
Acta Mechanica 140, 57 64 (2000) 
ACTA MECHANICA 
�9 Springer-Verlag 2000 

Magnetohydrodynamic flow in a rectangular duct 
with suction and injection 
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Summary. The effects of suction or injection on an incompressible laminar flow in a rectangular duct 
with nonconducting walls in the presence of an imposed transverse magnetic field are examined. Analyti- 
cal solutions are obtained for the velocity and magnetic field, which are useful for obtaining the current 
density and electric field strength. 

1 Introduction 

The increasing number of technical applications using magnetohydrodynamic (MHD) effects 

has made it desirable to extend many of the available hydrodynamic solutions to include the 
effects of magnetic fields for those cases when the viscous fluid is electrically conducting. For 
example, liquid-metal MHDs take their roots in conventional hydrodynamics of incompres- 
sible media, which become important in the metallurgical industry, nuclear reactor sodium 
cooling system, energy storage and electrical power generation [1], [3]. The greatest advantage 

of induction-type pumps over other types of M H D  devices is the absence of electrodes [4]. 
Induction pumps have been used to pump coolents in nuclear reactors. These designs are also 
being considered in M H D  power generation [5]. The basic equations of incompressible MHD 
are nonlinear. But there are many interesting cases where the equations become linear in 
terms of the unknown quantities and may be solved without difficulty. These cases constitute 
a somewhat restricted version of MHD from which nonlinear phenomena are excluded. They 
do involve the mutual interaction of the magnetic and velocity fields, but only in a degenerate 
way. Linear M H D  permits exact solutions and adopts the approximations that the density 

and transport properties be constant. The boundary conditions are linear in terms of the 
unknowns. No fluid is incompressible, but all may be treated as such whenever the pressure 
changes are small in comparison with the bulk modulus. Sparrow et al. [6] linearized the iner- 

tia terms by introducing a stretched coordinate in the flow direction and obtained a closed- 
form solution for hydrodynamic flows. Using this method, Snyder [7] has analyzed M H D  
flows in the entrance region of a rectangular channel and provided a good bibliography of the 
earlier work. Chen and Chen [8] and Hwang [9] have considered the entry flow with arbitrary 
inlet velocity profile. These studies of entry flow in channels are needed for operational M H D  
devices like power generators and M H D  accelerators. Shercliff [10] has examined the steady 
motion of an electrically conducting, viscous fluid along channels in the presence of an 
imposed transverse magnetic field when the walls do not conduct currents. It is a case of con- 
siderable practical interest because of the utility of induction flow-meters, which rely on the 
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Fig. 1. A cross-section of rectangu- 
lar duct normal to the flow direction 
(z-axis) 

generation of a measurable potential difference in the fluid in a direction perpendicular to the 
motion and to the magnetic field. Moreover laminar flow occurs more readily under a mag- 
netic field since turbulence tends to be damped by eddy currents. The equations which deter- 

mine the velocity profile, induced currents and field are derived and solved exactly in the case 
of a rectangular channel. Gold [11] has obtained an exact solution for incompressible laminar 
flows in circular pipes with nonconducting walls and transverse magnetic fields. 

In this paper, the effects of suction or injection on the flow rate are examined when an 
electrically conducting liquid flows in a rectangular duct in the presence of an imposed trans- 

verse magnetic field. The porous walls are assumed to be nonconducting and at right angles 
to the magnetic fiels, and suction is applied at one wall and injection at the other wall (see 
Fig. 1). Analytical solutions have been obtained for the velocity and the magnetic field, which 
are useful for obtaining the current density and the electric field strength. These analytical 
solutions can provide not only a check against the finite difference/finite element model, but 
also a means by which the effect of a parameter change can be readily gauged, which is useful 
in understanding the flow phenomena. 

2 Basic equations 

The motion of an electrically conducting fluid in the presence of a magnetic field obeys the 
well known equations of MHD. The fluid is treated as a continuum, and the classical results 
of fluid dynamics and electrodynamics are combined to express the phenomenon. For the 
steady flow of a viscous, incompressible fluid with constant properties, the full M H D  system 
can be reduced to just two equations involving the velocity, pressure, and magnetic field, i.e., 
the modified Navier-Stokes equation and the induction equation, along with the solenoidal 
conditions on the two vector quantities: 

(g.~7) f i _  (fi.~7) g : 1 ~72fi, 
o- e / z  e 

(1) 

(2) 
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v . ~  = 0, (3) 

v . / ?  = 0, (4) 

where 0, p,/z,/~r 17, and ~r are the fluid density, pressure, viscosity, permeability, velocity, and 

electrical conductivity, respectively, a n d / t  is the magnetic field strength. 
In the present problem conditions are invariant in the flow direction (z-direction), apart 

from a pressure gradient. Differentiating Eq. (1) with respect to z shows that V(~p/Oz) 
vanishes. Hence 8p/Oz is a constant. The main characteristics of such flows that need to be 
known are the volumetric flow rate through the duct for a given pressure gradient and mag- 

netic field and the stability of the flow. We consider the steady laminar flow of an incompres- 
sible electrically conducting viscous fluid in a channel with rectangular cross-section as shown 
in Fig. 1. The walls are located at x = :J:a and y = :t:b. A constant magnetic field, H0 is 

applied parallel to the z-axis. Fluids are injected with a constant velocity, u0, at x = - a  and 
sucked with the same velocity at x = a. The components of velocity and magnetic field are 

taken in the form: 

-x  = ~ o ,  . ~  = 0 ,  .~  = . ~ ( x ,  y) (5) 

Hx = Ho, H~ = O, ~ = H~(z, y) .  (6) 

Substituting these expressions into Eq. (1), we obtain 

Ox ,~H~ = 0, (7) 

@oy '~Hz~g~j = ~ , (s) 

0~0 oz - o~ + ,~H0 ~ + ,  \ 0 ~  + 9-~-~ ) ' (9) 

From Eqs. (7)-  (9) we can write 

p(z, y, z) = -- ~Iz, eHz 2 ~- ]~lZ ~- ]g2, (lo) 

and 

Op constant kl -k l t  . (11) 
Oz 

The components of velocity and the magnetic field given in Eqs. (5) and (6) are identically 
satisfied by the continuity equation (3) and Maxwell's equation (4), while Eq. (2) becomes 

OH~ c%,~ 1 /'O2H~ a2Hz'~ (12) 

Equations (7)-(12) define the variables p(x, y, z), y2(x, y) and H,(x, y) subject to the follow- 
ing homogeneous boundary conditions: There is no fluid slip at the walls, hence 

~ 'z=0  at x = + a  and y = •  (13) 

while the assumption of non-conducting walls implies that 

H ~ = 0  at x = •  and y=-t=b. (14) 
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When Eqs. (7)-(14)  have been solved for p, z/~, and H~, we obtain the current density J and 
the electric field strength,/~ from Amp6res law and Ohm's  law, respectively: 

1 0 t s  1 0It~ 
E,~ - E v - ~ ,~Ho - uoH~ E~ = 0 (15) 

cr~ Oy ' o-~ Ox ' 

OB~ OH~ 
L -  Oy  ' JY - o z  ' j z  = o .  (16) 

Defining u = z/~/< z/z > and h = H~/( t~Ho)  in Eqs. (9)-(14),  we can write the following 
eqnations in nondimensional form: 

Ha 2 Oh 02z/ cq2z/ 
n Oz/ K + - - - -  (17) 

P R Oh Oz/ 02h 02h (18) 

Here { z y b # = - ;  r ? = - ;  ) , = -  is the aspect ratio, v = -  is the kinematic viscosity, a a a 

R ~ -  a < uz > is the Reynolds number,  R~  = auo is the suction Reynolds number,  
qO %) 

Ha = t~Hoa a~/~ is the Har tmann  number,  P ~  = ~ p ~ v  is the magnetic Prandtl  number,  

k~a 2 
and K - is the interaction parameter.  

# < Z/z > 

The average velocity is 

1// 
< z/~ > = ~ z/~ dx dy. 

- a  b 

(19) 

3 Analytical solution 

We assume the solution of  the problem in the form 

. = E ..~(~) co~ ( ~ v ) ,  (20) 
rz=O 

h -- ~ h~(~) cos ( ~ v ) ,  (21) 

where o< = (2n + 1)rc/(2~). 

It should be noted that the nondimensional components  of velocity (z/) and magnetic field 
(h) in Eqs. (20) and (21) are expressed as Fourier series in r/, with unknown coefficients 
functions of  ~, for obtaining the solution of the coupled linear partial differential equations 
(17) and (18). Equations (20) and (21) satisfy the boundary conditions at r] = :cA. It will be 
more convenient for determining the unknown coefficients ~,~ (~) and h,~ (~) from Eqs. (17) and 
(18), by expressing the constant term, K,  in Eq. (17) as Fourier series in fT. Without  loss of  
generality, we can replace the constant term, K,  in Eq. (17) by multiplying it with unity and 
expressing the unity as Fourier series in r/. The constant term, K,  in Eq. (17) can be written in 
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the form 

K = K • Unity = K x f i  k~ cos (a~r]), 
n = 0  

(22) 

where k~ 4( 1)~/[7c(2n + i)]. 
Substituting the relations (20)-(22)  in Eqs. (17)-(19),  and equating the coefficients of  

cos (crofT), we obtain the following set of  ordinary differential equations (n = 0 to ec) with 

boundary  conditions: 

H a  2 
(D ~ - R~D - ~ J )  ~ + ~ D h ~  + Kk~ = 0, (23) 

P~.~Du~ + (D 2 - P, .~R~D - (~2) h~ = O, (24) 

.~ 0, h~ 0 at ~ = - t - 1 ,  (25) 

where D = d/d~. 
The solution of Eqs. (23) -  (25) can be written in the form 

HaS O~n2 i=1  

(26) 

(27) 

where 

(28) 

m,~i (i = 1 to 4) are the real roots of  the quartic equation 

rnn ~ - (1 + Prm) Resmn 3 - (2c~n ~ - P~,~Ra~ + Ha2) mn 2 + (1 + P~,~) R~,a,~2rnn + aa  4 = 0, 

(29) 

and u~i(i i to 4) are obtained by solving Eqs. (30) (33): 

4 

E cosh (m~i) uni + 1 = 0, (30) 
i=1  

4 

E sinh (m~,i) u,,~i = O, (31) 
i = 1  

4 

h~i cosh (m~i) u~i = 0, (32) 
i = 1  

4 

E h~i sinh (m~)  u~i = 0. (33) 
i=1  

The flow rate, Q, is defined by 

] '  4a3bkl _ 4a% Op (34) 
Q =  uz dx dy = 4ab < uz > - # K  # K  Oz ' 

- a  -b  

which is linearly varying with the pressure gradient. 
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From the definition, the average value of the nondimensional velocity, ~, becomes unity, i.e., 

< p > : l ,  

which implies that 

[13 s ~ni sinh (mT~i)] -1 
K=A 2 +~T4 ,~=0 i=i 

(3s) 

(36) 

4 Results and discussion 

The effects of suction or injection in the steady motion of an electrically conducting, viscous 
fluid in a rectangular duct in the presence of an imposed transverse magnetic field are exam- 
ined. The porous walls are assumed to be nonconducting and at right angles to the magnetic 
field, and suction is applied at one wall and injection at the other wall. The main characteris- 
tics of such flows that need to be known are: the volumetric flow rate, Q, through the duct for 
given pressure gradient and magnetic field and the stability of the flow. When all walls are 
non-conducting and the Hartmann number H a  >> 1, the velocity profile in the boundary 
layer on the walls has no point of infiexion, and the flow in such a duct is probably stabilized 
by the magnetic field [12], [13]. Analytical solutions for the velocity and magnetic field have 
been obtained by using Eqs. (26) and (27) in Eqs. (20) and (21). The flow rate, Q, defined in 
Eq. (34) is found to be linearly varying with the constant pressure gradient along the flow 
direction (z-direction). The interaction parameter of the pressure gradient and mean velocity 
component, K, in Eq. (36) is a function of the Hartmann number (Ha) ,  the magnetic Prandtl 
number (P~-0, the suction Reynolds number (R~), and the aspect ratio (A). The current den- 
sity (J) and the electric field strength @) can be obtained directly by using the analytical solu- 
tions for the velocity and magnetic fields in Eqs. (15) and (16). A convergence study has been 
made on the number of terms in the present series solutions, and the results have been corn- 
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Fig. 2. Variation of K with Ha (l~s = O) 
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Table 1. Variation of the interaction parameter (K) of the pressure gradient and average velocity with 
the Hartmann number (Ha) for different values of R~s and A. (P,~ = 0.1) 

Ha X=0.5 A = I . 0  A=1.5  

Res = 0 Res = 10 Res = 0 Res = 10 Res = 0 IRes = 10 

0 17.49 23.75 7.114 15.34 5.108 13.61 
1 17.58 23.76 7.278 15.25 5.299 13.47 
2 17.84 23.78 7.740 15.01 5.824 13.09 
3 18.25 23.82 8.425 14.71 6.581 12.61 
4 18.79 23.92 9.259 14.46 7.473 12.21 
5 19.45 24.08 10.18 14.37 8.439 12.05 

10 23.75 26.25 15.34 16.85 13.61 14.79 
20 34.23 35.13 26.10 26.61 24.17 24.59 
30 45.24 45.71 36.82 37.11 34.67 34.91 
40 56.31 56.61 47.47 47.66 45.11 45.28 
50 67.34 67.56 58.06 58.20 55.51 55.64 

100 121.8 121.9 110.4 110.5 107.1 107.2 

puted by considering the first 75 terms in the series solution. The accuracy of  the present ana- 

lysis is examined with the experimental  data  of  Ha r tmann  and Lazarus for a square channel 

available in Ref. [10]. The analytical  results of  K with H a  for R ~  = 0, shown in Fig. 2, com- 

pare well with the existing test results. When  the suction Reynolds number  R~s = 0, the values 

of  K are found to be independent  of  the magnetic  Prandt l  number  ( P ~ ) ,  which is evident 

from the real roots  of  the quatr ic  equat ion (29). Table 1 gives the var ia t ion of  K with H a  for 

the specified values of  R~s = 10, P ~  = 0.1, and A = 0.5, 1 and 1.5. It is noted that  the interac- 

t ion parameter  (K) increases with the Har tmann  number  (Ha) and decreases with the aspect 

ratio (A) for the specified values of  P ~  = 0.1 and R ~  = 10. The closed-form solut ion 

obta ined for the problem can be used to generate contour  plots for the velocity, magnetic  

field, electric field and current  density profiles, for the specified values of  Ha ,  R~,  P ~  and A, 

without  difficulty. 
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