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Summary. A closed-form analytical solution is given for the stress field due to a screw dislocation inter- 
acting with nearby inclusions (the fibers) in a fiber-reinforced composite material. The dislocation is 
assumed near one of the inclusions, while the influence of other surrounding inclusions on the dislocation 
is taken into consideration through the three-phase composite cylinder model. The formulation procedure 
is based on the Muskhelishvili complex variable method of elasticity theory. The force on the dislocation 
is then derived. It is shown that, in comparison with the two-phase model adopted by Dundurs, the three- 
phase model allows the dislocation to have equilibrium positions near the fiber. 

1 Introduction 

Due to the importance of  studying the strengthening and hardening mechanisms of  various 

composite materials, a lot of  effort has been spent on investigating the interaction between 

dislocations and inclusions in composite materials during the past three decades. The reason 

is that a dislocation itself can be used to model a minor defect in composite materials. 
Furthermore, the dislocation-inclusion interaction solution can be used as a Green's function 

solution to study crack-inclusion interaction in composites [1]-[3]. Therefore investigation 

results on dislocation-inclusion interaction are highly demanded to cater for the need of  frac- 

ture toughness and strength analysis, as well as failure and reliability analysis of  various com- 

posite materials, especially in metal matrix composites. 

A great deal of  research work  on dislocation-inclusion interaction can be found in the 

open literature. To name a few, Dundurs and Mura  [4] first investigated the interaction 

between an edge dislocation and a circular inclusion. Following that work, Dundurs and 

Sendeckyi [5] further solved the problem of  an edge dislocation inside a circular inclusion, 
while the interaction between a screw dislocation and a circular inclusion was studied by 

Dundurs  [6] three years later. Stagni and Lizzio [7] carried out the investigation of  an edge 

dislocation interacting with an elliptic inclusion. The problem for the dislocation inside the 

elliptic inclusion was analyzed by Warren [8]. Worden and Keer [9] obtained the Green's func- 
tion for a point load and dislocation in an annular region. More recently, the interaction 

between a screw dislocation and an elliptical inhomogeneity was investigated by Gong and 
Meguid [10]. 

However, all the above-mentioned research work basically involves an isolated inclusion 

only, i.e., a dislocation interacting with a single inclusion in a homogeneous matrix. For  two- 
phase composite materials, when the inclusion phase has finite concentration, the dislocation 

interacts not only with the nearest inclusion but also with the surrounding ones. In order to 
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reflect the mean effect of these interactions, Christensen and Lo [11] and Christensen [12] 

introduced a three-phase composite cylinder model. In the two dimensional case, the model 
consists of three concentric regions: the inner circular region representing the inclusion phase, 
the intermediate annular region representing the pure matrix phase and the outer infinitely 
extended region representing the composite phase. Based on the three-phase cylinder compo- 
site model, Luo and Chen [13] derived the stress field due to an edge dislocation located in the 
intermediate matrix phase. 

The objective of the current study is to investigate the interaction between a screw dis- 
location and surrounding circular inclusions with the above-mentioned three-phase compo- 
site cylinder model. A closed-form analytical solution for the stress field has been obtained. 
Various numerical examples are given. The force on the dislocation is calculated for different 
material properties of the inclusions and the matrix. The equilibrium positions of the dis- 
location are discussed in detail using the evaluated force on the dislocation. The results 
obtained are compared with those from the two-phase model of Dundurs [6]. It is worth to 
mention that for the two-phase model the edge dislocation case was solved by Dundurs 
and Mura [4] first, then the screw dislocation case was solved by Dundurs [6] three years 
later. For the current three-phase model, as mentioned above, the edge dislocation case was 
solved by Luo and Chert [13], and the present paper will give the solution for the screw dis- 
location case. 

2 Formulation 

The physical problem to be studied is shown in Fig. 1, where the circular fiber-reinforced com- 
posite material has been made to be equivalent to a three-phase composite cylinder model 
[11], [121: Phase I is the circular fiber with elastic properties • b~I, occupying the inner region 
r _< a; Phase 2 is the pure matrix material around the fiber with elastic properties z2, #2, occu- 
pying the intermediate region a < r < b; and Phase 3 is the infinitely extended composite 

material with elastic properties ~3, #3, occupying the outer region r > b. A screw dislocation 
b = bz is located near the fiber (Phase 1) at a point (e, 0), a < e < b. It is worth to mention 
that through the three-phase model the interactions between the dislocation and the other 

fibers in the composite are considered by the third phase. 
As the formulation is an anti-plane elastic problem, the displacement components in each 

phase are assumed as: 

(:) 

for i = 1,2, 3, where ~i (x, y) are some unknown functions (to be evaluated) of x, y. The stress 
components are thus obtained from Eq. (1) as 

&Zi 
= , (2) 

a ~  = #~ Ox ' Oy 

and 

cr(i) ~( i )  = a(~) = ~r(i) = 0 (3 )  
z z  = ~ ' x x  y y  x y  

where #i, i = 1, 2, 3 are the shear moduli of the respective phases. 



A screw dislocation interacting with inclusions 205 

3 

( 
Y 

~ ~x,v) 

F1 

b 
I 

X 

Fig. 1. A screw dislocation in a composite with the 
three-phase model 

Supposing that  there is no body force, the stress components  given above must  satisfy the 

equilibrium equations 

O~(i) 0~(i) Oct(i) x x + xy _ xz _ 0 
Ox Oy Oz 

Oa(i) &r(i) 

Ox Oy Oz 

o ~  + o~(2 _ o ~  _ o, 
Ox Oy Oz 

which lead to 

c02~i 02~i 
Ox 2 + ~ = O. 

(4) 

T~ (~) = T~ (~) = 0 ,  (7) 

where n is the outward normal  to the side surface. 

Introducing the complex functions 4~i(.3) of  the complex variable .3 = x + iy, which are 
defined by 

q5i(.3) = ~i + i r  (8) 

where r (x, y) are the conjugate functions of  ~i (x, y) and satisfy 

O~i cO~i &Pi O~i 
Ox Oy ' Oy Ox ' (9) 

it is clear that  ~i(.3) are holomorphic  in the respective regions. Hence, the displacement com- 
ponents and the stress components  can be written in terms of the complex functions as 

u! i) = Re @i(-~) (10) 

(5) 

In other words, ~i (x, y) must be harmonic functions of  the two variables x, y in the respective 
phases. 

The components  of  the traction vector acting on the side surface are: 

T} ~) = ~(i) cos  (n,  x)  -- ~(~/oos (n, y) = ~ , (6) 
z x  - -  z y  O n  

and 
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and  

o~(.~) 
cr!~ + icr(]) = i#i 0 3  
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F o r  the cur ren t  p rob lem,  the h o l o m o r p h i c  complex  funct ions  are t aken  as 

�9 ] 
bz ~0(-~) + ~ ( 4  + ibm) -~ 

+1 (-~) ~ k:0 ' 

bz (P0(3) + (a k + z % ) a  , 
~-- -oo  

] +a(-~) = ~bz +o(.3) + ~ (a~' + ibm') 3 k 
k= oc 

in the three phases ,  respectively,  where  

q~0(3) = z i l o g  (-U - e ) .  

C o m b i n i n g  Eqs. (12 ) - (14 ) ,  we have 

= b~ smkO)  r k ([91 ~ ~o + ao @ a k cos kO - 
k=l  

992 = ~ cp0 + a 0 + (a k cos kO - b k sin kO) r k + (a"_~ cos kO + b_ k san kO) r ~ , 
k=l  k= l  

bz ~(a"~ co~ k0 + b"~ sin ~0) <~ ~ 3 = ~  990+k:1  

with  

~0 = Re ~0 �9 

The b o u n d a r y  cond i t ions  are: 

a t  r - a, 

U~ 1) = U!  2) , r (1) = T ( 2 ) ;  

at  r = b, 

W) : ~ ? ,  r}2/ :  T?. 

Using  Eqs. ( l )  and  (6), the b o u n d a r y  cond i t ions  are rewri t ten  as 

~ l l r : a  ~- (~21 . . . .  ~1 0991 = 0992 
#2 Or r=a Or r=a' 

0992 P 3  0993. 
9921~:b = 9931~-:b, Or ~:b ~2 Or ~:b" 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22.1) 

(22.2) 
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W h e n  1`31 < e, 

log (`3 - e) = log e + iTr - 
k= l  ]~ek 

oo 
1 _ r ' e ~ + l ` 3  k 

` 3 - e  -A . .~  
h=0 

(23) 

(24) 

and  when  [`3[ > e, we have 

log (.3 - e) = log .3 - k`3k , 
k= l  

1 _ ~ - ] e  k 1 
`3 - -  e /~=0 `3k+1 " 

Therefore ,  ~o and  ~ r  ~ can  be rewri t ten  as: 

f o r t < e :  

(25) 

(26) 

~k 

cp0 = 7r - ~ sin kO ,  
k= l  

0%o0 _ ~ @-1 
Or  ~ -  sin k0 

k = l  

(27) 

(28) 

and  for  r > e : 

ek  
~0 = 0 +  ~ sin kO 

k= l  

& P 0 _  ~ e k 
Or ~=1 ~ sin k0 

(29) 

(30) 

F u r t h e r m o r e ,  in Eq. (29) 0(-7c < 0 < 7c) can  be expressed by  

OG 

0 = 2 Z ( - 1 ) k - 1  s i n k 0 .  (31) 
k 

k= l  

Recal l ing  Eq. (8), and  wr i t ing  .3 as .3 = r (cos  0 + i s in0) ,  by  c o m p a r i n g  the coefficients of  

sin kO and  cos kO, the b o u n d a r y  cond i t ions  lead to the fo l lowing  l inear  equa t ions  which deter-  

mine  the coefficients ' " ' " " " ~ " " " w i t h k = l , 2 ,  a0, a0, ak, a~, a_~, a_~, b~, b~, b_k, b_ k . . .  : 

t tt t tt tt / 2k t = . bt, k 
a o = a o , a  k = a  k + a _ k / a  , b k b~ / a  2k 

- -  = - a k / a  - -  b~ b k + b " k / a  2k + 1 - , 
# 2  a k  a k  ' # 2  ke~ \ 

a o" = 0 . a~" + a ~ / b 2 k  = a _ u  o , , ,  .~2k  , b k" - b"_ k / b  2~ = --  b " k / b  2k . 

ak" _ a,,k/b2k_ _ #3 a,,,k/b2k_ , 
#2 

,, _ _ , , ,  " + b" / b  2k #3 b ~ / b  = #3 e L 
bk - k /  #2 

(32) 



208 Z.M. Xiao and B. J. Chen 

Solving the above equations, we obtain 
! ii I It ar t  k m a o = a o : a k = a k : _ = a_ k : O, 

- ( p ~ - 1 )  I(1,+a2k),+p~ (1-~2~:)] .i.2 ( ~ - 1 ) ( b )  2k 

b;= 
a 2 k ( ~ - l )  (P323-1)'+(#1+1) (-PP-2~-I) (b)  2 k \ p 2  

]r (tZ1+#3~ +(1--0'~ (1+l't3 #2/ #2-~2 
(33) 

b" --It : 

a 2 k ( ~ - l )  ( # 3 + 1 ) + a 2 k ( # l - 1 )  (~_2-1)  ( b )  \-~2 

kek[(l+c~2~)(#l"+p~3)+(1--c~2k)( 1 + # a # l ] ] k / z 2  ~ ~ / J  

b'~ = 2a2~(#1-1)\#2 -a2k (#1 "i" 1 ) \ ~  ( ~  -1 )  \(e) 2k'l'a2k (#--l / k#2 1 ) ( p ~ - 1 ) ( b )  2k 

where 
a 

o~ = ~ -  . 

kek[ (1+ct2~:)(/~1"+/t3)\#2 ~ .1. (1-- 0Y~) (1+ --#2#3 #1) ] 

(34) 

3 Stress field 

The stress components in the regions l, 2 and 3 can be calculated using Eq. (1 l) with the aid 
of Eqs. (12) to (14). given by 

#lbz [ x - e 
[ 0-!12 = 2~ ( x -  e) ~ + y~ 

O.(1 ) = #lbz [. - y  
zx 27r [ ( x _ e )  2 +y2 

#2bz [ x - e 
[ ~(2y) = 27c (x  - e) 2 + y2 

cr!~) = #2bz [. - y  
27r (x -- e) 2 + y2 

#3bz I x -- e 

0-(3) = #abz I -Y 
= 21r [(x - e) 2 + y~ 

s r~-lkcos (k - 1) Ob'k] , 
k = l  

~k-lksin(~- k:l 1)0bJ, 

rk-lkcos (k - 1) Ob~ + rk+l , 
k = l  k = l  

s 1 6 3  s i n ( k + l )  O kb~kl 
T k + l  

k=l  k= l  

s cos(k+ 1) 0 .,,,] 
r~+l kb-k , 

k = l  

s sin(k + 1)0 kb~k ] 
Tk+ I 

k=l 

(35) 

(36) 

(37) 
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From Eq. (33) and the above equations, we find that when #3/#2 = 1, the solutions can be 
completely reduced to those of the two-phase model given by Dundurs [6], a screw disloca- 
tion embedded in an infinite elastic material with a circular inclusion. 

4 Force on dislocation 

When Q(x, y) is on the x-axis, from Eqs. (36) and (37) we have 

a~)(z,O ) #2bz 1 X- ,xk_lkb , , .  v-~ 1 
= ~ * - e ~ k + L z~( i  kb"-k ' /c=l k=l 

~ , ,  _ ~ k x _ ~ ~ - ~  kb'_"~ , ~(2 -- 0. 

~(2) : 0 (38) zx 

(39) 

The strain energy W is computed as the work required to reject the dislocation in the materi- 
als, thus, 

1[/ j 
w :  7 bz ~2) (z, o) dz + s o) d~ , (40) 

e+ro b 

where R is the distance corresponding to the material size and r0 is the core radius of the dis- 
location. One may take R ~ oc and r0 ~ 0 for all terms in the integral that converge at those 
limits. Evaluating Eq. (40) by use of Eqs. (38) and (39), we find 

W = - ~ -  log ro p2 ~ - e +  ( e k - b ~ ) b k +  ~ -  b"k+ #2 b"_' k (41.1) 
~:i #2 

or 

{ ,3 i i< CF ~ W = #sb2z l o g - -  + - -  log + ~ Alk + -- A2k 
47r ro P2 - k=l 

( 1  ct ~ ) ( ~ k  o ~ 3 ~ f i k ) c ~ k B i k B 2 k a k f l ~ + B 3 k a 3 k / 3 k  ] 
+ k/32k ~-k A3k + A4k + k/3k k ~ -  ' (41.s) 

where 

e 
/3 = - -  , AI~ = 

a 

A 2 k  = 

A 3 k  = 

(~22-1)  ( ~  - 1 )  

~,~ ~ +(I- 1 + - -  
#2 #2/ 

(#1 ~ OL2k) ( + #3 ]s ) (l+a2k) ~ + # A  +(1- 1 
#2/ #2 ~2 

( ~ - 1 )  (~323-1) 

(,~ + ~?] ~ k ) (  + , ~  , 1 )  (1+el 2k) ~ ~ /  + (1-  1 .2 

(42.1) 

(42.2) 

(42.3) 
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A4k = (/11+/13~ 02k) (1+/13 /1i) 1 

Blk = 

B2k = 

B3k = 

(/11 +#8~ __ os ( 1 +  /18 /11) ' 
(1+c~ 2~) ~ ~T/ + ( 1  k /19~T2 

t+l) 
/12 /12 

( 1 +  o~2k) (#2  + #8~ c~2k) ( + # 8 # 1 )  
\/12 (1 - 1 /12 

(1-c~2/r /z2/ +(1-a2k) ( 1+#3/11)/12 E 

The force on the dislocation is purely radial, it is defined as 

F _ 
OW 1 0 W  
Oe a 0r 

From Eq. (41), we obtain 

F _ 4~a ~=i ~-i ~ + ~ +  _c~k~ i)Ask 

+ pT~l /32~+i A3k--~3~/~k IA4~ ~kB1k -- s -- ~/3 k IB2~ + aa~ ~ IB3~ . 

(42.4) 

(42.6)  

(42.7) 

(43) 

(44) 

5 Numerical examples and discussion 

It has been seen that in the three-phase composite cylinder model the force on the dislocation 
is a rather complicated function of  various parameters, such as the dislocation location 
fl - e/a, the characteristic length a = a/b, and the material properties of the inclusion and 
the matrix. As a result, it becomes quite difficult to determine the equilibrium position of a 
dislocation where the force F vanishes. 

However, from our numerical calculations, we find that when the dislocation is close to 
the fiber-matrix interface (fl --+ 1), the term containing Aak in Eq. (44) is dominant,  and when 
the dislocation is close to the matrix-composite interface (fla ~ 1), the first term and the term 
containing B2k in Eq. (44) are dominant. Thus, we have the following set of  criteria: When 
#1/#2 < 1, the dislocation is attracted by the fiber phase, and repelled by it when #1/#2 > 1; 
when #3/#2 > 1, the dislocation is repelled by the composite phase, and attracted by it when 
#3/#2 < 1. Hence, if #1//12 > I and #3/#2 > 1, the dislocation will have at least one stable 
equilibrium position in a < e < b; if #1/#2 < 1 and #3/#2 < 1, the dislocation will have at 
least one unstable equilibrium position in a < e < b. This conclusion is quite different from 
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force on the dislocation with the distance 
/3 = e/a for ,lJ, 1 = 20 #2, ffa 8 if2, 
a/b = 0.5 

F* 

4.80- 

3.20- 

160-  

0.00 

-1.60 - 

-3.20 - 

-4.80- 

-6,40 - 

- -  solution of tv, o-phase model / 
appro;4mat e solution / 

- - - exact solution 
/ 

J 

110 112 114 116 118 210 

da 

Fig. 3. Variation of the normalized 
force on the dislocation with the distance 
/3=e/a for #1=0-1#2, #a=0.3#2,  
a/b = 0.5 

that  of  the two-phase model  by Dundurs  [6], where no equil ibrium posi t ion is possible for the 

dislocation. 

I f  the ratio b/a is not  fairly large, we can use the following approximat ion  to estimate the 

force on the dislocation: 

4rca k=l z /3@+f A a k +  - 1 . (46) 

Let 

F 
F * -  

#2b~/2rca ' 

then 

0/3 k=l 

(k + 1) c~k'~ 1)  a2 ]. 

(47) 

(48) 

Not ing  that  1 < /3  < l / a ,  thus if #1/#2 > 1 and #3/#2 > 1, F* monotonica l ly  decreases; and 

if #1/#2 < 1 and #a/#2 < 1, F* monotonical ly  increases. Therefore, if #1/#2 > i and 
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#3/#2 > 1, there is only  one stable equi l ib r ium posi t ion,  and if  #1/#2 < 1 and #3/#2 < 1, 
there is only  one uns table  equ i l ib r ium posi t ion.  

The  normal ized  force F* versus the normal ized  d i s tance /3  = e/a is depic ted  in Fig. 2 to 

Fig. 5 for  the four  par t icu lar  mater ia l  combina t ions  charac ter ized  by (#1/#2 > 1, #3/#2 > 1), 

(~ l / p2  < 1 ,#3 /#2  < 1), (#1/#2 > 1 ,#3 /#2  < 1) and (#1/#2 < 1,#3/#2 > 1), respectively.  
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Both the exact solution calculated by Eq. (44) and the approximate solution by Eq. (46) are 
displayed. It is seen that  the approximate  solution gives a very good result. In each figure, the 
corresponding result of  the two-phase model f rom Dundurs  [6] is also given. The present 
three-phase model shows a stable equilibrium position in Fig. 2 and an unstable equilibrium 
position in Fig. 3, which is totally different f rom the two-phase model [6] where no equi- 
librium position is possible for the dislocation. However,  for the material  property combina-  
tions given in Figs. 4 and 5, neither the solution of the present three-phase model nor that  of  
the two-phase model has any equilibrium position through the whole intervals. 

In order to examine the influence of  the volume fraction of  the fibers on the force of  the 
dislocation in a fiber-reinforced composite, the following materials are used for numerical 

examples: #1/#2 = 23, Ul = 0.3, u2 = 0.35, and the elastic constants of  the composite,  namely, 
the outer phase, are evaluated according to Christensen [12]. In Fig. 6, the force on the dis- 
location F* is plotted as a function of  the volume fraction u/. It is observed that  the force 
decreases with increasing fiber concentration, when the fibers are much "harder"  than the 
matrix. 

As it is emphasized, the main objective of  the current study is to investigate the disloca- 
tion-inclusions interaction in fiber-reinforced composite materials. It  is worth to mention that  
a "by-product"  application of  the paper  is that the analytical solution obtained can also be 
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used to study the dislocation behavior  in a real three-phase cylinder. In other words, if the 

Phase 3 in Fig. 1 is not  the equivalent composite,  but  the third real different material,  the 

result obtained in the current study can be directly applied. Here two numerical  examples are 

given. The force F* versus the shear modulus #a/#2 is plot ted in Fig. 7 for #~/#2 = 10, 

a/b = 0.5 at the point  /3 = 1.5. The figure shows that  when the rigidity of  the outer  phase 

(Phase 3) is low, the dislocation is repelled by the harder  centre inclusion; when the rigidity of  

the outer  phase becomes high, the dislocation is repelled by the outer phase. In order to exam- 

ine the influence of  the geometry on the force on the dislocation, F* is plot ted versus b/a in 

Fig. 8 for #17#2 = 10, #3/#2 = 8 at the po in t /3  = 1.5. As expected, with increasing value of  

b/a, the solution slowly approaches that  of  the two-phase case given by Dundurs  [6]. 
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