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Summary 

This paper discusses the Kelvin-Helmholtz instability for the interface between a 
viscous and an inviscid fluid. The incipient boundary layer is modelled as a two dimensional 
viscous interface. 

1. Introduction 

Interracial mechanics and surface tension have been described using varied 
ideas which we mention. Dussan [1] and Joseph [2] investigated the boundary 
between two fluids and introduced surface tension directly by assuming a specific 
form for the stress discontinuity at the fluid interface. Jenkins and Barrat t  [3], [4], 
[5] developed a virtual work approach and were necessarily confined to static 
problems although this was not a severe restriction as far as they were concerned 
since their interest lay in the applicability of their ideas to the theory of liquid 
crystals and related director type materials. 

Originally Seriven [6] and later Gurtin and Murdoch [7], Moeckel [8] and 
Lindsay and Straughan [9] have considered an approach in which the interface is 
regarded as a two dimensional continuum. Recently confusion has arisen as to the 
relationship between the work of [7], [8], [9] and that  of Green, Laws and Naghdi 
[10] and Green and Naghdi [ l l ]  where a fluid sheet theory is derived treating the 
sheet as a two dimensional continuum to each point of which is attached one or 
more directors. Much of the confusion has arisen from the mistaken belief that  the 
director theory could not take account of the fluids either side of it. I t  is clear from 
Naghdi [12] that  this is not the case. Since [7], [8] and [9] are membrane theories, 
they are embedded in any director theory. In  fact, early work of Green, Naghdi 
and Wainwright [17] on the Cosserat surface contained a section in w:hich they 
dealt with the membrane theory unambiguously using invariance of the energy 
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equation and in the process include terms which describe the effect of the bulk 
continua either side of the membrane.  

In  order to explain the effect of viscosity of the bulk fluids on the interface 
itself we consider the "Kelvin-Helmholtz"  instability. This is the phenomenon 
by  which movement  of one layer of fluid over another can, according to linear 
theory, cause instabilities. Of course, non-linear effects control these instabilities. 
The case of two incompressible inviscid fluids has been considered by Chandra- 
sekhar [13]. For technical simplification we shall investigate the situation in which 
both fluids are incompressible bu t  only the denser fluids is viscous. However, the 
analysis makes it clear how to introduce viscosity into the less dense fluid and the 
interface itself. 

Miles [14] discusses a similar problem for the flow of a light inviscid fluid over 

a dense viscous fluid and comes to the conclusion that,  for gratvi ty  waves, the in- 
clusion of dominant  viscous terms has little effect. His analysis is based on an 
asymptot ic  discussion of the complete Orr-Sommerfeld equation. 

In  conclusion, we find that  the presence of viscosity reduces the destabilising 
velocity. In  fact 

( i'll / 1/2 
Wcritica 1 = i (with viscosity) \ ~ 1 - - ' ~ 2 /  Vcritical (without viscosity) 

where ~a, o2 are the densities of the upper and lower fluids respectively. When the 
inviscid fluid is "light",  it is clear tha t  (~2/~a + ~2)~-1 and so we find tha t  
viscosity has little effect in agreement with Miles. 

2. Basic Equations and Notation 

Using standard methods of Coninuum Mechanics, Moeckel [8] has derived 
field equation expressing conservation of mass, momentum and energy in a 
material  surface in the respective forms 

~' + 7( v \  - u . b f )  = o, 

7V k - -  $I'." = [tk~n~] + 7] k, 

S k. : S~"x  k 

y~ + q,~ - -  s k ~ v k , ,  - -  y r  = - - [Q~ni  + t k i n ~ ( V  i - -  vi)], 

(2.1) 

where y is the surface density, 1/2 b, ~ is the mean curvature of the surface, S k~ 
is the surface stress, e is the specific internal surface energy, q~ is the surface heat 
f lux vector, # is the surface body force, r is the surface heat supply, V i = unn ~ 
+ V " x  ~ is the surface velocity and [~] = ~+ - -  ~- denotes the jump in a quanti ty 
across the interface. Further,  the field equations describing the bulk media either 
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side of the interface or material surface are in the usual notation 

+ ~vi~ = o, 

,k ~F i ---- 0, 

t i~ = t k~, (2.2) 

where the use of a capital indicates that we are dealing with a bulk quantity. In  

Eqs. (2.2) the subscript comma indicates covariant differentiation with respect 

to spatial coordinates ~ whereas in (2.1) the subscript comma indicates covariant 

differentiation with respect to some set of surface coordinates 0 ~ where a has 

values 1 or 2. 

3. Kelvin-Helmholtz Instability 

The aim of this paper is to investigate the effect of bulk and interracial vis- 

cosity on the propagation of surface gravity waves on the boundary z ~- 0 between 

a viscous fluid occupying z ~ 0 and an inviscid fluid occupying z > 0, both fluids 

being incompressible. In  effect, we propose to model the boundary layer by a two 

dimensional viscous interface. 

Suppose now that  the inviscid fluid flows with speed V in the positive x 
direction whereas the viscous fluid is stationary, then the linearised equations 

governing disturbances in these fluids are respectively 

I~vi ~v~ 
X-- ~ + V -~x! + (p + ~) '~ = O, 

e --~ + (p + ot2),~ - ~Au~ = O. 

(3.1.1) 

(3.1.2) 

Further, on the interface we require that 

{~v~ ~ ~ ) s ~ x ~ = [~t ~] + 7/,  7 ~ ~t ~- V V,, --S~b~pn ~ -  ,~ ,~ 

~'  V ~ ~-7 + 7o + T d :  = 0 ,  

(3.2) 

where d,~-~ V ( , 3 ) -  unbar. Let us consider the propagation of the interracial 
shape ~ --~ ae ik(*-cO where la[ is small. We shall assume that  the movement of the 
inviscid fluid is irrotational and so we can find a velocity potential r such that  

Vinviscid = - - g r a d  r where vinviscid is the perturbation of the inviscid fluid 
velocity from the steady state (V, 0, 0). From (3.1.1) we may conclude that in 
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z > 0 (region to be  denoted  b y  a subscr ipt  1) 

p~ ~- ~l~ -- ~i~ -~ cons tan t ,  (3.3) 

where  (') is a convected der ivat ive  t aken  with the veloci ty  ( V, O, 0), i.e., ~ - -  
~t 

-~ V ~-~. Since the region z < 0 contains  a viscous fluid then  we canno t  expect  the 
~x 

flow in this region to lie i r rotat ional .  We shall look for  a solution of (3.1.2) in the 
fo rm 

= (~(~), 0, w(~))/~(~-~0. (3.~) 

We also require u to  be divergence free, sat isfy the  bounda ry  condit ion Uzcp~.(0, t) 
= - - i k c a e  ~k(x-~t) and  tend  to zero as z tends to negat ive  infinity.  I n  z < 0 (region 
to  be denoted  b y  a subscr ipt  2), calculat ion reveals t h a t  

u : ( i ~ A e  k~z ~ iBe  ~z, O, A e  ~z  ~ B e  ~z) j~(~-~t) ,  (3.5) 

where 

(a) ~ = 1 - -  i c / kv ,  

(b) A + B = - - i k c a .  

v - -  tt/~2, Re ~ > 0, 
(3.6) 

F ur the r  compu ta t ion  f rom (3.1.2) leads to 

T2 + ~2Q - -  icB~2e ~k(x-ct) e kz ~-- cons tan t .  (3.7) 

Since the veloci ty  poten t ia l  for  region one is ~v = -- icaJk(x-Ct)e -kz ,  it follows 
f rom (3.3), (3.7) t h a t  

[p] - -  [e] gv - -  e lakc(  V - -  c) e ik(~-~~ ~- icBo~:r ik(~-~~ =- cons tan t  

f rom which we m a y  deduce t ha t  

d 
d--/[p] ~- ikcga[~] e ik('~-ct) - -  i~lack~( V - -  c) ~ e ~k(~:-ct) 

c~'kBo~ ~e! k(~-ct) ~ O . 

(3.s) 

The  p ropaga t ion  conditions are going to be der ived from Eqs.  (3.2). 
We m a y  deal with these equat ions in their  ful ly  l inearised fo rm in which 

var ia t ions  in surface densi ty  y m a y  be considered. 1-Iowever, since y is ve ry  smM1, 
we shall ignore it in wha t  we are abou t  to do. I n  par t icular  we shall suppose t h a t  
surface tension a is constant .  The simplified equat ions (3.2) become 

S ~ b , ~  = [p] ~- 2#n id~n~ ,  

S~,: a~o = 2#n~d~xi ,  e . 
(3.9) 
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To first  order  

(a) V 1 = i(o~A + B) e ik(~-a), V ~ = 0, 
(3.10) 

(b) d,~ = V1,1 = --k(~xA + B) e ~(x-a). 

The mos t  general  expression for  S "~ l inear i n  d "~ is g iven b y  

S "~ : Vo a~  -4- vlb ~ + v2a~d~ ~ + vab"~d~ ~ + v4a "~ tr (bd) 

+ %b ~p t r  (bd) + %d ~ + VTb(~d~ ~) 

and  when this is fu r ther  l inearised abou t  V ~ = O, b.~ = O, the result  is 

S "~ = (a + ~d~ z) a ~ + ~6d ~ ,  (3.11) 

where ~re, ~r are viscosities and  are to be t r ea ted  as constants .  Subst i tu t ion  into  
Eqs.  (3.9) reveal  t ha t  

0 2 ~  - -  2#k(B + c~A) e ~(~-a), (3.12.1) [p] = o 

2B + A(1 + ~ )  = --k(o~A + B) ~/# ,  (3.12.2) 

where ~ = z2 + ~a. Re tu rn ing  to (3.8), fu r ther  calculat ion indicates t ha t  

--2ttkccA + B(ic& - -  2uk) + a[--ak ~ --  g[~] + &k(V  --  c) 2] = O. (3.13) 

In  view of (3.12.2) and  (3.6) 

A = --keva 
2 + k 2  

1 i k22v(~- -1) '  

c (3.14) 

B = a v k 2 [ l + ~ 2 + k 2 ( 2  - ~ ) ] / [ 1  ik22v(~--c 1)] 

in which 2 = ~/#. :For consis tency of solution with A,  B and  a not  all zero, it is 
necessary  t ha t  the  wavespeed  c sat isfy the dispersive relat ionship 

4o&~v2Q2 --  ~2(ic - -  2vk) ~ @ 2o~2k~v[4vk(o~ --  1) + ic(2 --  ~)] 

(3.15) 

The new feature  of (3.15) is the dependence of c on v and  interracial  viscosity. The 
classical ease in which ~ = 2 = 0 has been s tudied b y  Chandrasekhar  [13]. I-Iere c 
satisfies the quadrat ic  equa t ion  

g 
(~ol + 03) c~ - 2~OlVC = ~k  + ~- [~] - 01V 2 
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with solution 

~k + ~ [5] (01 + 5~) - olo3 V3]1/3 

0 ~- V51/(01 -~ 02) Z~- 
(01 + q3) 

(3.16) 

I n  the si tuat ion in which 

01 + V ~ > 03 (ak + g[e]/k), 
5153 

c is complex valued and  thus the Kelvin-Helmhol tz  instabil i ty ensues. 

W h e n  v :4= 0, it is mathemat ica l ly  convenient  to write c = i(~ 3 - -  1) kv so 
tha t  (3.15) becomes 

(~ + 1) [(0t + 03) ~4 + 2(03 - 51 + i51v/l~') ~2 _ %2~ 

+ 0~ + o3 - 2ve l i /k~  + ((~ + g[o]/k - 51v3)/~3v3] 

- ~k[(53 + 01) ~4 _ 52~3 + (03 - -  2~1 + 2Volc/kv) c, 2 

+ 03o~ + 51 - -  203 - -  2 iV51/kv  + (ak + g[e]/k - -  51V2)/k3v 3] = O, 

(3.17) 

where we are only  interested in solutions for which Re ~ > 0. 

I f  these solutions cr are t o  represent stable solutions then  in addit ion I m  c < 0 
f rom which we m a y  conclude tha t  Re  ~3 < 1. Le t  us consider the classical s i tuat ion 

in which V = 0. I n  this event  ~ is the solution of the quart ic  

(01 + 52) ~4 + 2(02 _ q ,  + i e l  V / k v )  0, 2 - -  402~  

(3.13) 
-4- ql + 03 - -  2Voli/kv + ak + - - s  q lV ~ k3~ 2 = O. 

As a general observation, we note tha t  the sum of the four roots of (3.18) is zero 

and hence the roots are either all purely complex or there is at  least one root  with 
a positive real part .  I t  is easily verified tha t  the first hypothesis  is void. 

We begin by  invest igating the ease in which V -~ 0. Here  ~ satisfies 

(01 + 03) ~ + 2(r - -  01) o~2 - -  452~x + 51 + 03 + (ak + g[o]/k)/l#v3 = O. (3.19) 

Since all the coefficients in this polynomial  are real then either 

(a) the solutions are all real, 

o r  

(b) there are two real solutions and two complex conjugate pair  solutions, 
o r  

(c) there are no real solutions and four solutions arranged in two complex 
conjugate  pairs. 
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Le t  us define a real funct ion  ] b y  the rule 

/ (x )  = (~1 -~- q2) xa -~ 2(q2 - -  e l )  x2 - -  4~2x -]- ~ -]- ~2 -~- (ak -~ g[q]/]r k2v 2 

and observe t ha t  if x* = (ak -]- g[q]/k) k2u ~ t hen  

/(0) = - e l  -[- q2 -]- x* ,  /(1) : x * .  (3.20) 

F ur the r  since / ' ( 0 ) : - - 4 ~ 2  < 0 and / ' ( 1 ) :  4 ~  > 0 and  / " ( x ) ~  0 t hen  /(x) 
a t ta ins  a m i n i m u m  value wi thin  (0, 1). Moreover,  provided k < k0, this m i n i m u m  
value  is posit ive.  On the  o ther  hand  if k ~ k 0 then  since b o t h / ( 0 )  a n d / ( 1 )  are 
posi t ive,  we have  two real solutions 31, as such t h a t  0 < 31 < ~2 < 1 with 
equal i ty  when/~ : / c  0. The other  solutions are represented  p -4- iq (p, q real) where 

1 
P - -  - - ~ -  (~1 + ~ ) -  I n  par t icular  --1,  < p ~ 0, 

I f  k ~ ko then  the solutions a~, ~ ,  33, 34 m a y  be represented 

0/1 = ~ + i 0 ,  ~2 = fl - -  iO, 0r 3 = - - f l  "Jr- i ~ ,  O~ 4 ~-- - - f l  --" i ~  

where f rom the outset  fl, 0 and  ~ m a y  be t aken  as posit ive wi thout  a n y  loss in 
general i ty.  Moreover  Eq.  (3.19) in this instance is equivalent  to  

(x 2 --  2fix -{- f12 _.{_ 0 ~) (x ~ _[_ 2fix + f12 _[_ ~2) = 0 (3.21) 

and  hence by  compar i son  with  (3.19) 

02 _~ ~2 __ 2fl2 = 2(e2 __ Q1)/(ql "~ e2), (3.22.1)  

fl(q~2 __ 0~) 2~2 / (~  + ~2), (3.22.2)  

(f12 + 03) (fl~ ~ 72) : 1 + ~*/(~o~ ~ ~ ) .  (3.22.3)  

There  are precisely two solutions sat isfying R e  ~ ~ 0 whichever  value of k we 

choose. I t  is obviously  t h a t  when  k ~ k o there  is s tabil i ty.  W h e n  k < ko then  for  
bo th  solutions with R e  ~ > 0, R e  a~ : fl~ - -  0 ~. F r o m  (3.22.1, 2) 

~ - o~ = [e~  - e~ + e ~ / ~ ] / ( e l  + e~) (3 .23)  

and consequent ly  since fl > 0, i t  satisfies 

1 
f rom which it  is clear t h a t  fl > ~ .  Re tu rn ing  to  (3.23) we see t h a t  

fl~ - -  0 ~ ~ 1. (3.24) 

Thus  in a n y  event ,  when V : 0 two wavespeeds  are possible and  bo th  are stable.  
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When  V ~ 0, the si tuat ion is considerably complicated since the solutions to 

the  quart ic polynomial  are no longer complex conjugate pairs. Our aim is to show 

tha t  if V is sui tably large then there is instability. We recall tha t  we wish to 
analyse the solutions of (3.18) for which l~e c~ > 0. Let  

q = (91 q- 92) ~ e  0r 2 -71- 92 - -  91' W = (91 -t- 93) I m  ~3 q_ 9 1 V / k v  (3.26) 

then 

q~ - -  w 2 = (93/91) R~  - -  49193 + 4~3(91 § 93) x 
(91 -~ 92) [O']g -~- g[9]/~], 

/~21,2 (3.27.1) 

qw = 293(R + (91 -[- 93) Y) (3.27.2) 

where R = 9 1 V / k v  and o~ = x q - i y .  We begin by  observing tha t  0~ = 1 (i.e., 
x = 1, y = 0) trivially satisfies (3.27.2) and also satisfies (3.27.1) provided k is a 

solution of 

9 1 V  3 = ~ k  q-  g[9] /k .  (3.28) 

I n  this case cr satisfies 

(91 q- 93) ~4 q_ 2(92 _ 91 + i R )  a ~ - -  492a q-  (91 q-  92) - -  2 R i  = 0 

which on factorisation yields tha t  ~ = 1 or g(~) = 0 where 

with 
e(o~) = o~ a + o~ 2 + (fl + iO) o~ q- iO - -  1 

fl - -  - - ,  0 = 2R / (91  + 92). 
91 q- 93 

(3.29) 

Since g(--1)  = --(1 q- fl) # 0 then ~ = - -1  can never be a zero of g and thus we 

m a y  deduce tha t  

(1 + f l )  
o~2 = _ ( ~  + io) + (1 + o~----~" 

Hence 

Re (~2) = _ f l  q_ (1 q- fl) (1 + x) (3.30) 
(1 + x) 2 q- y2 

where x = Re (c~). I f  x > 0 then Re (c~ 2) < 1, i.e., any  solution of g(o~) = 0 with 
Re  (c~) > 0 is stable and so c~ = 1 is the destabilising solution. Re turn ing  to 
(3.28), ,aTe can only  f ind a wavenumber  k such tha t  c~ = 1 is a solution of (3.27) 

provided 

r 2 > (l/Q1) min [ak q-  g[el/k]. 
(ks +) 
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Let  k = K be the larger solution to (3.28). We aim to determine dq From 
dk]k-K." (3.26) and (3.27) it follows that  - 

(a) 2q dq dw dR dx 
= 2w -g~ + 2(@2/@1) R --~ + 4(@1 + @2) @2 -~ 

+ (@1 + @2)[ 3g[@]] 
k2V 2 (r + k ~ ,j, 

dw dq (dR dy) (b) ~ - + w ~ = 2 @ 2  ~-+(a+02)~, (3.31) 

dq ( dx dy) 
(c) ~ =2(@1§ x ~ - ~ - - y ~ -  , 

(d/ d--/= d~ + 2(@1 + 0~/ z ~-  + y ~ - .  

In view of the fact that  --dR = --R/k, we may verify after some algebra on 
dk 

Eqs. (3.31) that  at x = 1, y = 0 

2(R2 § @22) dq k=K - -  @1(@1 all- @2)[g[@] t (3.32) - K2~ [-K--~--~, 

where V 2 has been replaced from expression (3.28). Since the minimum of ak 
+ g[@]/k occurs at k =/Co with /Co the positive solution of a g[@]/k ~ = 0 then 

dq[' < 0 and hence that  there is since K > k0, it follows from (3.32) that  ~-~ll:=g 

an interval (K*, K) on which q > 2@2 i.e., Re (32) > 1. Thus we have shown 
that  there is a region of instability provided V > Vcrit" where 

V~t" = minimum(ken+) --011[ a/c +g~]]--. (3.33) 

4. Conclusions 

When an incompressible inviscid fluid of density @1 flows with s teady 
shear velocity over a similar but  denser fluid, Chandrasekhar [13] has shown 
that  the configuration is unstable for speeds in excess Of the Kelvin-Helmholtz 
velocity VKU where 

= min ~rk § (@2 -- @i) �9 (4.1) 
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The preceeding analysis leads us to the conclusion tha t  in the context  of a viscous 
denser fluid, the corresponding critical velocity is lower than  the classical value 

VKH, In fact  
\ 1/2 = (  ~Ovisc~ ) 

I n  his original paper  :Kelvin [15] s tated tha t  "Observat ion shows the sea to be 
ruffled by  a wind of much smaller velocity than  the critical value" and this 

he accorded to the elfects of viscosity: :For an  air /water interface, ~Oair/~water is 
very  small and so it is clear tha t  Kelvin 's  observat ion is unlikely to be explainable 

in terms of viscosity bu t  is probably  a p roduc t  of the uncontrol led nature of the 

experiment.  More recent experiments  of Francis [16] in which air was blown 

over lubricating oil in a wind tunnel  produced no detectable variations from the 

Chandrasekhar  formula. This is no t  surprising as again ~air/~on is very  small 
and so a n y  predicted discrepancies would be within experimental  error. We 

might  consider enhancing this ratio by  experimenting with fluids of comparable 

densi ty  bu t  the advantages  are no t  immediately  clear since for such fluids, the 

Kelvin  velocity will be substant ial ly lower no t  to ment ion losses on the grounds 
of decreased surface tension. 
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