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Summary — Zusammenfassung

Bifurcation Analysis of the Triaxial Test on Sand Samples. A bifurcation analysis of
a strain hardening dilatant sand sample in the triaxial test is carried out. The analysis shows
that the triaxial test yields only then the limiting soil properties if 1) the sample is compact
enough and 2) if the confining pressure does not exceed a critical value depending on the soil
anisotropy and the slenderness of the sample.

Verzweigungsanalyse des Dreiachsialversuchs von Sandproben. Eine Verzweigungs-
analyse einer verfestigenden dilatanten Sandprobe im Dreiachsialversuch wurde durchgefithrt.
Die Analyse zeigt, dal der Dreiachsialversuch nur dann die Grenzeigenschaften des Erdstoffs
liefert, wenn 1) die Probe gedrungen genug ist und 2) wenn der Seitendruck nicht einen
kritischen Wert tiberschreitet, der von der Anisotropie des Materials und der Schlankheit der
Probe abhingt.

Intreduction

For selecting a yield criterion for soils, K. H. Roscoe et al. [1] have presented
the results of so-called ‘special’ triaxial compression and extension tests, where
very precise records of the failure patterns have been taken. This series has shown
that it is difficult to interpret the experimental data, due to the appreciable
bulging or necking of the samples. As an improvement of the standard triaxial
test, lubrication at the end plattens has been used. The experiment shows that it is
not possible to prevent inhomogeneous strain fields by refinements on the bound-
aries {2], [3]. These results are forcing us to suppose that a spontaneous homo-
geneity loss is possible. This possibility can be investigated by asking for bi-
furcation modes under ideal boundary conditions. If solutions of this type actually
exist, than it is reasonable to assume that imperfections can only intensify this
tendency.

The bifurcation analysis developed here is based mostly on the techniques of
similar investigations on metal plasticity problems [4], [5], [6]. The main differ-
ences to these works arise from the special constitutive properties valid for sand,
namely friction and dilatancy. The sand behaviour considered here is similar to
that of the ‘psammic material’ introduced by Th. Dietrich [7}, i.e. for sand at low
pressures. According to this model dilatancy is assumed as an internal constraint,
and the elasticity of the grains is very high. This model led to successful results for

3%

0001-5970,79/0032/0035/$04.00



36 I. Vardoulakis:

the shear band bifurcation in the biaxial test [8], [9], where the most unsafe
solution for the shear band corresponds to the limiting case of ‘psammic’ be-
haviour.

With the truly triaxial apparatus of Karlsruhe, M. Goldscheider [10] has
confirmed the validity of the Mohr-Coulomb limiting condition, which implies
that the angle of friction is not dependent on the mean principal stress (i.e. on
0a/01 and oy/03 for o3 < 0y << 0; << 0). We here assume the validity of the Mohr-
Coulomb yield condition for simplicity, and a unique hardening rule is taken for
both the triaxial compression and extension. The corresponding stress-strain
curve is taken from biaxial experiments which undergo homogeneous deformation
up to the peak [8], [9].

For determining the volumetric flow rule a simplified shear strength —
dilatancy relationship is used, which is a modification of Taylor’s formula [11], [12].
Concerning the deviatoric flow rule it can be shown that in the neighbourhood of
a triaxial compression or extension and for a smooth plastic potential no new
informations can be obtained.

Experimental Results

The failure modes observed in the triaxial test on dry sand samples with
lubricated end plattens are almost axisymmetric [2], [3]. Fig. 1a shows the sand
sample before the test. The force piston was clamped into the top cap to prevent
tilting of the specimens during a test. The end caps carry polished stainless steel
plates and a silicone grease to prevent boundary friction. They carry also a small
porous stone to keep the sample centred. To reduce the influence of weight the
height of the sample has been chosen unusually small (R/H = 0.6). Fig. 1b
demonstrates the failure pattern of a dense sample at an axial strain of —419,.
This mode is the most possible one at the triaxial compression test. At a strain
controlled test, bulging begins slowly to develop. Fig. 1¢ shows the alternative
pattern, which demonstrates the non-influence of weight into the failure mode.

Concerning the triaxial extension test with lubricated end plattens, H. Meissner
et al. [3] refer that necking is observed (cf. [1]).

Fig. 2 shows a typical stress-strain plot of a triaxial compression test of a dense
sample with medium grained sand from Karlsrubhe. To detect the failing of
homogeneity, the shape of the sample was observed by a theodolite, and the
sample diameters in various horizontal planes were measured (cf.[1]). The
maximum angle of friction ¢,, == 41° was observed at a state where the maximal
difference between two diameters of the sample was about 19, of the mean
diameter. For the same sand and the same porosity the maximum angle of
friction at a biaxial test is ¢,, = 47° (Fig. 2, [8], [9]). The difference between ¢,,
and ¢,, can be explained by the special stress distribution corresponding to the
bifurcation solution. Due to ¢,, <C ¢, it is reasonable to concentrate the bifur-
cation analysis in the hardening regime. The material softening is mostly over-
estimated in conventional tests due to various localizations [8], [9]. Fig. 1d
shows that in the compression test not only diffuse modes but also shear bands do
occur. It should be noted that first bulging takes place, and that the shear bands
develop at a later stage in the softening regime, as predicted by J. W. Rudnicki
and J. R. Rice [13].
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Fig. 1a. Failure patterns — Fig. 1b. Failure pattern at an axial
sample before the test strain of 419

Fig. 1c. Failure patterns — Fig. 1d. Failure patterns —
alternative mode bulging with post-failure shear bands
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Fig. 2. Stress-strain curves for I triaxial compression (n, = 36.4%,, ¢, = 20 N/cm?),
2 biaxial test (n, = 36.29, o, = 12 N/cm?)
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Formulation

" Let a homogeneous cylindrical dry sand sample in an undistorted config-
uration Cy be subjected to a smooth, quasi-static axisymmetric motion of
extension [14]. Call the resultant configuration C. Let C be the reference con-
figuration, B the radius and H the height of the sample in € (Fig. 3). Let 5, be
the confining pressure and w; the vertical displacement of the top of the sample.

O =-0¢

ﬁ

S R

Fig. 3. Current configuration ¢

ra——— - T

oy

Due to lubrication no shear stress can develop at the end caps. For any change of
the boundary conditions there is a new configuration ¢’. Let us employ a single
fixed cylindrical co-ordinate system with its z-axis along the axis of the sample
and put '

- ’ ’

x r z; 7
e | =16 |; n'|=16¢ 1)
g 2 z z'

for the cylindrical co-ordinates of a particle X in O and (', respectively. Here
only axisymmetric deformation modes will be considered, i.e. the tangential
displacement and the tangential derivative vanishes identically. Let u be the
radial and w the axial displacement, the displacement gradient reads:

[ ou on
“or E3
U
[“m‘] = 0 7 0 B (2)
ow ow
Lo el

where (-);; denotes the covariant derivative with respect to the co-ordinate x;. It
is assumed that u;; is infinitesimal everywhere in C, so that all terms of an order
higher than one in u;; can be neglected. Let

1 1
&ij = 5 (i 4= wp)s o= (Uig — w03 (3)

be the infinitesimal strain and rotation tensor.
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The Cauchy stress tensor in € denoted by oy;:

s 0 O
[o51=10 o O . (4)
0 0 o

For the considered axisymmetric motions of extension it is

g, < 0, = 0g = —o, < 0 for compression or 5
)

0, = 0y = —0, << g, < 0 for extension.

The stress in (" is suitably described in terms of the 1. Piola-Kirchhoff stress
tensor X;. 2, is defined by referring the nominal traction in ¢ on the oriented
surface element in the reference configuration C. Within a linear theory the
increment :
AL =2y — oy (6)
reads [15]:
ALy = Aoy + Ot — Ciryj» (7

where Ao;; is the corresponding Cauchy stress increment. 4o;; can be decomposed
into a constitutive part 4s;; and into a rotational part As;; (so-called Jauman
part):

AO‘H = AS,-,- —+ ZO‘H, (8)

Agii = WipGr; — Oy (9)

Strictly speaking is As;; the increment of the corrotated Cauchy stress tensor,
which can be used for expressing incremental constitutive laws [16]. Substitution
from Eq. (8) and (9) into Eq. (7) yields a decomposition of 42;; in a constitutive
and in a geometrical part:

AZH - ASi]‘ —{— A_Z” (10)
A_Zij = OOy — Culi; + GijEre- (11)

The field equations for continued equilibrium in ¢” can be expressed in terms of
42y [15], [16]:

A2 = 0. (12)
According to Eq. (10) and (11) the quantities
I = A_Zlﬂj; 111 .= 2237'”' (13)
yield
Jdw Jdo w
=222 r—w (*Jr*) (14)
oz or r
where
W= £ (ﬁ“i _ ﬁ) (13)
2 \ or oz
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Introducing the above equations into Eq. (12) yields:

O0Spy 08y, 1 . oy OW
o -+ o + ? (Apr — Asgg) + 2t ke 0
(17
%@+%ﬁg+iAsrz+2t(_aﬁ+2):0
or oz r or r

(cf. [18]).
Boundary Conditions

For the considered infinitesimal transition ¢ — C’ the confining pressure g,
is assumed to remain constant. The boundary conditions for the cylindrical edge
of the sample should express the fact, that a follower traction of constant intensity
acts always normal on it. Mathematically, this condition reads [17]:

forr = R: AXim; = 04y — Nl gy 5 (18)

where [n)T = {1,0, 0} is the boundary normal and d;; the Kronecker delta.
Substitution from Eq. (11) and (12) into (18) yields:

forr = R: A8y, = —2te,,; Asyy = 0. (19)

On the other hand, the ends of the sample are subject to frictionless constraints,
the axial displacement being there prescribed, i.e.:

forz = 0: A8y, = 05 w=70
and (20)
forz = H: Asp, = 0; w = w;.

Deformation Modes

As already mentioned, only axisymmetric deformation modes will be con-
sidered. First we define the so-called trivial mode, which is an axisymmetric
motion of extension:

o,
=

]

-
=

=10 . 21)

g
=y
3

[\

This mode obeys to the boundary conditions:

w(r, 0) = 0; w(r, H) = w;. (22)
For the non-trivial mode a non-linear displacement field is assumed.:
@ d(p) cos £
51=10 , (23)
W w(p) sin ¢
with
0 :%; C::mn%(m:l,&...). (24)
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This field satisfies the homogeneous boundary conditions:
w(r, 0) = w(r, H) = 0. (25)

The deformation mode considered here is a linear combination of the trivial and
the non-trivial solution:

[ [ 4
v|= | |+nl|? | (26)
w w w

where # > 0 is a suitably small real number. From Eq. (26) the strain field can be
derived; we write formally:

& 0 O—| &, O Ers
0 0 &] En 0 &
Denote that
& =8 =g¢ and & =g (28)
are constant in C.
Invariants

For formulating the subsequent constitutive relationships, the following
stress measures will be used:

1 1
P ::_Ukk:E(2Gr+Gz)

3
(29)
3 . .
T = ]/— G104 = |0p — a3l

2

where (*) denotes the deviator. Corresponding to the above definitions the
corresponding stress measures in " are defined in terms of the rotated Cauchy
stress tensor s;;:

! 1 ! 3 * *
P ::'Eskk; T = “/3 84835, (30)
where

S35 = Oy -+~ ASU. (31)
For As;; being infinitesimal everywhere in €' and
p=p+dp; T =144t (32)

from the above equation follows:

1
Ap = — (A8, + Asgy + Aszz)

[°M

(33)
Az — % As,r + Asgy — 25,4

For calculating the strain measures we introduce the following notations:

L . R x - C—
Iy, = g3 Joo 1= &358455 J3e 1= &by (34)
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Let & > &, > &, be the principal values of a strain deviator. It is convenient to
write [10]:

& =D cos «,; & = —D cos (/3 + x.); & = —D cos (7/3 — «), (35)

where
cos 30, 1= 6 JofT3%; D= (-2— J2€)1/ 2. (36)
With
g3 < &5 = & for compression or
. 37)
& = & < g for extension
from Eq. (35) follows
x, = /3 or0, (38)

correspondingly. In addition to the above definitions we introduce the angle of
orientation § of the principal axes of strain in the (r, z)-plane:

tan 2§ 1= —2z (39)

Erp T €

By using these definitions it can be shown that the following representation holds:

. }/—2— ]
VJQE " 2 |cos 28 sin (/3 + &) ) (40)

By introducing the so-called Lode factor

Lo:=22"%_ 1= V3 cot (n/3 + &) (41)
& — &
and taking into account that, according to Eq. (27), as well (g, — 545) a5 &,, are
proportional to the small parameter », follows that for

p—=>0:x,—(@/30r0) and f—0. (42)

This argument allows to introduce

yi |5 e e — e 43)

as a measure for the infinitesimal shearing strain intensity.

At least it should be noted that near to the triaxial compression or extension
the increment of the third stress invariant is proportional to that of the second
one. This means that introducing the third stress invariant no new information
can be expected.

Constitutive Equations

We assume that the Mohr-Coulomb friction law is valid. Let ¢,, be the mobi-
lized angle of friction
Or — %
oy + 0, )

sin ¢, 1= (44)
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sin ¢,, obeys to a strain hardening rule (Fig. 4):
sin ¢,, = T(g), (45)

where T'(+) is a hardening function and ¢ a finite Eulerian measure of the shearing
strain intensity of the deformation measured from the undistorted configuration
Cy. Introducing [1]

T

sin l[)ly = - (46)
3p
from Eq. (6) and (44) follows:
. 2 sin ¢
sin ¥, T 47)

where throughout in this paper, if two signs, the upper holds for compression and
the lower for extension.
For the increments Eq. (46) yields:

Av = —34p sin ¢, — 3pd sin @,. 48)
Let h be the hardening rate (tangent modulus), defined as follows:
Asin ¢, = hy, (49)

where Ag = y is used. For writing Eq. (48) explicitly in terms of the stress and
strain increments, we have to distinguish between a continuation of a triaxial
compression or extension, i.e. we assume that for C — ¢’

Err > &y OT &y < &y
and (50)
M, <0 or Aiy>0

it 0y — (' is a triaxial compression or extension. By using these assumptions,
Eq. (48) yields:

AST?‘ _f_ ASS& - 2Aszz = :}:GAP sin '!}c Ii: 4¢ (577 - gzz)' (51)

sin i,
Note that ¢:= % (0. — 0,) is positive or negative if respectively the current con-

figuration corresponds to a triaxial compression or extension.

The increment of mean pressure Ap is regarded as a statically indeterminate
quantity. This is consistent with the assumption that the strain field obeys to the
rule of dilatancy, i.e. we assume that

Ile = sin P Vs (52)

where ¢, is an angle of dilatancy. Between ¢, and #, according to D. Taylor’s [11]
proposition, some dependency can be assumed. A simple modification of Taylor’s
formula, proposed by I. Vardoulakis [12], reads:

sin ¢, = const (sin ¢, — sin ¢,), (53)

where ¢, corresponds to the critical state.
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For the remaining shear stress increments, following Biot’s proposition [18] we
write:
ASW — ASgg = 2,&(8,7 — 600) (54)

As;, = 2ue,,. (55)

& and u are two generally different shear moduli, which are at this moment no
more restricted. It is clear that

&y — &gg = Erp — Egp; &y = Epy, (56)

so that # and u correspond to nnloading. Substitution from Eq. (54) into Eq. (51)
yields:
. 2 h
Aspp = (1 T sin ) Ap + filerr — 209) + 5 ¢ — (&rr — &)
, ’ (57)
A'gzz:(li25in¢)dpq:_t (&rr — &2)-
sin g,
It can be easily seen that Eq. (57) is consistent to Eq. (50), if for the considered
deformation mode Eq. (27) the parameter % is chosen suitably small and the

analysis is concentrated in the hardening regime (A > 0).

Internal Constraint

We discuss now the rule of dilatancy Eq. (52). Substitution from Eq. (34) and
(43) into Eq. (52) yields:

&rr + €99 + & = £ sin ll)s(é‘,-,- I azz)5 (58)

where use of Eq. (50) has been made. Assuming that the trivial mode obeys to the
internal constraint, Eq. (68) also holds for the non-trivial mode, then

o — (P45 (4 ) o) (59)

where
8% 1= tan? (n/4 T ¢./2). (60)

On the other hand, Eq. (23) yields:

cos ; By :% W cos { 61)

B 1
cos C; = —
¢ By = —

@I@x

where (-) = gd— From Eq. (61) and (59) follows at least a restriction for the
non-trivial mode:

= K (# £  (L+) ) (62)
2 e

K::mn%(m:l,Z,...). (63)
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With Eq. (62) @ can be eliminated from Eq. (61), there is

- - 14/, %

S,T—Sgng(u —--;‘) COSC

. 1 y 1 4

Err — By = 5 (14 0% (u +;%) cos (64)
90 — X g (segr o 1 1 P T RAR
tre = — () +—2‘( ? 14 6% — K%?) —) sin{
%z_LKJ&r+1(+m4~Ji 14 #) + K7 ) sinc.

R 2 \2 ¢

We denote here that the chosen kinematic field for the non-trivial mode satisfies
the boundary conditions of the ends of the sample identically:

forz =0, H: &y = 03 w=0. (65)

Field Equations

The solution of the considered bifurcation problem consists of determining
the non-trivial mode Eq. (23) in such a manner that the field equations for con-
tinued equilibrium, the constitutive equations and the boundary conditions are
satisfied. Substitution from Eq. (54), (55) and (57) into Eq. (17) and use of the
representation Eq. (64) for the non-trivial mode yields:

—(1F sin g,) 22 — ”*T( — o ghy 4 (p— 3 (0 B S

R? 4
(u+—u+w—h+ ))mu
2 e
(1i2smp,,>~—~—K— < %(1+3
t(-Fatm - L e
( 14 0%) — (2h + &) Kw) 3;-) sin ¢
where )
g P
14t
S/ ;.1 h
him ek he= kg g (68)
Lt —1
= tu + 1

As already mentioned, full friction mobilization and the dilatancy flow rule are
assumed. This means, that the mean pressure increment cannot be determined by
the field equations for continued equilibrium and the constitutive equations. For
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existing such a pressure field, Ap, the integrability conditions

PAp  Pdp
rée | ozér

(69)
must hold. Eq. (69), (66) and (67) yield a single differential equation for the

admissable displacement field 4(g), namely:

Arrr Y

Ag"Y + Ay D (g + A2d) S (Aye + Augd) S
e @ Q
A (70)
+ (dgo + A0192 4 Agy0t) ‘zT =0
where
A, =62
Ay = % (1 & 302)
Agg = —(1 4 26%); Ay = —K?'(E + 23— 8% 4 2(2 4 23 ﬁ) (71)
A= T4 #): A= R (s (p— 5 (4 0) + @+ )
Ao = —4s0; Ay = —Ayy; Age = ’;Kzf
and
jro— LEZEMGS e (/4 4 $,/2). (72)

1 F siny,

The differential Eq. (70) is of the Fuchs type [19] and satisfies the coefficient
criterion for ¢ = 0; ¢ = 0 being a point of definiteness. This means that for
finding a solution of Eq. (70) the Frobenius method can be used, i.e. we try for
solutions of the form:

Plo) = X eng™™; ¢+ 0, (73)
n=0
where « is to be determined.
Analytical Solution

Inserting Eq. (73) into Eq. (70) yields:
Do(x) oot + Dolox + 1) 0% + (@0(0‘ + 2) ¢y + Dy(x) Co) o2
+ (Qo(“ +3)eg + Dol +- 1) Cl) ! (74)

£+ 3 (Polox + 1 A4 4) Cung + Dol + 7 + 2) e+ Aney) 0" = 0,
n=0
where

Bofs) i= (x — 3) (x — 1) (az(x + -12- 1+ 52)) (75)

Dy(o) 1= (o — 1) (A& + Ayy). (76)
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For ¢y = 1 Eq. (74) yields the equation for determining o:

114 68
Do(x) = 0 <> x, = 3; oy = 03 = 1; %= e
It can be shown that «; = 3 and «, = 1 belong to different undergroups. The
corresponding solutions are also the only solutions satisfying the boundness

condition at ¢ = 0. These solutions have the following form:

w

Pile) = X chyont™ (r=12) (78)

with B
el = 1; ' = —Dy(3)/Dy(5)

o =1; 2 =0 (79)
Chnis = ~((152(%7 + 21 - 2) chos + A02C§n)/q)0(‘xi + 2n -+ 4).
The general solution for the field 4(g) reads:
o) = C1¥ile) + Ca¥alo)- (80)
The constants C, and C, have to be chosen in such a manner that the remaining
boundary conditions at the cylindrical edge of the sample are satisfied.

Bifurcation Condition

Substitution from Eq. (55) and (64), into the first boundary condition Eq. (19),
yields:

8247 (1) + % (1462 8'(1) — (% (1 -+ 62 — K2) a(1) = 0. (81)
For computing 4s,, at p = 1 (Eq. (19);), we first have to evaluate Ap. There is

faApd +f3Ap ir (82)

because the integration constant is obviously zero. The expressions 04p/de and
odplot are given by Eqgs. (66) and (67).

By setting
— (1 sin ) T2 = 2t = (o) cos ¢ (662)
(1 4 2 sin z{;‘,) C = K24’ + folo)sing (67a)
follows
(1 F sin¢,) dp = —’&—;——g (j file) do + %) cos {. (83)
With the notations
= [ hle)de;  Fale) := falo)/ K?22 (84)

and

Fylo):= (o + 2y 8" — (p — k) (85)

NN
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the remaining boundary condition Eq. (19), reads:
F\(1) + Fy(1) — F5(1) = 0. (86)

By using the representation Eq. (80) the above boundary conditions Eq. (81) and
(84) yield a homogeneous linear system of equations for determining the con-
stants C;:

duCr =10 (2, kE=1,2). (87)

For having non-trivial solutions it must be
det (dy) = 0. (88)

Eq. (88) is called the bifurcation condition and represents a condition for deter-
mining the bifurcation stress (t/u),,.
For calculating the bifurcation stress (¢/u),, we first comsider the solutions
Eq. (78):
Yi(o) = ¢° + c*0® + ¢4t0™ - -+~

(78)
(o) =0 + 4?05 4 cf™ + -+

Let
Wo — 93; e o; Pen Q3+2n_ (89)

According to Eq. (81), (86) and (89), let d% be the value of d;, for ¥,° and d,;*" for
Yo e, :
dy = dYy + ¢'dy? + eldyt + -

dyy = dip + e?d? + 062J14 + e

_ _ (90)
dyy = dyy + e'dy* + of'dyt + -
dyp = dgz + 642522 -+ 662d—24 e
where
diy = 1+ 78 + K2,
2" = K2, :
) . (91)
dyy = (2/K%22 — 1/2) (1 4 18%) + 24 — 14h)2% (K24 — 4/22) &,
dSy = 3(1 — 2/2%) b + (K?/2 — 2/72) &
and
d = (1 14 (7 + 4n) 6%) + K2,
h <+n)(+(A+n) )+ 02
do? = ag + oy + agh + asé,
ag = 2(1 4+ n) (1 + n) + (7 + 1ln + 4n?) 6%)/K%2 — (L+ (7 4+ 4n) 63)2,
a = 2,
(93)

ay = —2(7 4 4n)/22,
ay = K*/(4 + 2n) — (4 + 2m)/22,
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The bifurcation condition Eq. (88) has been calculated for one, two or three
terms approximation of the series expansion Eq. (78). Correspondingly, the bi-
furcation condition yields an algebraic equation for determining (#/u),, of the
first, second or third degree. Higher approximations have to be solved iteratively,
which sometimes deteriorates the precision arising from the consideration of a
higher term.

Computational Results

For calculating the bifurcation stresses of dry sand samples the stress-strain
curve has been taken from biaxial tests, which undergo homogeneous deformation
up to the limiting state [8], [9]. Fig. 4 shows the chosen stress-strain curve, which
is given by the function:

T(g) = 0.0976 In (1 -+ 30000g). (94)

In the dilatancy rule Eq. (53) the constant is chosen equal to unity and ¢, = 34°.
The bifurcation stresses have been computed for

0= jg/u<1l and 0.1ZLR/HZ2. (95)
Only the first bifurcation mode is considered, i.e. m = 1 in Eq. (24), because

tests with lubricated end plattens are considered.

sin ¢
1.0

0.8

0.6 =

0.4

0.2

g l%%]

Fig. 4. Hardening rule

In Figs. 5 and 6 the bifurcation stress #/u is plotted over R/H for various
states of strain and for jifu = 0.5. These curves are approximately proportional
to the corresponding shearing strain intensity g. This result is typical for the
computational range of Eq. (95). Let now &; be the tangent modulus of the con-

4 Acta Mech. 32/1-3



50 1. Vardoulakis:

sidered stress-strain curve:
a7 2928
bt = — = ————— | (96
"7 g T 1+ 30000¢ (96)
The above property of Figs. 5 and 6 allows then to assume, according to Eq. (96),
that u is proportional to A, for consistency.

t/n

&
0.10 |
\

— 0,5%
0
0 0.1 05 10 15 2.0
R/H

Fig. 5. Lowest bifurcation load for compression, 4 /ju = 0.5

Figs. 7 and 8 show the results for max ¢,, = 47° (g = 6%,) and for various
fifp-ratios.

For having an estimate of the actual bifurcation stress for sand, we have
chosen the parameters A;/p and j/u in such a manner, that at an adequate low
pressure level the limit condition can be reached. For this we have assumed that
for B/H = 0.5 the critical confining pressure is for compression: ¢, ,, =3 +— 5 N/em?
For fiting this h;/u = 0.1 N~tcm? has been taken. In Fig. 9 the critical stress

ratio
<_'5_) — (U) (97)
S cr GT + GZ cr '

is plotted for various states of strain.

Conelusions

The central result of the above analysis is that in the triaxial test bifurcation
is always possible in the hardening regime. This means that if the confining
pressure exceeds a critical value, then it is not possible to carry on a homogeneous
deformation. The bifurcation stress generally increases by increasing the R/H-
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ratio. The anisotropy of the sample in a deformed state, given in terms of j/u
affects the result in compression more than in extension. The bifurcation stress
for extension is very small for B/H < 0.7. This means that extension tests should
not be carried ont with slender samples. For having comparable results in com-
pression and extension samples with R/H > 1 should be used (Fig. 9).

Fig. 9 demonstrates the fact, that at very low pressure levels the triaxial
test yields higher angles of friction. This property has often been misunderstood
and has led to the assumption that the angle of friction depends on the pressure
level. As already mentioned, the global shear strength in triaxial tests appears
to be lower than the limiting one due to the inhomogeneous post-bifurcation
stress field.

Consequently the bifurcation analysis shows that the triaxial test yields only
then the limiting soil properties if 1) the samples ar not slender (R/H > 1) and 2)
if the confining pressure is less than the corresponding critical value,

4
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