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Summary. A closed-form analytical solution is given for the stress field due to a screw dislocation inter-
acting with nearby inclusions (the fibers) in a fiber-reinforced composite material. The dislocation is
assumed near one of the inclusions, while the influence of other surrounding inclusions on the dislocation
is taken into consideration through the three-phase composite cylinder model. The formulation procedure
is based on the Muskhelishvili complex variable method of elasticity theory. The force on the dislocation
is then derived. It is shown that, in comparison with the two-phase model adopted by Dundurs, the three-
phase model allows the dislocation to have equilibrium positions near the fiber.

1 Introduction

Due to the importance of studying the strengthening and hardening mechanisms of various
composite materials, a lot of effort has been spent on investigating the interaction between
dislocations and inclusions in composite materials during the past three decades. The reason
is that a dislocation itself can be used to model a minor defect in composite materials.
Furthermore, the dislocation-inclusion interaction solution can be used as a Green’s function
solution to study crack-inclusion interaction in composites [1]—[3]. Therefore investigation
results on dislocation-inclusion interaction are highly demanded to cater for the need of frac-
ture toughness and strength analysis, as well as failure and reliability analysis of various com-
posite materials, especially in metal matrix composites.

A great deal of research work on dislocation-inclusion interaction can be found in the
open literature. To name a few, Dundurs and Mura [4] first investigated the interaction
between an edge dislocation and a circular inclusion. Following that work, Dundurs and
Sendeckyi [5] further solved the problem of an edge dislocation inside a circular inclusion,
while the interaction between a screw dislocation and a circular inclusion was studied by
Dundurs [6] three years later. Stagni and Lizzio [7] carried out the investigation of an edge
dislocation interacting with an elliptic inclusion. The problem for the dislocation inside the
elliptic inclusion was analyzed by Warren [8]. Worden and Keer [9] obtained the Green’s func-
tion for a point load and dislocation in an annular region. More recently, the interaction
between a screw dislocation and an elliptical inhomogeneity was investigated by Gong and
Meguid [10].

However, all the above-mentioned research work basically involves an isolated inclusion
only, i.e., a dislocation interacting with a single inclusion in a homogeneous matrix. For two-
phase composite materials, when the inclusion phase has finite concentration, the dislocation
interacts not only with the nearest inclusion but also with the surrounding ones. In order to
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reflect the mean effect of these interactions, Christensen and Lo [11] and Christensen [12]
introduced a three-phase composite cylinder model. In the two dimensional case, the model
consists of three concentric regions: the inner circular region representing the inclusion phase,
the intermediate annular region representing the pure matrix phase and the outer infinitely
extended region representing the composite phase. Based on the three-phase cylinder compo-
site model, Luo and Chen [13] derived the stress field due to an edge dislacation located in the
intermediate matrix phase.

The objective of the current study is to investigate the interaction between a screw dis-
location and surrounding circular inclusions with the above-mentioned three-phase compo-
site cylinder model. A closed-form analytical solution for the stress field has been obtained.
Various numerical examples are given. The force on the dislocation is calculated for different
material properties of the inclusions and the matrix. The equilibrium positions of the dis-
location are discussed in detail using the evaluated force on the dislocation. The results
obtained are compared with those from the two-phase model of Dundurs [6]. It is worth to
mention that for the two-phase model the edge dislocation case was solved by Dundurs
and Mura [4] first, then the screw dislocation case was solved by Dundurs [6] three years
later. For the current three-phase model, as mentioned above, the edge dislocation case was
solved by Luo and Chen [13], and the present paper will give the solution for the screw dis-
location case.

2 Formulation

The physical problem to be studied is shown in Fig. 1, where the circular fiber-reinforced com-
posite material has been made to be equivalent to a three-phase composite cylinder model
[11], {121: Phase [ is the circular fiber with elastic properties x,, g, occupying the inner region
7 < a; Phase 2 is the pure matrix material around the fiber with elastic properties s, 12, occu-
pying the intermediate region a <7 < b; and Phase 3 is the infinitely extended composite
material with elastic properties x3, u3, occupying the outer region 7 > b. A screw dislocation
b = b, is located near the fiber (Phase 1) at a point (¢,0), a < e < b. It is worth to mention
that through the three-phase model the interactions between the dislocation and the other
fibers in the composite are considered by the third phase.

As the formulation is an anti-plane elastic problem, the displacement components in each
phase are assumed as:

W =ul =0, ol =gy, Y

for: = 1,2, 3, where ¢, (x,y) are some unknown functions (to be evaluated) of z,y. The stress
components are thus obtained from Eq. (1) as

i Op; i dip;
a§2=u¢a—;, U%):Mz“a*?;, (2)
and
U(ZQ = Uitg)c = agg = Sg =0, (3)

where p;, 4 = 1,2, 3 are the shear moduli of the respective phases.
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4 y

Fig. 1. A screw dislocation in a composite with the
three-phase model

Supposing that there is no body force, the stress components given above must satisfy the
equilibrium equations

90f) 00t a0 _

Oz Ay 0z 0,

3035’2 N 80&2 _ 8052 ~0, (4)
Ox By Oz

dotl) N (90%) _ dotl) ~0,

Ox dy Oz

which lead to

Poi P

Oz + Oy? =0. (5)

In other words, @;(z, y) must be harmonic functions of the two variables z, y in the respective
phases.
The components of the traction vector acting on the side surface are:

Op;

i) (i (i — gy 2
Tz( - 0,(252 COs (n7 $) + Jzy) Cos (Tl, y) = M4 an 3 (6)
and
Y =19 =0, (7)

where n is the outward normal to the side surface.
Introducing the complex functions $;(3J) of the complex variable 3 = z + iy, which are
defined by

Pi(3) =i+t (8)
where 1;(, y) are the conjugate functions of ;(z, y) and satisfy

dpi _ O i _ Ot (9)
dxr Oy’ Oy or ’

it is clear that ¢;(J) are holomorphic in the respective regions. Hence, the displacement com-
ponents and the stress components can be written in terms of the complex functions as

ul) = Re ®;(3) . (10)
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and
; ; 0P;(3
agZ) + iog =iy, —5% .

For the current problem, the holomorphic complex functions are taken as

B1(3) = = | Bo(D) + ) _(a +ib}) 3’“} :
| =0

bZ [ a3 > . o~
D(3) = 5= |Po(I) + D (a +ibf) Jk} :

k=—0o0

1
&3(3) = = |Bo(3) + > (a;;’ﬂ'b'k")sk],

k=—0o0

in the three phases, respectively, where
Po(3I) = ;ilog (S —e).

Combining Eqgs. (12)—(14), we have

b | S .
pr=5 |0+ ag + Z(a;c cos kb — bl sin kf) rk} :

T =1

b, | 2 , = : .
P2 =5 |0+ ag + Z(a% cos kf — b sin kO) r* +- Z(a'ﬁk coskf + b’ sin k@) r |,

k=1 k=1

b, [ & _ )
ps =5 w0+ Y (0", cos kO + b, sin kf)r k}
pas

with
wo = RePy.

The boundary conditions are:

atr = a,
uil) _ u(zz) ’ TZ(1) _ Tz(z) :
atr = b,
u§2> = uf) , T§2) = TZ(?’) .

Using Eqs. (1) and (6), the boundary conditions are rewritten as

| rma = 2] t oo _Op
1| r=a @2 r=a , 1o o . or T:a:
Pa|r=b = P3| r=p Ol _ 13 O
2 r=b = P3| r=b, | =" -
Jr r—=b M2 or r—b
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(15)

(16)

(17)

(18)

(20)

(21)

(22.1)

(22.2)



A screw dislocation interacting with inclusions 207

When |J3]| < e,
0 o~k
3
log(I—e) =1 iT — —_, 23
0g(I—e)=loge+ir ;kek (23)
1 o0
S_e: _Zelﬁ—lsk, (24)
=0
and when |3| > e, we have
k
~ ~ e
log(\s—e):logd—zﬁ, (25)
k=1
1 o 1
SErap Sy (26)
k=0
Therefore, g and % can be rewritten as:
T
forr<e:
(o] Tk
g@ozw—zﬂsinke, (27)
k=1 €
a(p() 0, il )
——==—% ———sin kb 28
N 8
and forr > e:
% ok
oo =0+ o sin ko, (29)
=1
%A—ie—ksm k0 (30)
or £ phtl '
Furthermore, in Eq. (29) 8(—7 < 8 < 7) can be expressed by
0 (_q k-1
0:22( Iy (31)
=k

Recalling Eq. (8), and writing I as 3 = r(cos@ + isin#), by comparing the coefficients of
sin k6 and cos k#, the boundary conditions lead to the following linear equations which deter-
mine the coefficients ag, af, ay, az, a”, a”, by, 0, 67, 07, with k =1,2, .. .

[/ A B/ " 2k Y/ /1 2k
ag = ag, a4, = a, +a’,/a*”, b, ="b—b /o™,

By " 7 2%k Koy 11 11 2k 1 ( ,U41>
—a,=a, —a ,./a", —b.=0b0.+b /" +—1—-—],
1y TF O %/ 1y kT %/ ek

©2
" o_ " " 2k . m 2k U 1t 2k __ 11 2k (32)
a0_07 a’k—}'afk/b _afk/b 5 bk"b—k/b __—k:/b B
k
af —al b = =B by e - B e (@— 1) n
k k:/ U k/ k k,‘/ Lo 7k'/ s kak
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Solving the above equations, we obtain

P i
ag=ay=a,=a,=a_,=a_, =0,

oo o) @)

{1 o) (L8] 4 ooty (142 2)]

K2 2 H2 2
62k
) () () () (5
o () ram e ()]
bzﬁa%(%—l)<52+1)+a%<%—1>(;~1)<b>
g ) e G G () -G () ()

ke’“[(1+a2k) <ﬂ+@)+(1 )<1+&ﬂ>]
Mo M2 Ho 42

SR

where

(34)

SHS)

3 Stress field

The stress components in the regions 1, 2 and 3 can be calculated using Eq. (11) with the aid
of Egs. (12) to (14), given by

ol) = b | zoe  § 1k cos (k — 1) 0Y,
21 |(z— e + ¢ ; ( |
- (35)
(1) _ abe YN lhsin (k- 1) 6,
ol = . E— " ksin(k—1)6b, |,
@ g | (z — )’ + 12 ; ( ) k]
2 _/J'sz [ r—e k=1 " cos(k+1)0
o) =22 @T‘; kcos (k — 1) 0b} +2ka,,€ :
- (36)
@) _ H2bs R S PR WA -l Gt LpPY
oy = —_— r s —k|
2T 2 _(37 . 8)2 + yz ; ( ) k ; rktl k
I o0
@ _ u3b, T—e cos(k+1)0 K"
A P k; e
- (37)

gi) _ pab. Z sin (IZJZ 1)é s
2 |(x 6) +y? =T (.
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From Eq. (33) and the above equations, we find that when ug/us = 1, the solutions can be
completely reduced to those of the two-phase model given by Dundurs [6] , a screw disloca-
tion embedded in an infinite elastic material with a circular inclusion.

4 Force on dislocation

When Q(z,y) is on the z-axis, from Eqgs. (36) and (37) we have

pb 1 L G|

@ (z,0) = £ [ ;w‘f Ikb%jL;ﬁkbzk} o =0, (38)
[Lgb 1 > 1

) (x,0) = o L_ﬁgﬁkb’i’k], o =0. (39)

The strain energy W is computed as the work required to reject the dislocation in the materi-
als, thus,

b R

1 9 3

W:Ebz{/ agy)(:r,,O)éx+/ o (z,0)d } (40)
e+rg b

where R is the distance corresponding to the material size and 7 is the core radius of the dis-
location. One may take R — oo and rg — 0 for all terms in the integral that converge at those
limits. Evaluating Eq. (40) by use of Egs. (38) and (39), we find

pab? b—e us R [k ke LI,y 1oy,
== <1 — log — —b%)b —_ - .
w o { g — + RS s + E (e ) b + 5T b+ o il (411)

k=1
or
/.I,Qb2 b—e U3 R 0 an’ ak a2kI6a2k ak/@k‘
=2z )} & L _e”
W= {Og o m Ogb—e+; g T T ) A
1 Ic a2k Oz3kﬂk Osz B B
—I—(W /{:Bk) Ase + < A T) Ay + kﬂklk - ]:k of B+ 3k 3k,3k] ) (41.2)
where
: (a-2) G2-)
f=—, Ap= K2 a , (42.1)
(1+a2”9)< +“3>+(1—a2’“)<1+@ﬂ)
M2 L M2 2
() G
Ag, = K K (42.2)
(1 + a2) (ﬂ+@) +(1-a™) <1+@ﬂ>
M2 M2 2 fi2
=)
Ay = at 2 , (42.3)
(14 a?) (%Jr@) + (1 - o) (1 +’f§ﬁl—>
2

H2 2
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- ()
Age = k2 a , (42.4)
(1+ 2k)< “3>+(1—a2k) <1+@ﬂ>
He B2 M2 po

2 (ﬂ _ 1) Ha
B = K ac (42.5)
(1 + %) (“ +”3> +(1— o) (1+@ﬂ>
He 2 Ha M2
()02
By = = e J Ko , (42.6)
(1+ o) (’—‘i+@) +(1— o) (1 + 12 ’fl>
M2 H2 M2 2
) G-
By, = Ha Ha H2 (42.7)

o) (B ) 1 1oty (1420 20)

Ho 2
The force on the dislocation is purely radial, it is defined as

ow 1 oW
F=—ac="wa (43)

From Eq. (41), we obtain

b & kA, o o
F’:—M/2 z Z [(Eﬁ_ 1> 1 - +Oé 1k+(2a2k62k—1 _ak,@kil)AQk

dma k=1 H2 —CY/B /ﬁk+]
o 2 3k pk—1 o"B lk k pk—1 3k gl—1
+ BT gkl Az — a7 Agg — L o F" By + a7 By | (44)

5 Numerical examples and discussion

It has been seen that in the three-phase composite cylinder model the force on the dislocation
is a rather complicated function of various parameters, such as the dislocation location
8 = e/a, the characteristic length o = a/b, and the material properties of the inclusion and
the matrix. As a result, it becomes quite difficult to determine the equilibrium position of a
dislocation where the force F' vanishes.

However, from our numerical calculations, we find that when the dislocation is close to
the fiber-matrix interface (4 — 1), the term containing Asgy, in Eq. (44) is dominant, and when
the dislocation is close to the matrix-composite interface (Sa — 1), the first term and the term
containing By in Eq. (44) are dominant. Thus, we have the following set of criteria: When
w1/ pe < 1, the dislocation is attracted by the fiber phase, and repelled by it when p; /s > 1;
when p3/us > 1, the dislocation is repelled by the composite phase, and attracted by it when
us/pa < 1. Hence, if py/pe > 1 and pg/pe > 1, the dislocation will have at least one stable
equilibrium position in a < e < b; if /e < 1 and pz/pe < 1, the dislocation will have at
least one unstable equilibrium position in a < e < b. This conclusion is quite different from
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that of the two-phase model by Dundurs [6] , where no equilibrium position is possible for the
dislocation.

If the ratio b/a is not fairly large, we can use the following approximation to estimate the
force on the dislocation:

U ol T m_g) @
r=t 3 | () (1) 5 o
Let

. F
F= pob?/27a’ (47)
then
oF* | /2k+1 (k+1) ak> (ug > o?
A - At (B2 1) 2. 48
ap k; K k2 Bh+2 T\ e (11— ap)’ (48)

Noting that 1 < 8 < 1/a, thus if gy /ps > 1 and pz/ps > 1, F* monotonically decreases; and
if p/pe <1 and pg/pe <1, F* monotonically increases. Therefore, if w;/us >1 and
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Fig. 4. Variation of the normalized
force on the dislocation with the dis-
tance § = e/a for puy = 4 g, ug = 0.2 g,
a/b=0.5

Fig. 5. Variation of the normalized
force on the dislocation with the dis-
tance § = e/a for py = 0.2 ug, p3 = 4 o,
a/b=0.5

Fig. 6. The normalized force on the dis-
location versus the volume fraction of
the fiber in a fiber-reinforced composite
with My = 23 Mo, Vi = 03, Iy = 035,
e/b=1.5

s/ ue > 1, there is only one stable equilibrium position, and if puy/pe <1 and pz/pe <1,
there is only one unstable equilibrium position.

The normalized force F* versus the normalized distance 5 = e/a is depicted in Fig. 2 to
Fig. 5 for the four particular material combinations characterized by (u1/p2 > 1, p3/pa > 1),
(p1/pe <1, ps/pe < 1), (pfpe > Lips/pe < 1) and (w/pe < 1,us3/ue > 1), respectively.
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Both the exact solution calculated by Eq. (44) and the approximate solution by Eq. (46) are
displayed. It is seen that the approximate solution gives a very good result. In each figure, the
corresponding result of the two-phase model from Dundurs [6] is also given. The present
three-phase model shows a stable equilibrium position in Fig. 2 and an unstable equilibrium
position in Fig. 3, which is totally different from the two-phase model [6] where no equi-
librium position is possible for the dislocation. However, for the material property combina-
tions given in Figs. 4 and 5, neither the solution of the present three-phase model nor that of
the two-phase model has any equilibrium position through the whole intervals.

In order to examine the influence of the volume fraction of the fibers on the force of the
dislocation in a fiber-reinforced composite, the following materials are used for numerical
examples: 1/ = 23, 11 = 0.3, v, = 0.35, and the elastic constants of the composite, namely,
the outer phase, are evaluated according to Christensen [12]. In Fig. 6, the force on the dis-
location F* is plotted as a function of the volume fraction v;. It is observed that the force
decreases with increasing fiber concentration, when the fibers are much “harder” than the
matrix.

As it is emphasized, the main objective of the current study is to investigate the disloca-
tion-inclusions interaction in fiber-reinforced composite materials. It is worth to mention that
a “by-product” application of the paper is that the analytical solution obtained can also be
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used to study the dislocation behavior in a real three-phase cylinder. In other words, if the
Phase 3 in Fig. 1 is not the equivalent composite, but the third real different material, the
result obtained in the current study can be directly applied. Here two numerical examples are
given. The force F* versus the shear modulus ps/pe is plotted in Fig. 7 for ui/ps = 10,
a/b = 0.5 at the point § = 1.5. The figure shows that when the rigidity of the outer phase
(Phase 3) is low, the dislocation is repelled by the harder centre inclusion; when the rigidity of
the outer phase becomes high, the dislocation is repelled by the outer phase. In order to exam-
ine the influence of the geometry on the force on the dislocation, ™ is plotted versus b/a in
Fig. 8 for pyTue = 10, pg/pu2 = 8 at the point 8 = 1.5. As expected, with increasing value of
b/a, the solution slowly approaches that of the two-phase case given by Dundurs [6].
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