = 0) the expression 
(D 6) reduces to 

~i  inen= re[vii 

since both m and v are continuous across ~'. 
The virtual power per unit  volume (surface) of inertial volume (surface) 

forces is the scalar product  of inertial forces and the virtual velocity fields of 
the corresponding media. In global form this may  be expressed as follows 

tPa* = Pa*(D --  2~) + P~*(Z) + P~*(X) (D 9) 

Pa*(D -- Z) = f [inert. V* dr, (D 10) 
D--X 

Pa*(X) = f zlinert" e* da, (D 11) 
X 

Pa*(~') ~-- f ]inert. e* da. (D 12) 
x 

Accounting for Eqs. (D 5), (D 7) and (D 8) we thus have 
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(i) in the absence o/discontinuity ([1]--[8]) 

f dv . v*dv; tPa*(D) = e 

D 

(ii) in the presence o/a/ree singular sur/ace (1)* = v*) 

dv . v* dv + fm[[v'~, v* da, tP~*( D 0 Z) = O -'~ 

D--Z X 

(D 13) 

(D 14) 

(iii) in the presence o] a thermodynamic singular sur/ace 

dv . v* dv + [ (v -- el~ + ~ --d-[ tPa*(D @ X) = 0 

D - - X  s 

The extension of this construct ion with a view to account ing for an eventual  

free discont inui ty  line ~ requires no fur ther  difficulty and yields the following 

expression 

/ d V ' v * d v + / {  ~m(v-i~)~ tPa*(D 0 X ~ y) = e --~ 

D - - X  X - - r  

+ f +~+]. +* dl. 

di)] . ~)* da + 0-~  
y 

(D 16) 

Notice the ana logy between the last  terms of Eqs. (D 14) and  (D 16) where X 

and  y are a free singular surface and line, respectively. 
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