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Summary - -  Zusammenfassung 

Bifurcation Analysis of the Triaxial Test on Sand Samples. A bifurcation analysis of 
a strain hardening dilatant sand sample in the triaxial test is carried out. The analysis shows 
that the triaxial test yields only then the limiting soil properties if 1) the sample is compact 
enough and 2) if the confining pressure does not exceed a critical value depending on the soil 
anisotropy and the slenderness of the sample. 

Verzweigungsanalyse des Dreiachsialversnchs yon Sandproben. Eine Verzweigungs- 
analyse einer verfestigenden dilatanten Sandprobe im Dreiachsialversuch wurde durchgefiihrt. 
Die Analyse zeigt, da~ der Dreiachsialversuch nur dann die Grenzeigenschaften des Erdstoffs 
liefert, wenn 1) die Probe gedrungen genug ist und 2) wenn der Seitendruck nicht einen 
kritischen Wert iiberschreitet, der yon der Anisotropie des Materials und der Schlankheit der 
Probe abh~ngt. 

Introduction 

For  selecting a yield criterion for soils, K. H. Roscoe e t a ] .  [1] have presented 
the results of so-called 'special '  triaxial compression and extension tests, where 
very  precise records of the failure pat terns  have been taken. This series has shown 
tha t  it is difficult to  interpret  the experimental  data,  due to the appreciable 
bulging or necking of the samples. As an improvement  of the s tandard  triaxial 
test, lubrication at  the end plat tens has been used. The experiment  shows tha t  it is 
not  possible to prevent  inhomogeneous strain fields by  refinements on the bound- 
aries [2], [3]. These results are forcing us to suppose tha t  a spontaneous homo- 
geneity loss is possible. This possibility can be invest igated by  asking for bi- 
furcat ion modes under  ideal boundary  conditions. If  solutions of this type  actual ly  
exist, t han  it is reasonable to assume tha t  imperfections can only intensify this 
tendency.  

The bifurcation analysis developed here is based most ly  on the techniques of 
similar investigations on metal  plast ici ty problems [4], [5], [6]. The main differ- 
ences to these works arise from the special const i tut ive properties valid for sand, 
namely  friction and dilatancy.  The sand behaviour  considered here is similar to 
t ha t  of the 'psammic material '  in t roduced by  Th. Dietrich [7], i.e. for sand at low 
pressures. According to this model  d i la tancy is assumed as an internal constraint ,  
and  the elasticity of the grMns is very  high. This model led to successful results for 
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the shear band bifurcation in the biaxial test  [8], [9], where the most unsafe 
solution for the shear band corresponds to the limiting ease of 'psammie '  be- 
haviour. 

With the truly triaxial apparatus of Karlsruhe, M. Goldscheider [10] has 
confirmed the validity of the Mohr-Coulomb limiting condition, which implies 
that  the angle of friction is not dependent on the mean principal stress (i.e. on 
a2/q and a.~/aa for aa < a~ < q < 0). We here assume the validity of the Mohr- 
Coulomb yield condition for simplicity, and a unique hardening rule is taken for 
both the triaxial compression and extension. The corresponding stress-strain 
curve is taken from biaxial experiments which undergo honlogeneous deformation 
up to the peak [8], [9]. 

For determining the volumetric flow rule a simplified shear strength - -  
dilataney relationship is used, which is a modification of Taylor 's  formula [11], [12]. 
Concerning the deviatoric flow rule it can be shown that  in the neighbourhood of 
a triaxial compression or extension and for a smooth plastic potential  no new 
informations can be obtained. 

Experimental Results 

The failure modes observed in the triaxial test on dry sand samples with 
lubricated end plattens are almost axisymmetric [2], [3]. Fig. 1 a shows the sand 
sample before the test. The force piston was clamped into the top cap to prevent 
tilting of the specimens during a test. The end caps carry polished stainless steel 
plates and a silicone grease to prevent boundary friction. They carry also a small 
porous stone to keep the sample centred. To reduce the influence of weight the 
height of the sample has been chosen unusually small ( R / H  ~ 0.6). Fig. l b  
demonstrates the failure pat tern  of a dense sample at  an axial strain of --41~ . 
This mode is the most possible one at the triaxial compression test. At a strain 
controlled test, bulging begins slowly to develop, l~ig. l e shows the alternative 
pattern,  which demonstrates the non-influence of weight into the failure mode. 

Concerning the triaxial extension test with lubricated end plattens, H. Meissner 
et al. [3] refer that  necking is observed (el. [1]). 

Fig. 2 shows a typical stress-strain plot of a triaxial compression test of a dense 
sample with medium grained sand from Karlsruhe. To detect the failing of 
homogeneity, the shape of the sample was observed by a theodolite, and the 
sample diameters in various horizontal planes were measured (of. [1]). The 
maximum angle of friction qbzp - -  41 ~ was observed at  a state where the maximal 
difference between two diameters of the sample was about 1% of the mean 
diameter. For the same sand and the same porosity the maximum angle of 
friction at a biaxial test is r = 47~ (Fig. 2, [8], [9]). The difference between qSrp 
and Czp can be explained by the special stress distribution corresponding to the 
bifurcation solution. Due to 4zp < Crp it is reasonable to concentrate the bifur- 
cation analysis in the hardening regime. The material softening is mostly over- 
estimated in conventional tests due to various loealizations [8], [9]. Fig. l d  
shows that  in the compression test not only diffuse modes but also shear bands do 
occur. I t  should be noted that  first bulging takes place, and that  the shear bands 
develop at a later stage in the softening regime, as predicted by  J.  W. l~udnicki 
and J.  It. I{ice [13]. 
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Fig.  1 a. Fa i lu re  p a t t e r n s  - -  
s a m p l e  before  t h e  t e s t  

Fig. 1 b. Fa i lu re  p a t t e r n  a t  an  axia l  
s t r a i n  of 4 1 %  

Fig. 1 c. Fa i lu re  p a t t e r n s  - -  
a l t e r n a t i v e  m o d e  

Fig.  1 d. Fa i lu re  p a t t e r n s  - -  
bu lg ing  w i t h  pos t - fa i lu re  shea r  b a n d s  
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Fig. 2. S t r e s s - s t r a in  cu rves  for  I t r iax ia l  compress ion  (n o = 36 .4%,  a c ~ 20 N/cme),  
2 biaxial  t e s t  (n o = 36 .2%,  ac ~ 12 N / c m  2) 
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Formulation 

Let  a homogeneous cylindrical dry sand sample in an undistorted config- 
uration Co be subjected to a smooth, quasi-static axisymmetric motion of 
extension [14]. Call the resultant configuration C. Let  C be the reference con- 
figuration, R the radius and H the height of the sample in C (Fig. 3). Let  ac be 
the confining pressure and wt the vertical displacement of the top of the sample. 

Z 

o" r = -  o'r 

r 
- R R 

Fig. 3. Current configuration C 

Due to lubrication no shear stress can develop at the end caps. For any change of 
the boundary conditions there is a new configuration C'. Let us employ a single 
fixed cylindrical co-ordinate system with its z-axis along the axis of the sample 
and put 

x2 == ; x2'  = 0' (1)  

for the cylindrical co-ordinates of a particle X in C and C', respectively. Here 
only axisymmetrie deformation modes will be considered, i.e. the tangential 
displacement and the tangential derivative vanishes identically. Let u be the 
radial and w the axial displacement, the displacement gradient reads: 

-a__~ 

ar 

[u~ii] - -  0 

a w  
_ _  cgr 

0 ~_~u-- 
8z 

u 0 , 
r 

o a_~w 

(2) 

where (.)11 denotes the covariant derivative with respect to the co-ordinate xl. It 
is assumed that u~[l is infinitesimal everywhere in C, so that all terms of an order 
higher than one in uil~ can be neglected. Let 

1 1 
~ s  : =  ~ -  (u~lJ § uj,~); o~j  : =  ~ -  (u~is - u~l~) (3)  

be the infinitesimal strain and rotation tensor. 
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The Cauchy stress tensor in C denoted by  g~i: [ r0 0] 
[ ~ J ]  = ,~o 0 �9 

0 o" z 

For the considered axisymmetric motions of extension it is 

a~ < a~ = ae = --ac < 0 for compression or 

ar = ao = - - a ~  < az < 0 for extension. 

(4) 

(5) 

The stress in C' is suitably described in terms of the 1. Piola-Kirchhoff stress 
tensor X~j. 27~1 is defined by  referring the nominal traction in C' on the oriented 
surface element in the reference configuration C. Within a linear theory the 
increment : 

AZ~ : =  2~ --  ~ j  (6) 
reads [15]: 

A X i j  = Aa~ i + aijukik - -  a~kukli, (7) 

where Aa~i is the corresponding Cauchy stress increment. Aa 0 can be decomposed 
into a constitutive par t  As# and into a rotational par t  z]a~i (so-called J a u m a n  
part)  : 

Aa~j = As~j + z3a~, (8) 

Strictly speaking is ds~i  the increment of the corrotated Cauchy stress tensor', 
which can be used for expressing incremental constitutive laws [16]. Substitution 
from Eq. (8) and (9) into Eq. (7) yields a decomposition of d2:~i in a constitutive 
and in a geometrical par t :  

AZ~j : ds~ -t- z]Z~j (10) 

ZIZ~j : o)~kak~ - -  a~ek i  -~ a~jskk. (11) 

The field equations for continued equilibrium in C' can be expressed in terms of 
AX~i [15], [16]: 

AZ~.Ij = O. (12) 

According to Eq. (10) and (11) the quantities 

I : - -  ~ X l i l i  ; I I I  : =  AZai l i  (13) 
yield 

where 

I =  2 t  ~ ; I I I  = 2t  ~ ~-r + (14) 

l ( ~ w  ~u) (15) 
e) : = -~ 8r ~z 

1 
t : =  -~- (at - -  az) -  (16 )  
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In t roducing  the above equations into Eq. (12) yields: 

~srr ~srz 1 - -  = 0 
a---~- ~- -~z + --r (As~ --  Asoo) + 2t OW~z 

~r +'--~z + As~z + 2t --~-r + : 0  

(cf. [18]). 

(~7) 

Boundary Conditions 

For  the considered infinitesimal transit ion C--~ U' the confining pressure ~c 
is assumed to remain constant .  The boundary  conditions for the cylindrical edge 
of the sample should express the fact, t ha t  a follower t ract ion of constant  intensi ty  
acts always normal  on it. Mathematically,  this condition reads [17]: 

for r : R:  dX~Sn i = ~c(nk6u - -  n~0k~) Ukll, (18) 

where {n~}T:  {11 0, 0} is the boundary  normal  and 6i1 the Kronecker  delta. 
Subst i tut ion from Eq. (11) and (12) into (18) yields: 

for r : R :  Asrz = --2terz; As~r : 0. (19) 

On the other  hand, the ends of the sample are subject to frictionless constraints, 
the axial displacement being there prescribed, i.e. : 

for z = O: ~s~ = O; w = 0 

and (20) 

for z = H :  A%z : 0; w = wt. 

Deformation Modes 

As already mentioned, only axisymmetr ic  deformation modes will be con- 
sidered. First  we define the so-called trivial mode, which is an axisymmetr ic  
mot ion of extension: 

[i] I :l Lq3zJ 

(21) 

Z r__. ~ : =  m~ - -  (m = 1, 2 . . . .  ). (24) ~o:~- R '  H 

with 

This mode obeys to the boundary  conditions:  

~(r, 0) = 0; ~(r, H) = wt. (22) 

For  the non-trivial mode a non-linear displacement field is assumed:  

= , ( 2 3 )  

L~(~) sin 
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This field satisfies the homogeneous boundary conditions: 

~(r,  0) = ~(r ,  H)  = o. (25) 

The deformation mode considered here is a linear combination of the trivial and 
the non-trivial solution: 

= + ~ , (26)  

where ~] > 0 is a suitably smal l  real number. :From Eq. (26) the strain field can be 
derived; we write formally: 

Denote that 

are constant in C. 

I :~ :1 ~o + ~ too �9 

0 ~z~ kgrz 0 g~j 
(27) 

S r = t 0 : q l  and $ ~ : q a  (28) 

:For formulating 
stress measures will be used: 

1 ~ (2~ + ~)  
p : =  T ~k = -A- 

I n v a r i a n t s  

the subsequent constitutive relationships, the following 

(29) 

where (*) denotes the deviator. Corresponding to the above definitions the 
corresponding stress measures in C' are defined in terms of the rotated Cauchy 
stress tensor s~j: 

p' : =  ~- Skk; 3' : =  s~s~j, (30) 

where 

s~ i = a~ i + As~ i .  (31) 

For As~j being infinitesimal everywhere in C and 

p '  = p -t- z ip;  3' = r + ziv (32) 

from the above equation follows: 

1 (zis,~ + zis00 + As=) ZIP = T 
(33) 

AT- -  T1 lAB, + ziSoo -- 2As=l 

:For calculating the strain measures we introduce the following notations: 

I1~ :---- ekk; J2~ : =  ~ i ;  Ja~ : - :  ~i~jkkk~ �9 (34) 



42 I. Vardoulakis: 

Le t  gl > g2 > e3 be the  pr inc ipa l  values of a s t ra in  devia tor .  I t  is convenient  to 
wri te  [10]: 

~2 = - - D  cos (~/3 + ~ ) ;  ~a = - - D  cos (.n/3 - -  ~ ) ,  (35) ~1 = D cos c~; 

where 

W i t h  

COS 30/e : =  ]/6-- J3e/J32~2"~ D :--~ (-~ J2s) 1/2 , 

ea < e2 = q for compression or  

q = e2 < e3 for extension 

f rom Eq.  (35) follows 

(36) 

(37) 

~ = n/3 or 0, (38) 

correspondingly.  In  add i t ion  to the  above  def ini t ions  we in t roduce  the  angle of 
o r ien ta t ion  fi of t he  p r inc ipa l  axes  of s t ra in  in the  (r, z)-plane:  

t an  2 f t . - -  2e~ . (39) 
ET~f- 8ZZ 

B y  using these  defini t ions i t  can be shown t h a t  the  following r ep resen ta t ion  holds : 

~ - I  ~ - 8~ ~ ) .  (40) 
1/.ZT~ = T cos 28 sin (~/a + 

B y  in t roducing  the  so-called Lode  fac tor  

L~ : =  2 ~ - ~ ~ - - -  1 /a  cot  (~/3 + ~ )  (~1) 
81 E3 

and  t ak ing  into account  tha t ,  according to  Eq.  (27), as well (e~ - -  e00) as e~ are  
p ropor t iona l  to the  small  p a r a m e t e r  ~, follows t h a t  for 

~ - + 0 : ~ - ~ ( = / 3 o r 0 )  and  f i - + 0 .  (42) 

This a rgumen t  allows to  in t roduce  

Y :--  1 -~ J2~ ~-- Is~r - -  szzl (43) 

as a measure  for the  inf ini tes imal  shearing s t ra in  in tens i ty .  
A t  least  i t  should be no ted  t h a t  near  to  the  t r i ax ia l  compression or extension 

the  inc rement  of the  t h i rd  stress i nva r i an t  is p ropor t iona l  to t h a t  of the  second 
one. This  means  t h a t  in t roduc ing  the  t h i rd  stress inva r i an t  no new informat ion  
can be expected .  

Constitutive Equations 

W e  assume t h a t  the  Mohr-Coulomb fr ic t ion law is valid.  Le t  Cm be the  mobi-  
l ized angle of f r ic t ion 

sin Cm : ~  a~ - a , .  (44) 
W~ + ~zl 
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sin Cm obeys to a strain hardening rule (Fig. 4) : 

sin r = T(g), (45) 

where T( .  ) is a hardening funct ion and  g a finite Eulerian measure of the shearing 
strain intensi ty  of the  deformation measured f rom the undis tor ted configurat ion 
Co- In t roducing  [1] 

T 
sin ~b~ : =  - - - -  (46) 

3p 

from Eq.  (5) and (44) follows: 

sin ~/,~ - -  2 sin qb m (47) 
3 g: sin ~b m ' 

~here  th roughout  in this paper,  if two signs, the upper  holds for compression and 
the lower for extension. 

For  the increments Eq. (46) yields: 

A~ = - -3Ap sin ~ - -  3pA sin ~b~. (48) 

Let  h be the hardening rate ( tangent modulus),  defined as follows: 

d sin ~,~ = hy, (49) 

where A { / =  ~ is used. For  writing Eq. (48) explicitly in terms of the stress and 
strain increments, we have to distinguish between a cont inuat ion of a triaxial 
compression or extension, i.e. we assume tha t  for C -+ C'  

~rr ~" "~zz or 6rr ~ ezz 

and (50) 

A 4 ~ < 0  or A k = > 0  

if Co--> C is a triaxial compression or extension. B y  using these assumptions, 
Eq.  (48) yields: 

As~ + ~]so~ --  2As~ = T 6 A p  sin ~ • 4t h ( ~  - -  ~ ) .  (51) 
sin $~ 

1 
Note  tha t  t : =  ~- (~  - -  a,) is positive or negative if respectively the current  con- 

f iguration corresponds to a triaxial compression or extension. 
The increment  of mean pressure Ap is regarded as a statically indeterminate 

quant i ty .  This is consistent with the assumption tha t  the strain field obeys to the 
rule of dilataney, i.e. we assume tha t  

I1~ = sin ~b~ 7,  (52) 

where ~b~ is an angle of dilataney. Between ~o and ~b~ according to D. Taylor ' s  [11] 
proposition, some dependency can be assumed. A simple modification of Taylor ' s  
formula,  proposed by  I. Vardoulakis [12], reads:  

sin ~b~ : const (sin r - -  sin ~c), (53) 

where q~c corresponds to the critical state. 
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For  the remaining shear stress increments,  following Biot ' s  proposi t ion [18] we 
write : 

LJSrr - -  zJ8oo = 2~(err - -  eoo) (51) 

As~ = 2#e~. (55) 

fi and  # are two generally different  shear moduli ,  which are a t  this m o m e n t  no 
more restricted. I t  is clear t h a t  

e ~ r  - -  e o o  = G ~  - -  ~oo; e~z - -  Gz, (56) 

so tha t /~  and  # correspond to unloading. Subst i tu t ion f rom Eq. (54) into Eq. (51) 
yields: 

dSrr  : (1 :~  sin ~G) Ap  + ~(e,.~ - -  e00) :j: -~- t s i n  ~b~ 
(57) 

4 t h 
Aszz : (1 ~ 2 sin r A p  T -~ sin ~b~ ( e r r  - -  ezz)" 

I t  can be easily seen tha t  Eq.  (57) is consistent to Eq. (50), if for the  considered 
deformat ion  mode Eq. (27) the  p a r a m e t e r  U is chosen sui tably  small  and  the 
analysis is concent ra ted  in the  hardening regime (h > 0). 

Internal Constraint 

We discuss now the rule of d i la tancy Eq. (52). Subst i tu t ion  f rom Eq.  (34) and 
(43) into Eq. (52) yields: 

er~ + eoo + ez~ = • sin G(e~ - -  ezz), (58) 

where use of Eq.  (50) has been made.  Assuming tha t  the  t r ivial  mode obeys to the  
internal  constraint ,  Eq.  (58) also holds for  the non-tr ivial  mode,  then  

( 1 (1 + d2)~00) (59) 

where 

6 2 : :  t an  ~ (~/4 T ,G/2). 

On the other  hand, Eq. (23) yields: 

(6o) 

R ( m =  1,2,  .). K : =  m:~--~- .. 

(62) 

(63) 

err 1 ~, cos ~, ~00 1 4 . m~ " = " = - - - - c o s ~ ;  e z , : - - w e o s ~  (61) 
R R @ H 

where (-) '  =-- d . F r o m  Eq. (61) and  (59) follows a t  least a restriction for  the 
d@ 

non-tr iviM mode : 
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With Eq. (62) ~ can be eliminated from Eq. (61), there is 

~ --  ~oo ---- ~ -  ~' --  cos 

~. - -  ~ -= --~ (1 + a 2) a'  + ~ cos ~" 

1 K_ 1 (~2~,, + 1 2~z- -  R y (1 + a 2) 

1 K_ ~ ( ~ , ,  + i (1 + b ~ ) - - - -  2~ --  ~ ~- 

We denote here that the chosen kinematic field for the non-trivial mode satisfies 

the boundary conditions of the ends of the sample identically: 

for z ~ O, H: ~,'z = 0; ~ z 0. (65) 

(64) 

§ 

~o ~-~- (1 -4- a 2) + K2e 2 ~ sin ~. 

Field Equations 

The solution of the considered bifurcation problem consists of determining 
the non-trivial mode Eq. (23) in such a manner that the field equations for con- 
tinued equilibrium, the constitutive equations and the boundary conditions are 
satisfied. Substitution from Eq. (54), (55) and (57) into Eq. (17) and use of the 
representation Eq. (64) for the non-trivial mode yields: 

--(1 T sin~/,o)aAp ~ + t (  ( 1 (1_}_52) + 1 ~ ) d '  

(66) 
( ~ (, + a 2) - ~  + ~K2Q ~) -~)  + - P  + 7 cos 

a~p= K_ 1Ix+t(  ~ t ( l + 3 a  2)~'-j-' (1 ~: 2 sin ~ )  ~z R 2 ~2u'" + 2- 

+ ( -7 '  (~ + ~ ) -  (4h + ~) K~~ ~'V (67) 

-[- ( 1  (1 -~- 62) -- (2f~ + ~) K202) ou---~ ) sin ~ 

where 

p : =  ~/# 
l + t/tt 

t/# /t; ~ : =  ~ 1 ( 1 +  ~2) h (68) 
ft := 1 + t/# -3- sin ~b~ 

~ : = t / ~  - 1 

t / ix+ 1" 

As already mentioned, lull friction mobilization and the dilatancy flow rule are 
assumed. This means, that  the mean pressure increment cannot be determined by  
the field equations for continued equilibrium and the constitutive equations. For 
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existing such a pressure field, Ap, the integrabil i ty conditions 

O"Ap _ _  OZzIp (69) 
~r ~z ~z ~r 

must  hold. Eq. (69), (66) and (67) yield a single differential equat ion for the 
admissable displacement field ~(o), namely:  

Aa~ xv 4. Aa + (A2o 4- A21D 2) - 7  4- (Alo 4- Al1~O 2) q~ .o a 

4. (Aoo + Ao~o ~ 4. Ao2~O4 ) -'-~ --  0 

where 

(70) 

A 4  ~ (~2 

1 (1 + 3d 2) A3 = ~- 
A2o = --(1 4. 2d2); 

3 (1 + ~2); 
A io = T 

Aoo = --Alo;  

and 

'(~ +~))+ (2+ ~)~) 

Aol = - -Al l  ; Ao2 --  -LK2~ 

(71) 

1 :L 2 sin ~b~ _ tan2 (~/4 :b r 
1 ~= sin ~b~ 

(72) 

The differential Eq. (70) is of the :Fuchs type  [19] and satisfies the coefficient 
criterion for r ~ = 0 being a point  of definiteness. This means tha t  for 
finding a solution of Eq.  (70) the Frobenius method  can be used, i.e. we t r y  for 
solutions of the form:  

T(O) ---- 2 c~"+n; co 4= 0, (73) 
f t~0 

where ~ is to be determined.  

where 

Analytical Solution 

Inserting Eq.  (73) into Eq. (70) yields: 

~o(~) Co~O~-~ + ~o(~ + ~) c1~o~-~ + (~o(~ + 2) c2 + ~2(~.) Co) e ~-~ 

4- (q)o(~ 4- 3) Ca 4- q)2(c~ 4- 1) cl) e~ 1 (74) 

4- ._.~ (~bo(C~ + n 4- 4) c,~+4 4- ~52(~ 4- n 4- 2) Cn+~4-Ao2%) ~+n = O, 
n = 0  

~02(cr ) : =  (~ - -  1) (A21c~ 4- AI~). (76) 
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For  Co = 1 Eq. (74) yields the equat ion for determining c~: 

1 1 ~  2 
q~0(c~) = 0 +-> cr 1 = 3 ; c~2 = c~a ~ 1 ; cr - -  (77) 2 ~2 

I t  can be shown tha t  c~ x = 3 and ~2 = 1 belong to different undergroups.  The 
corresponding solutions are also the only solutions satisfying the boundness 
condition at  9 --~ 0. These solutions have the following form:  

oo 
c~.9 ~+2n (i = 1, 2) (78) ~(e)  = _Y " 

n~0 
with 

C01 --~ 1 ; 5:21 ~-- - - r  ) 

Co ~ =  1; c 2 2 = 0  (79) 

c~+,, = - ( r  + 2n + 2) ~ c2~+2 + Ao2C~)/q)o(O~ ~ + 2n @ 4). 

The general solution for  the field ~(~)) reads:  

~(e) = C~7"~(e) + C27'~(0)- (80) 

The constants  C~ and Cz have to be chosen in such a manner  t h a t  the remaining 
bounda ry  conditions at  the cylindrical edge of the sample are satisfied. 

B i f u r c a t i o n  Condi t ion  

Subst i tut ion f rom Eq. (55) and (64)a into the first boundary  condition Eq. (19)1 
yields : 

+ + - - 0 .  ( s l )  62~"(1) q- T 

F o r  comput ing  As~ at  ~ = 1 (Eq. (19)2), we first have to evaluate Ap. There is 

~ p  = J ~ -  do + - ~  d~ (S2) 

because the integrat ion constant  is obviously zero. The expressions ~Ap/@ and 
3 A p / ~  are given by  Eqs. (66) and (67). 

By  sett ing 

--(1 =~ sin ~b~) OAp _ # + t _ /I(~) COS 
~9 R 

follows 

0Ap = K_ 2 # + t/2(9) sin (1 4- 2 sin r 0~ R 

(66a) 

(67a) 

Wi th  the notat ions 

~1(~) : =  f /1(~ O) d~o; F2(~) := /2(D) /K2)~ 2 

F3(o) :=  (~ + 2~) a'  - (~ - ~) A 
9 

and 
(s4) 

(s5) 
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the remaining bounda ry  condition Eq. (19 h reads:  

F~(1) + F~(1) - -  F~(1) = 0. (86) 

B y  using the  representa t ion Eq. (80) the above bounda ry  conditions Eq.  (81) and  
(84) yield a homogeneous linear sys tem of equat ions for determining the  con- 
s tants  C~: 

d~C~ = 0 (i, k = 1, 2). (87) 

For  having non-tr ivial  solutions it mus t  be 

det (d~) = 0. (88) 

Eq.  (88) is called the  bifurcat ion condit ion and  represents a condition for deter- 
mining the bi furcat ion stress (t/#)~. 

For  calculating the  bifurcat ion s~ress (t /#)~ we first  consider the  solutions 
Eq.  (78): 

T~(o) = ~ + c~e 5 + c~Z,o 7 § -.- 
(78) 

T~(~):0 § 5§247 
Let  

T1 ~ ---- o s ; ~P2 ~ o ; ~p2~ = Q~+2~. (89) 

According to Eq. (81), (86) and (89), let d~ be the value of dlk for ~Pk ~ and c~i ~ for 
~p2n, i,e~ : 

8,1 = d~l § c~d~ ~ + c~lgx ~ + "'" 

dl~ = d~ + cJd~ 2 + c Jd l  ~ + --- 
(90) 

d2~ = d~i § c21d22 + c~IdP § "'" 

d~ ---- d~ § cJg~ ~ § cJd.~ ~ § ... 

where 

d~l = 1 § 7~ 2 §  2, 

d~2 = K 2, 
(91) 

d h  = ( 2 / K V :  ~ - -  1/2) (1 + 7~) + 2~ - -  1 ~ / ~  + ( K 2 / 4  - -  4 / ; : )  ~,  

d~  = 3(~ - -  2/Z) h + (K~/2 - -  2 /~i  ~ 

and 

d~ 2. = (1 + ~) (1 + (7 + 4n) ~ )  + K~, 
(92) 

d~ 2n = ao + a lp  § a2h § a3~, 

a o = 2(1 § n) ((1 § n) § (7 § l l n  + 4n "~ (~2)/K2)~e - -  (1 § (7 § 4n) (~)/2, 

a 1 ~ - 2 ,  

a2 : - -2(7  § 4n)/~ ~, 
(93) 

a 3 : K2/(4 + 2n) - -  (4 § 2n)/), 2. 
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The bifurcation condition Eq. (88) has been calculated for one, two or three 
terms approximation of the series expansion Eq. (78). Correspondingly, the bi- 
furcation condition yields an algebraic equation for determining (t/#)er of the 
first, second or third degree. Higher approximations have to be solved iteratively, 
which sometimes deteriorates the precision arising from the consideration of a 
higher term. 

Computational Results 

For calculating the bifurcation stresses of dry sand samples the stress-strain 
curve has been taken from biaxial tests, which undergo homogeneous deformation 
up to the limiting state [8], [9]. Fig. 4 shows the chosen stress-strain curve, which 
is given by the function: 

T(g) -- 0.0976 In (i -1- 30000g). (94) 

In the dilatancy rule Eq. (53) the constant is chosen equal to unity and r = 34~ 
The bifurcation stresses have been computed for 

0 ~ ill# ~ 1 and 0.1 ~ R/H =~ 2. (95) 

Only the first bifurcation mode is considered, i.e. m ---- 1 in Eq. (24), because 
tests with lubricated end plat tens are considered. 

sin Crn 
1.0 

0.8 

0.6 

0.~ / 
0.2 ! J 

I 
0 5 10 

g ['/.] 

:Fig. 4. ~Iardening rule 

In  Figs. 5 and 6 the bifurcation stress t/tt is plot ted over R/H for various 
states of strain and for/~/# ---- 0.5. These curves are approximately proportional 
to the corresponding shearing strain intensity g. This result is typical for the 
computational range of Eq. (95). Let  now ht be the tangent modulus of the con- 

4 Acta Mech. 32/i--3 
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s idered s t ress-s t ra in  curve :  

dT 2 928 
ht : = -  - -  (96) 

dg 1 + 30000g 

The above  p r o p e r t y  of Figs.  5 and  6 allows then  to assume, according to Eq.  (96), 
t h a t  # is p ropor t iona l  to h t for consistency.  

,IF0[ 
~  - -  

00sk: 

0 f 
0 0.I 0.5 1.0 1.5 2.0 

R I H  

Fig. 5. Lowest bifurcation load for compression,/~/tt = 0.5 

Figs.  7 and  8 show the  resul ts  for  m a x  6~ = 47 ~ (g = 6%) and  for var ious  
/~//~-ratios. 

F o r  hav ing  an es t imate  of the  ac tua l  b i furca t ion  stress for sand,  we have  
chosen the  pa r ame te r s  ht/tt and/~//~ in such a manner ,  t h a t  a t  an  adequa t e  low 
pressure  level the  l imi t  condi t ion  can be reached.  F o r  this  we have  assumed  t h a t  
for R / H  = 0.5 the  cri t ical  confining pressure  is for compress ion:  c;c,,r = 3 + 5 N /cm 2. 
F o r  f i t ing this  ht/tt = 0.1 N- lore  2 has been taken .  I n  Fig.  9 the  cr i t ical  s t ress  
ra t io  

(/ '  = t (97) 

is p lo t t ed  for var ious  s ta tes  of s t rain.  

Conclusions 

The centra l  resul t  of the  above  analysis  is t h a t  in the  t r i ax ia l  tes t  b i fu rca t ion  
is a lways  possible  in the  harden ing  regime. This means  t h a t  if the  confining 
pressure  exceeds a cr i t ical  value,  t hen  i t  is no t  possible  to  ca r ry  on a homogeneous  
deformat ion .  The b i furca t ion  stress genera l ly  increases b y  increasing the  R/H-  
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0.12 
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0.08 
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0.02 

0 0.1 0.5 1.0 I.S 2.0 
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Fig. 6. Lowest bifurcation load for extension,/~/y = 0.5 

ratio. The anisotropy of the sample in a deformed state, given in terms of #/tt 
affects the result in compression more than in extension. The bifurcation stress 
for extension is very small for R/H < 0.7. This means tha t  extension tests should 
not be carried out with slender samples. For having comparable results in com- 
pression and extension samples with R/H > 1 should be used (Fig. 9). 

Fig. 9 demonstrates the fact, tha t  a t  very low pressure levels the triaxial 
test  yields higher angles of friction. This proper ty  has often been misunderstood 
and has led to the assumption tha t  the angle of friction depends on the pressure 
level. As already mentioned, the global shear strength in triaxial tests appears  
to be lower than  the limiting one due to the inhomogeneous post-bifurcation 
stress field. 

Consequently the bifurcation analysis shows that  the triaxial test yields only 
then the limiting soil properties if 1) the samples ar not slender (R/H > 1) and 2) 
if the confining pressure is less than the corresponding critical value. 

4 ~ 
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-1.0 

0.1 1.5 2.0 
R / H  

Fig. 8. Lowes t  b i furca t ion  load for extens ion ,  g = 6% (qbrn ~ 47 ~ 
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Fig. 9. Critical stress ratios and corresponding confining pressures 
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