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Summary

This paper discusses the Kelvin-Helmholtz instability for the interface between a
viscous and an inviscid fluid. The incipient boundary layer is modelled as a two dimensional
viscous interface.

1. Introduction

Interfacial mechanics and surface tension have been described using varied
ideas which we mention. Dussan [1] and Joseph [2] investigated the boundary
between two fluids and introduced surface tension directly by assuming a specific
form for the stress discontinuity at the fluid interface. Jenkins and Barratt [3], [4],
[5] developed a virtual work approach and were necessarily confined to static
problems although this was not a severe restriction as far as they were concerned
since their interest lay in the applicability of their ideas to the theory of liquid
crystals and related director type materials.

Originally Scriven [6] and later Gurtin and Murdoch [7], Moeckel [8] and
Lindsay and Straughan [9] have considered an approach in which the interface is
regarded as a two dimensional continuum. Recently confusion has arisen as to the
relationship between the work of [7], (8], [9] and that of Green, Laws and Naghdi
[10] and Green and Naghdi [11] where a fluid sheet theory is derived treating the
sheet as a two dimensional continuum to each point of which is attached one or
more directors. Much of the confusion has arisen from the mistaken belief that the
director theory could not take account of the fluids either side of it. It is clear from
Naghdi [12] that this is not the case. Since [7], [8] and [9] are membrane theories,
they are embedded in any director theory. In fact, early work of Green, Naghdi
and Wainwright [17] on the Cosserat surface contained a section in which they
dealt with the membrane theory unambiguously using invariance of the energy
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equation and in the process include terms which describe the effect of the bulk
continua either side of the membrane.

In order to explain the effect of viscosity of the bulk fluids on the interface
itself we consider the “Kelvin-Helmholtz” instability, This is the phenomenon
by which movement of one layer of fluid over another can, according to linear
theory, cause instabilities. Of course, non-linear effects control these instabilities.
The case of two incompressible inviscid fluids has been considered by Chandra-
sekhar [13]. For technical simplification we shall investigate the situation in which
both fluids are incompressible but only the denser fluids is viscous. However, the
analysis makes it clear how to introduce viscosity into the less dense fluid and the
interface itself.

Miles [14] discusses a similar problem for the flow of a light inviseid fluid over
a dense viscous fluid and comes to the conclusion that, for gratvity waves, the in-
clusion of dominant viscous terms has little effect. His analysis is based on an
asymptotic discussion of the complete Orr-Sommerfeld equation.

In conclusion, we find that the presence of viscosity reduces the destabilising

velocity. In fact
4 1/2
i1
Vcritical = ( ) Vcritica.l

(with viscosity) 01 + Q2 (without viscosity)

where g,, 0, are the densities of the upper and lower fluids respectively. When the
inviscid fluid is “light”, it is clear that (gs/o1 + 02) =~ 1 and so we find that
viscosity has little effect in agreement with Miles.

2. Basic Equations and Notation

Using standard methods of Coninuum Mechanics, Moeckel [8] has derived
field equation expressing conservation of mass, momentum and energy in a
material surface in the respective forms

'}.’ -+ 7( V:‘ - unbaa) =0,

yVE— 8% =[] + yf¥,

2.1
Sk = SPegk &0

e+ ¢¢, — 85V, — yr = —[Qn; + i (VF — oH)],

where y is the surface density, 1/2 b,* is the mean curvature of the surface, S*
is the surface stress, ¢ is the specific internal surface energy, ¢*is the surface heat
flux vector, f* is the surface body force, r is the surface heat supply, V¢ = u,n’
—+ ¥ “xfa is the surface velocity and [¢] = ¢+ — ¢~ denotes the jump in a quantity
across the interface. Further, the field equations describing the bulk media either
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side of the interface or material surface are in the usual notation
¢+ ovh; =0,

ot — tif'k — oFi =0,
2.2
fE . gk (22)

oF + @i; — ;5 — oR = 0,

~ where the use of a capital indicates that we are dealing with a bulk quantity. In
Eqgs. (2.2) the subscript comma indicates covariant differentiation with respect
to spatial coordinates &; whereas in (2.1) the subscript comma indicates covariant
differentiation with respect to some set of surface coordinates 0% where « has
values 1 or 2.

3. Kelvin-Helmholtz Instability

The aim of this paper is to investigate the effect of bulk and interfacial vis-
cosity on the propagation of surface gravity waves on the boundary z = 0 between
a viscous fluid occupying z < 0 and an inviscid fluid occupying z > 0, both fluids
being incompressible. In effect, we propose to model the boundary layer by a two
dimensional viscous interface.

Suppose now that the inviscid fluid flows with speed ¥V in the positive x
direction whereas the viscous fluid is stationary, then the linearised equations
governing disturbances in these fluids are respectively

oo, ow,
(” L7 ”)+<p+@9),z-=o, (3.1.1)

Q L S (P + 08),; — pdu; = 0. (3.1.2)

ot

Further, on the interface we require that

67’ & 171 ab B ik i
v\ + VL — 8 g0’ — 8% 2iy = [mt™] 4 of',

(3.2)

2
y+V“y + ydf =0,

where d g = Vi, gy — u,b,5 Let us consider the propagation of the interfacial
shape 7 = ae? =D where |a| is small. We shall assume that the movement of the
inviseid fluid is irrotational and so we can find a velocity potential ¢ such that
Vjpviseia = —grad ¢ where @, ., is the perturbation of the inviscid fluid
velocity from the steady state (7, 0, 0). From (3.1.1) we may conclude that in
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z > 0 (region to be denoted by a subscript 1)

P1 -+ 012 — ;¢ = constant, (3.3)
. . . . . . o9
where (*) is a convected derivative taken with the velocity (7, 0, 0), i.e., ¢ = =

7
+V 8_(p Since the region z < 0 contains a viscous fluid then we cannot expect the
%
flow in this region to be irrotational. We shall look for a solution of (3.1.2) in the

form
u = (u(2), 0, w(z)) e*@=D. : (3.4)

We also require % to be divergence free, satisty the boundary condition u, . (0, ¢)

= —ikeae*@= and tend to zero as z tends to negative infinity. In z << 0 (region
to be denoted by a subscript 2), calculation reveals that

u = (ixde? - iBe®, 0, Ae** |- Bel?) efh@—eh, (3.5)
where

(a) o =1 — ic/kv, v = 1/0s, Rex >0,

(3.6)

(b) A4 4 B = —ikca.
Further computation from (3.1.2) leads to

2 22 — icBoye™@ == . .
Py 4 052 — icBye™* = ¢ — constant (3.7)
Since the velocity potential for region one is ¢ = —icae®@~Me=* it follows
from (3.3), (3.7) that
9] — [0] 91 — 010kc(V — c) ¥@~N L icBo,e*@=) — constant

from which we may deduce that

d . il(z—ct) . ik(z—ct)

2 9] + ikegalg) €MD — igyackd(V — o)

dt (3.8)

+ PhBoye @D — 0.

The propagation conditions are going to be derived from Egs. (3.2).

We may deal with these equations in their fully linearised form in which
variations in surface density y may be considered. However, since y is very smail,
we shall ignore it in what we are about to do. In particular we shall suppose that
surface tension ¢ is constant. The simplified equations (3.2) become

8,5 = [p] + 2unidyny,
(3.9)
S"‘ffx Ay = 2‘unkdikxi’a.
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To first order
(a) V!=i(xd -+ B)e*e—d 20,

(3.10)
(b) d.° = VY = —k(xd + B) =D,
The most general expression for S linear in d*/ is given by
8P = yga*® 1 p,p*f 1 9,0%d. " + v5b*Pd P+ w0 tr (bd)
+ v:6% tr (bd) - ved®? - v, b P
and when this is further linearised about Vi=0, b,s = 0, the result is
8% = (0 + md,My a* - 7ed®®, (8.11)

where 7., g are viscosities and are to be treated as constants. Substitution into
Egs. (3.9) reveal that

2

[pl=0o iﬂ — 2uk(B 4 xA) M@=, (3.12.1)
o2

2B + A(1 + a?) = —k{od + B) w/u, (3.12.2)

where 7 = 7, + 7. Returning to (3.8), further calculation indicates that
—2ukxA 4 Blicg, — 2uk) + a[~6k2 — glo] + o:(V — ¢)?] = 0. (3.13)

In view of (3.12.2) and (3.6)
2+ kA
¢ (3.14)
tk2lv(oc — 1)
=

A4 = —k*a

B = wk1 + &2 + EA2 — oc)]/[l -

in which 2 = z=/u. For consistency of solution with 4, B and & not all zero, it is
necessary that the wavespeed ¢ satisfy the dispersive relationship

dock®%0, — go(ic — 20k)? - o kP [Avk{oc — 1) - ic(2 — «)]

B [ | ik — 1) (3.15)

”Gk — oV —¢)? +%[@]] = 0.

c

The new feature of (3.15) is the dependence of ¢ on » and interfacial viscosity. The
classical case in which v = 4 = 0 has been studied by Chandrasekhar [13]. Here ¢
satisfies the quadratic equation

(01 + 02) @ — 20,Ve = ok + 'Z— [e] — o, V2
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with solution

; 12
[(ak + n [9]) (o1 + 02) — @192V2]
(01 + 02)

¢ = Voilor + 02) & (3.16)

In the situation in which

prs 888 o,

0102

¢ is complex valued and thus the Kelvin-Helmholtz instability ensues.
When » == 0, it is mathematically convenient to write ¢ = i(«® — 1) kv so
that (3.15) becomes

(o 4 1) [(o1 -+ 03) o4 -+ 2oz — 01 + i: V/kv) o — 4y
+ 01 + 02 — 2Voyifky - (ok - gloV/k — Qle)/k%Z]
- MC[(QZ + 01) &t — 020% + (03 — 201 + 2Voi0/kr) o®

+ 0o + 01 — 200 — 2iVos/kv + (ok + glol/k — 0. V*)/k»?] = 0,

(3.17)

where we are only interested in solutions for which Re & > 0.

If these solutions & are to represent stable solutions then in addition Im ¢ < 0
from which we may conclude that Re a2 < 1. Let us consider the classical situation
in which y = 0. In this event « is the solution of the quartic

(01 + 02) o + 2(02 — 01 + 104 V/k”) of — 4o
glol (3.18)
+ o1 + 02 — 2Voiilky + (070 -+ - gle)/lczvz = 0,

As a general observation, we note that the sum of the four roots of (3.18) is zero
and hence the roots are either all purely complex or there is at least one root with
a positive real part. It is easily verified that the first hypothesis is void.

We begin by investigating the case in which ¥V = 0. Here « satisfies

(o1 + 02) &* + 2(g2 — 01) &® — dooxx + 01 + @2 + (o + glel/B)/kH* = 0. (3.19)
Since all the coefficients in this polynomial are real then either

(a) the solutions are all real,
or

(b) there are two real solutions and two complex conjugate pair solutions,
or

(c) there are no real solutions and four solutions arranged in two complex
conjugate pairs.
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Let us define a real function f by the rule

f(x) = (01 + 02) #* + 2(0s — 01) @* — 4% -+ 01 - 02 + (ok + glol/k) k»*

and observe that if a* = (ck 4 g¢[o]/k) k*? then
f0) =01+ 02 + 2%,  f(1) = a*. (3.20)

Further since f'(0) = —4p, << 0 and f'(1) = 4g, > 0 and f’(x) > 0 then f(x)
attains a minimum value within (0, 1). Moreover, provided % <C &, this minimum
value is positive. On the other hand if ¥ = k, then since both f(0) and f(1) are
positive, we have two real solutions &y, a«, such that 0 < &y << &y << 1 with
equality when k& = k. The other solutions are represented p 4 ig (p, g real) where

1
P=—3 (o1 + or5). In particular —1. << p < 0.
Tk < ko then the solutions &y, &y, &3, 4 may be represented
061:ﬂ+7:0, 0‘2:/3_7:05 0‘3:*5“]“@'(?: 0‘4:_/3—'7;()”

where from the outset g, 6 and ¢ may be taken as positive without any loss in
generality. Moreover Eq. (3.19) in this instance is equivalent to

(22 — 2Bz + 2 + 0%) (2* + 262 + B + ¢7) = 0 (3:21)

and hence by comparison with (3.19)

6% + ¢® — 282 = 2(g, — 91)/(91 + 02), (3.22.1)
Bl — 6%) = 200/(01 + @2), (3.22.2)
(B + 6% (B2 + ¢®) = 1 + a*/(01 + 02)- (3.22.3)

There are precisely two solutions satisfying Re o > 0 whichever value of k we
choose. It is obviously that when k = k, there is stability. When & < k, then for
both solutions with Re o > 0, Re a% = 2 — 62. From (3.22.1, 2)

B — 02 =To1 — 02 -+ 92//3]/(91 + 02) (3.23)

and consequently since § > 0, it satisfies

(014 @) B+ (o2 —0) B —02>0

1
from which it is clear that § > > Returning to (3.23) we see that

B2 —0<1. (3.24)

Thus in any event, when ¥V = 0 two wavespeeds are possible and both are stable.
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When V =+ 0, the situation is considerably complicated since the solutions to
the quartic polynomial are no longer complex conjugate pairs. Our aim is to show
that if V is suitably large then there is instability. We recall that we wish to
analyse the solutions of (3.18) for which Re & > 0. Let

g={(o1+ o) Rea®+ 90 —01, w=_(01+ g) Ima®+ g V/ikv (3.26)

then

P — w? = (go/01) B* — 40105 + 40a(01 + 02) % _(_(_’17‘2{;2_92_2 [O'k + 9[9]/70], (3.27.1)

qw = 205(R + (01 + 02) 9) (3.27.2)

where R = g, V/kr and « =z + iy. We begin by observing that « =1 (i.e.,
xz = 1, y = 0) trivially satisfies (3.27.2) and also satisfies (3.27.1) provided k is a
solution of

01V? = ak - glo)/k. (3.28)

In this case « satisfies
(01 + @2) & + 2(02 — 01 + iR) o® — 40ax + (01 + o) — 2Ri =0
which on factorisation yields that « = 1 or g{«) = 0 where

gy =02 F o2+ (F+ i) a4 —1

with Sor— o (3.29)
p="——,  0=2R/(0,F )
01+ 02

Since g(—1) = —(1 4+ 8) &= 0 then &« = —1 can never be a zero of g and thus we
may deduce that

_ . (148
062__(/3+z0)—}—(1+(x).
Hence
1+8(1+2)
Re (&%) = —f + ——— e~ 30
I G (s 0

where x = Re («). If z > 0 then Re («?) < 1, i.e., any solution of g(«) = 0 with
Re (x) > 0 is stable and so « = 1 is the destabilising solution. Returning to
(3.28), we can only find a wavenumber % such that « = 1 is a solution of (3.27)
provided

V2 > (1/0y) min [ok -+ glo)/E].

(kERT)
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d
Let £ = K be the larger solution to (3.28). We aim to determine—g . From
(3.26) and (3.27) it follows that : k=K
dg dw dR dx
2 = 2w — R— + 4 —
(2) 2¢ = = 2w — + 2elor) B —- + Hoy + e2) 02 7
(01 + 0a) 3gle]
T TR
dw d dR
(b) ¢ —I“ =2 (dk =+ (o1 + 02) dk) (3.31)
d_q dx dy
(e) T 2(01 + 02) ( 7 —Y dk)

dw dR

dy dx
(d) ﬁ:dk_{_ (91+Q2)<x%+yﬁ)-

: d
In view of the fact that i —R/[k, we may verify after some algebra on
Eqs. (3.31) thatat e =1,y =0

dq

2
AR + o) =

(3.32)

_ ol o) fglo]l
k=K K22 K2 ’
where V2 has been replaced from expression (3.28). Since the minimum of ok
-+ gle)/k occurs at k = k, with k, the positive solution of o — g[o]/k? = 0 then
d
since K > kg, it follows from (3.32) that % << 0 and hence that there is
k=K
an interval (K*, K) on which ¢ > 29, i.e., Re(a? > 1. Thus we have shown
that there is a region of instability provided V > V eis, where

1 glel|
Vi = ml{l:ér;})nn E [o’k + — % (3.33)

4. Coneclusions

When an incompressible inviscid fluid of density g, flows with steady
shear velocity over a similar but denser fluid, Chandrasekhar [13] has shown
that the configuration is unstable for speeds in excess of the Kelvin-Helmholtz
velocity V., where

V%(H = (@1 re ) min [Gk + (02 — 1) _:I (41)

0102 keR
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The preceeding analysis leads us to the conclusion that in the context of a viscous
denser fluid, the corresponding critical velocity is lower than the classical value
Vg Infact

V Oviscous V2
eritical with — Vv, VKH . (42)

viscosity Oviscous + Oinviseid

In his original paper Kelvin [15] stated that “Observation shows the sea to be
ruffled by a wind of much smaller velocity than the critical value” and this

he accorded to the effects of viscosity: For an air/water interface, o,,./0 ater 18

very small and so it is clear that Kelvin’s observation is unlikely to be explainable
in terms of viscosity but is probably a product of the uncontrolled nature of the
experiment. More recent experiments of Francis [16] in which air was blown
over lubricating oil in & wind tunnel produced no detectable variations from the
Chandrasekhar formula. This is not surprising as again g, /o, is very small
and so any predicted discrepancies would be within experimental error. We
might consider enhancing this ratio by experimenting with fluids of comparable
density but the advantages are not immediately clear since for such fluids, the
Kelvin velocity will be substantially lower not to mention losses on the grounds
of decreased surface tension.
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