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Summary - Zusammenfassung 

On the Frame Dependence o~ Eleet]'ie Current and Heat Flux in a Metal. The ideas 
and methods of the kinetic theory of metal electrons are used to show that Ohm's law of 
electric conduction and Fourier's law of heat conduction in a metal both contain frame de- 
pendent terms. It follows that the principle of material objectivity does not hold rigorously. 

Zur Bezugssystem-Abhiingigkeit des elekta'isehen und des W~irmestroms in einem 
Metali. Die Ideen und Methoden der kinetisehen Theorie der ~ei~allelektronen werden ver- 
wandt, um zu zeigen, dal~ das Ohmsche Gesetz der elektrischen Leitung und das Fouriersche 
Gesetz der W~rmeleitung in einem Metall systemabh~ngige Terme enthalten. Es folgt, dab das 
Prinzip der ma~eriellen Objektivit~t nicht in Strenge gilt. 

1. Introduction 

This paper makes use of the simple ideas underlying the kinetic theory of 
metal electrons to derive approximate expressions for the relations between 
electric current and electric field and between heat flux and temperature gradient 
in a metal. In  continuum mechanics and thermodynamics such relations are 
called constitutive relations and, according to the principle of material frame 
indifference, these relations should be independent of frame. I t  is shown here tha t  
the kinetic theory of metal electrons does not support the principle of material 
frame indifference; indeed, both Ohm's law of electric conduction and Fourier's 
law of heat conduction are shown to be dependent on frame. The frame dependence 
of these laws is due to the action of the Coriolis force upon the electrons in free 
flight between collisions. Formally, the effect of the Coriolis force is similar to the 
effect of a magnetic field on the free flying electrons, and therefore both the frame 
dependent parts of Ohm's law and of Fourier's law are governed by the Hall 
coefficient. I t  is true though that  the Hall effect is much bigger then the Coriolis 
effect because of the large specific charge of an electron. 

To my knowledge the first authors to remark upon the frame dependence of 
constitutive relations in the kinetic theory were CKA~'~A~ and CowLneG (see [1], 
p. 266) who observed without comment that  in a gas the Burnett equations for 
stress and heat flux show a dependence on the antisymmetric part of the velocity 
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gradient. In  [2] T~UESDEnn found the same dependence and rejects the corre- 
sponding terms as improbable; he suggests tha t  there  may  have been an error in 
the kinetic theory analysis or tha t  such terms are cancelled by  higher iterates. 
This latter proposition was found invalid when Mi~Lr,E~ [3] showed tha t  even the 
exact equations of transfer, which can be derived in the case of Maxwellian mole- 
cules, contain frame dependent terms. 5~filler exhibited the consequence of one 
such term to the heat flux of a rigidly rotating gas and showed that  the effect 
produced by  it is negligible under normal conditions. EDV~LE~ and M c L E ~ A N  [4] 
recently rediscovered the dependence of the Burnet t  equations for stress and heat 
flux on the antisymmetrie par t  of the velocity gradient and discussed its impli- 
cation upon the principle of material  frame indifference. Even more recently 
WANG [5] has criticized MffLLEn [3] and ED~LE~ and M c L E ~ A N  [4] because their 
analyses are not rigorous and, of course, it is quite true that  the iterative schemes 
in the kinetic theory are in want of a rigorous basis. On the other hand, these 
schemes offer suggestive approximations and it is generally accepted that  they 
lead to the statistical version of macroscopic constitutive equations. 

The present paper  has the purpose to exhibit yet  another case of frame 
dependence of constitutive relations. In  linking this frame dependence to the well 
observed Hall  effect the paper  seems to make a convincing argument for the pro- 
position tha t  the principle o /mater ia l / tame  indi//erenee is only approximately true 
in a metal. 

Further  research is clearly indicated to determine where this approximate 
principle ceases to be reliable. 

2. The Collision Equation for Metal Electrons and Some Moments 
of the Distribution Function 

a) The Collision Equation 

The kinetic theory of metal  electrons is based upon the idea that  the electrons 
in a metallic body move like free particles which occasionally collide with a lattice 
ion but  not with each other. The ions are assumed to be rigid spheres of radius s 
which are at rest at  their lattice points; their (uniform and constant) density will 
be denoted by  no. The electrons are assumed to be mass points of mass m, and due 
to the large mass ratio of ions and electrons it is reasonable to consider the energy 
of an electron to be unchanged by  a collision. Therefore, the velocities ci and c( of 
an electron before and after a collision are related by  

ci t -~ ci --  2ei(cnen)~. (2.1) 

when ek is the unit vector from the center of the ion to the point of impact  of the 
electron. The mean free pa th  between two collisions will be denoted by  l; it is 

1 
defined as l ~-~ - -  

no~S ~ " 
The state of the "electron gas" is characterized by the phase density/(xi ,  c~, t) 

of electrons at  the point xi, t ime t and with velocity ci. Thus 

/(xi, q ,  t) dxl dx2 dx8 d q  de2 dc8 ~ ] dx  dc 
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is the expected number  of electrons in ~n element d x  de of phase space. This phase 
density obeys the collision equation ~ 

-~ + c~ - -  + d~ --  c ( f  - -  [) cos 0 sin 0 dO de, (2.2) 
ox i ~c i z l  

0 0 

where c is the magnitude of the electron velocity, 0 is the angle between e~ and ci 
and e is the angle of the plane spanned by  ci and ci' with an arbi t rary  fixed plane 
through c~. ] and ]' are ghe values of the phase density for the velocities ci and ci' 
respectively. 

The components xi, ci and 5i of position, velocity and acceleration respectively 
are referred to coordinate axes in a non-inertial observer frame. The corresponding 
quantities referred to coordinate axes in an inertial frame are denoted by  xi*, ci* 
and ~* and we have the transformation formulae 

xi = Oil(t) xi* + bi(t), 

c~ = O~c~* + W~(x~ - -  bi) + b~, (2.3) 

~ = 0 ~ *  + 2W~(c~ - i ) ~ )  - W~(x~ - -  b~) + W~(x~ --  b~) + ~)~, 

where Oii(t) is a t ime dependent proper orthogonal matr ix  and bi(t) is a t ime 
dependent vector. Wij is defined by  0i~Oik and represents the ~ntisymmetric 
matr ix  of angular velocity of the non-inertial observer frame with respect to an 
inertial frame. 

If  in the inertial frame we have an electro-magnetic field with components E~*, 
Bi*,  the electrons of velocity ci* are subject to the Lorentz force - -e(Ei*  ~-- siik 

ej*Bk*), and their acceleration is di* ~ --  e__ (E~* ~- sijkcj*Bk*). Insertion of this 
m 

value into (2.3)a leads to the expression 

e 

m 

+ $i~(xk - bk) + bi 
(2.4) 

for the acceleration of the electrons in the non-inertial frame. I~l Eq. (2.4) El 
and B~ denote the components of the electro-magnetic field in the non-inertial 
frame and use has been made of the fact tha t  the components of the Lorentz 
force --e(E~* + e,~ci*B~*) t ransform into 

- -e(Ei  + eiikCiBk) = --O~ne(E,* ~- enikci*B~*) 

under the transformation (2.3)1 (e.g. see [7], p. 672). 
We denote the velocity-independent par t  of the acceleration in (2.4) by  /ci 

and write 

( _ e__ s~jkBk)C~. (2.5) 

1 E.g. see [6], 1 ). 311ff. As far as convenient I follow [6] in notation and argument. 
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Thus we have for the collision equation 

where/ci is given by the equation 

/c i - -  

2a* 

0 0 

(2.6) 

e E~ - -  2Wii[~ j - -  Wi~(xj --  bj) + Wi~(x, - -  bk) + b~. (2.7) 
m 

b) Momen t s  o / the  Distribution Funct ion  

From the definition of the phase density it follows that  

q - -  f m/de  (2 .8)  

is the density of the electron gas; the integration extends over all velocity com- 
ponents from --~o to oo. The quantities 

f m c J  de ,  (2.9) ovi 

- f mc ej/de, (2.10) Pij 

q~=__ f ~ c%/ de, (2.11) 

are the mass flux, momentum flux and energy flux respectively due to the motion 
of the electrons. Also the electric current carried by  the electrons is given 

j i  = e f - - - -  @vi = - -  eci/ dc .  (2.12) 
m 

Since the lattice ions are supposed to be at rest according to the model exploited 
here, they do not contribute to the electric cttrrent nor to the flux of energy 
and therefore qi and J~ as defined in (2.11) and (2.12) represent the energy flux 
and the electric current respectively in the metal. The objective of this paper 
is the calculation of approximate expressions for qi and Ji .  

3. Sommerfeld's Iteration Ior the Phase Density 

a) Equ i l ibr ium Phase  Densit ies 

The equilibrium phase density ot ~ the electrons is known from statistical 
mechanics of systems of identical Fermions: 

2m a I (3.1) / o ( e ) -  ~ me~ ' 
l_ e'~'~ + l 
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where h is Planck's constant, T is the temperature and ~ is a function of ~o and T 
whose form follows from the requirement 

27~z a f ~'n, / m c  ~ 

e - ~  Z e~--/u + 1 
r 

de. (3.2) 

While the phase density [0 makes the collision production on the right hand side 
of the collision equation (2.6) vanish, it does not necessarily satisfy the collision 
equation. This will only be the case, if the fields ~ and T, or ~ and T satisfy the 
conditions 

__ = 3T kT 0 In ~ 3T 
~ O,  - - = O ,  - - - -  = k ~ ,  - -  = O .  (3.3)  
~t ~t  m ~ x  i ~ x  i 

Therefore, in equilibrium density and temperature must be time-independent 
and the temperature field must be uniform, while a density gradient may exist 
when it is balanced by a conservative field ki. In particular, however, if Ei is 
chosen so as to make k~ in (2.7) vanish, the density field must also be uniform 
in equilibrium. 

b) Approximate Phase Density in Non-Equilibrium 

When the fields of $ and T do not conform to the conditions (3.3), the collision 
equation cannot have the solution (3.1). For that  case, following Sommerfeld I lay 
down the expansion 

/ = 1o + Gee + G~eect + Uelm%ClC,~ + "" (3.4) 

for the solution of the collision equation. Here [0 is the phase density of "local 
equilibrium", i.e., it has the form (3.1) but  with ~ and T being unrestricted 
functions of xn and t; the coefficients Uk, Uk~, Uk~m, ... in (3.4) form symmetric 
and traceless tensor functions of x., t and the magnitude c of the velocity. These 
functions are determined by an iterative scheme of which I describe the first two 
steps : 

First Step: The left hand side of the collision equation (2.6) is calculated by use 
of the term ]0 in (3.4), while its right hand side is calculated by use of the two 
terms [o + Ueck in (3.4). An easy calculation shows that  

--gl f f e(ck' -- %) cos O sin O dO & = _ --[1 eck 

0 0 

(3.5) 

and therefore this first step gives an expression for Ukck in terms of first deriva- 
tives of the fields $ and T. 

Second Step: The left hand side of the collision equation (2.6) is calculated by use 
of the two terms ]o -4- Ukck -- the latter of which has been calculated in the first 
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step - -  while its right hand side is calculated by use of the three t e rms /0  + Ukce 
~- Uezc~c~. One shows easily tha t  

2~ 
--[ -[- c ckc~ - T c2(3kt (3.6) 

0 0 
and therefore the second step gives an expression for Uklckct in terms of first and 
second derivatives of the fields ~ and T. 

Further  steps follow the same prescription and some reflection makes it clear 
tha t  this iterative scheme provides us with an expansion of / into terms of in- 
creasing powers of the mean free pa th  1. 

With the prescription thus given the actual calculation of Ukck and UklckCl 
is a straightforward mat te r  even though it is somewhat tedious. Therefore, I re- 
strict the atterttion to the case where the phase density is t ime-independent and 
even in tha t  case I only list the result : With the definitions 

An ~: and Fi = let ~ In r /ci, (3.7) 

1 e2k--- ~- § 1 

and if one ignores terms of third order in the mean free pa th  l, the phase density 
comes out as 

2m a ck m ~ in T] 
[ = - ~  A o - - l A ~ - - [ - ~  F k +  2 ~x k / 

c 2 __ ~ In T ]  1 l~ (A1 2Ae) ckcl m2 __ 0 In T) Fz ~- 
2 - 7 ~  F ~ +  ~ ~xk f 2 ~z~ l 

eke 1 7)~ ~0~  k ~]n~ J 62 ( ~ l n T  OlnT ~21nT//  

r162 m ( c~ ~ In T I 

( 1 m 0 1 n T  / 

( )( el - ~lknBn F k  + ~ lnT . . _  
@ A1 -~ ~ 2Wlk qn 2 ~Xk lJl" 

This expression I consider as a sufficiently good approximation of the phase 
density for the purpose at  hand which is the calculation of the electric current J i  
and of the flux o~ energy q~. 

4. The Laws of Ohm and Fourier for Electrical Conduction and Heat Conduct ion 

a) The Electric Current and the F lux  of Energy 

The phase density (3.8) is now introduced into the integr~nds of the integrals 
(2.12) and (2.11) which define the electric current and the flux of energy respec- 
tively. Inspection shows tha t  only the second and the last term on the right hand 



On the Frame Dependence of Electric Current and Heat Flux in ~ ~'Ietal 123 

side of (3.8) con t r ibu te  to  J~ and  q~ and  we ob t a in  

2m 3 47g m r i o  L W i k _ _ ~ m 6 i k . B n  c3A1  ~ e 4 - _ _ ~ l n T ] d e ,  

o (4.1) 
oo 

m 2m a 4:~ m d l Wie - -  ~ eiknB, c~A~ F~ 4- - -  0 In T de. 
q i -  2 h a l--~ ~ ik-~- c 2 OZ k ] 

0 

W i t h  the  def in i t ion  

OQ 

I,~ = f c~A1 de (n = 2, 3, . . . ,  7) 
0 

we m a y  rewr i te  the  Eqs.  (4.1) in the  forms 

(4.2) 

2~" 14~ ~ [{z~ + Lz (w~ - ~  )} 

-}- "-~ Isd~k 4- [ J  Wik 2m 

m 2m'14~ m [{IsOik + I 4 1 ( W i k - -  e )} 
q~ -= 2 h 3 3 k---T ~m eik~Bn Fk 

e ~ in T] 
1 {IT(}ik + I j ( W i k  eiknBn)} ~x k j .  +-~ - ~  

(4.3) 

b) Ohm's Law 

Le t  us consider  a me ta l  in which the  t e m p e r a t u r e  and  the  electrort  de ns i t y  
a re  m~iform and  which is sub jec t  to an  electr ic field, h such a situatiorL we have  

Fk = 2_ Ek' = ~ E ,  + 2 W d ;  j - -  W~j(x i - -  bj) - -  W~j(x~ - -  b~) + ~ 
m 1~ 

a n d  Eq.  (4.3)1 reduces  to  Ohm's  law of s t a t i o n a r y  electr ical  conduc t ion  s 

Ji - -  S~ m3e2 l { Ia(iik h a kT I 2m [(eiknBn -- 2 --me W~k)}Ek. '  (4.4) 

The  fac tor  of Ei' on the  r igh t  hand  side of (4.4) is cal led the  electr ic  c o n d u c t i v i t y  
which  we deno te  b y  a, and  the  fac tor  of (B XE' )  is cal led the  Ha l l  eoeffieienl, 
which  we deno te  b y  S :  

8~ mac 2 1 4Yv m2e a [2 
~ 3 h 8 k~V Ia ,  S =  3 h 3 kT 19. (4.5) 

2 E �9 k is the part of the total electric field E~ which creates a current, the rest of E k merely 
counterbalances the force 2Wiib j --  W~i(x j -- bj) -- Wij(x i --  bi) + ~; so that  the density 
of electrons is kept uniform. 
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The whole matr ix  which relates J i  to E (  is called the tensor of electric con- 
ductivity. While this tensor is often considered to be a constitutive quanti ty,  
inspection of (4.4) shows tha t  it depends on frame through its dependence on 
the angular velocity matr ix  Wie. To be sure though, the dependence on frame will 
generally be negligible because of the large value of the specific charge of electrons. 

c) F o u r i e r '  s ,Law 

Elimination of Fe between the two Eqs. (4.3) leads to an expression for the 
flux of energy in terms of the electric current and the temperature gradient, viz. 

2 e 13 

(4.6p 

( )l ln  
+ I0 - I--7 + Ia ~ I ~ ~ . B ~  eze 

In  particular, when there is no electric current the Eq. (4.6) reduces to Fourier 's  
law of heat conduction which relates the energy flux qi to the temperature gra- 
dient : 

2~ m 5 l 1 7 -  die (4.7) 
qi = 3 h a k T  2 I~ ] 

The factor of ~T on the right hand side of (4.7) is the negative heat conductivity 
8x i 

which we denote by  g. The factor of (B • grad T) governs the effect of the magnetic 
field on the flux of energy, and we denote it by  K :  

2 ~ m  5 I I7 K =  1 6 - - - - +  . (4.8) 

The whole matr ix  which relates qi to - -  ~__TT is called the tensor of heat conduc- 

t iv i ty  and we conclude from (4.7) that  this tensor is frame dependent, because 
it depends on the angular velocity matr ix  Wie of the frame. 

Therefore, the kinetic theory of metal  electrons does not support the view 
of continuum thermodynamics according to which the flux of energy q~ is related 
to the field of temperature  in a manner solely dependent on material.  

a In the derivation of (4.6) from (4.3) terms of higher than second order in the mean free 
path were neglected for consistency with the approximation (3.8) of the phase density. 
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5. A Suggestive Interpretation of the Frame Dependence and of the Magnetic Field 
Dependence of Current and Energy Flux 

a) Currents and Energy Fluxes under Lorentz- and Corioli8 Forces 

A well-known argument for the visualization of the Hall effect rims as follows : 
We consider first a metal plate as drawn in Fig. 1 which is subject to an electric 
field in the direction indicated there and we focus the attention to a small volume 
element whose linear dimensions are of the order of magnitude of a mean free 
path of the electrons. A blow-up of this element is shown in Fig. 2 and 3. Fig. 2 

A 

B 

L 

B 

Fig. 1 

---A A-- 

B 

z? 

B 

2? 

Fig. 2 Fig. 3 

is appropriate to the ease when there is no magnetic field and the metal is at rest 
in an inertial frame; it shows schematically the paths of some electrons between 
collisions and these paths are straight lines. More electrons move upward than 
downward because of the electric field and therefore we have a net charge trans- 
port, or a current across the plane A--A  but no current across the plane B--B; 
this illustrates the first term on the right hand side of Eq. (4.4). Fig. 3 shows 
the paths of the same electrons, but now the metal rotates with respect to an 
inertial frame in the plane of the plate, or is subject to a perpendicular magnetic 
field, or both. The electron paths are curved under the influence of the Lorentz 
force and the Coriolis force and as a result there is a charge transport, or current, 
across the plane B--B, i.e. perpendieular to the electrie field. This argument 
offers a suggestive interpretation of the Hall current which is represented by the 
second term on the right hand side of Eq. (4.4). 

Let us now leave the ease of electrical conduction and consider heat con- 
duction instead. Fig. 4: shows the same metal plate as Fig. 1; however, now there 
is no electric field but a temperature gradient in the indicated direction and the 
mean velocity v~ of the electrons is zero. Fig. 5 shows a blow-up of a little element 
of the plate and straight electron paths appropriate to the ease when the plate 
is at rest in an inertial frame and when there is no magnetic field. Now the numbers 
of electrons going up or down through the plane A--A is equal but the upward 
bound electrons carry a higher energy in the mean than the downward bound 
electrons. There results a net flux of energy across the plane A--A,  but no flux 
of energy across the plane B--B, and indeed by (4.7) we expect qi to be parallel 
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0T 
to - -  in th is  case. Fig.  6 shows the  same s i tua t ion  when e i ther  a magne t ic  f ield 

~x i 
is p resen t  or the  p la te  ro ta t e s  or both .  Now there  is also a f lux of energy  across  
the  p lane  B - - B  which in (4.7) is r epresen ted  b y  the  second t e rm on the  r igh t  
h a n d  side. 

, 4 - -  

t? 
t 

I 

B 

Fig. 4 

- - , 4  

B 

T 

B 

B 

',...~,- 1 T | 

/1 - ' -  ---,4 

8 

Fig. 5 Fig. 6 

We note  t h a t  the  cur ren t  pe rpend icu la r  to the  electric field or the  energy  f lux  
pe rpend icu la r  to  the  t e m p e r a t u r e  g rad ien t  can e i ther  be c rea ted  b y  a magne t i c  
f ield or b y  the  r o t a t i o n  of the  f rame.  I n  general  of course bo th  effects m a y  be 
presen t  and  one m a y  cancel  the  other ,  a l though  i t  t akes  an  e x t r e m e l y  h igh  angu la r  
ve loc i ty  to  offset the  influence of a magne t ic  f ield for which the  Ha l l  effect is 

observable .  

b) The L a w  o/ Wiedemann-Franz  

The coefficients ~ and  N in Ohm's  law (4.4) and  the  coefficients ~ and  K in 
Fot t r ier ' s  law (4.7) can be made  more  expl ic i t  b y  eva lua t ion  of the  in tegra ls  I s  
which were def ined in (4.2). 

The eva lua t ion  of the  in tegra ls  IN is f ac i l i t a t ed  b y  the  fact  t h a t  the  e lect ron 
gas in a me ta l  represents  a s t rong ly  degenera te  F e r m i  sys tem.  U n d e r  the  assump-  
t ion of comple te  degenera t ion  - -  where ~ ~--- ~o >~ 1 - -  one can eas i ly  prove  t h a t  ~ 

[ 2 ' - -  n+l  n--1 3~/3]~2 ~2/3 
i ,  c 1 2 (kT)  -~ -  (In ~0)--T, where In ~0 _ _  (5.1) 

and  the  index  c on I .  denotes  comple te  degenera t iom 
Thus according to  (4.5) the  electric conduc t i v i t y  and  the  Ha l l  coefficient come 

out  as 

~ - ~ - - 3 -  h - - ~ -  3 h a " 

Inse r t ion  of (5.1) in to  t h e  coefficients u and  K in (4.8) shows t h a t  bo th  these  
coefficients vanish  in a comple te ly  degenera te  gas so t h a t  there  call be no f lux 

a E.g., see [6], p. 262ff. While there is no actual calculation of I n in [6], the method of 
determining similar integrals of ~his type in ~he case of a completely degenerate and a strongly 
degenerate gas is explained there. 
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of energy in t ha t  case. For  the calculation of these coefficients it is therefore 
necessary t h a t  we take account  of the fact  that ,  while the electron gas is s t rongly  
degenerate,  the degenerat ion is no t  complete. For  the s trongly degenerate gas 

i 
one can expand I-m~ in a series of increasing powers of i ~  of which we only  

./n 6 

need the first two non-vanishing terms;  these read a 

~2 1 ) 
I , = I n  ~ l ~ - [ ( n - -  1 ) ( n - -  3 ) - -  ( n - -  1)]24(ln~O)2 " (5.3), 

Thus  we obtain for ~ and K according to (4.8): 

16~a talc2 1T(kT in ~o) K - -  4~2 mk2ea 12T(kT in ~o)1/2. (5 .4 )  
Z - -  9 - -  h 3 ' 9 h ~ 

Comparison of (5.4)i and (5.2)2 shows that 

~2 ]~2 

3 e 2 
T (5.5) 

so that the ratio of the heat conductivity to the electric cor~ductivity is pro- 
portiona] to the absolute temperature with a universal factor of proportionality. 
This result is known as the law of WIEDEMANN-FRANZ and its explanation was 
a major success for the kinetic theory of metal electrons. It may be noteworthy 
that the coefficient K in the flux of energy and the Hall coefficient S in the 

electric current have the same ratio, i.e. 

S 3 e 2 

according to (5.4)2 and (5.2)2. 
Thus  we conclude tha t  the frame dependence of the flux of energy is governed  

by  the Hall coefficient. 

A c k n o w l e d g e m e n t  

This work was done while I was supported in part by a grant from the 
National Science Foundation to the Johns Hopkins University in Baltimore, 

Md. USA. 

References  

[1] C~PMA~V, S., and T. G. COW~.rNG: The ~Iathematical Theory of Non-Uniform Gases. 
Cambridge University Press. i961. 

[2] TRVESI)ELL, C. : On the Differential Equations of Slip Flow. Proceeding of the National 
Academy of Science 34, 342 (1948). 

[3] MffLL:ER, i.: On the Frame Dependence of Stress and Heat Flux. Arch. l~at. Mech. Anal. 
45, 241 (1972). 

[4] EDI~L]~N, D. G. B., and T. A. MeLE~NA~: Material Indifference: A Principle or a Con- 
venience, Int. J. Engng. Sci. II, 813 (1973). 

5 E.g., see again [6], p. 265ff. 



128 I. ~I~iJ'LLER: On the Frame Dependence of Electric Current and Heat Flux in a l~[etal 

[5] WANG, C. C. : On the Concept of Frame indifference in Continuum ~ech~nics and in the 
Kinetic Theory of Gases (to be published). 

[6] SOMME~FELD, A. : Vorlesungen fiber Theoretisehe Physik, Bd. V, Thermodynamik und 
Statistik. Wiesbaden: Dietrichsche Verlagsbuchhandlung. 1952. 

[7] TRUESDELL, C., and R. TouPI~: The Classical Field Theories (Handbuch der Physik III/1). 
Berlin--GSttingen--tteidelberg: Springer. 1960. 

Pro/. Into Mi~ller 
Institut ]i~r theoretlsche Physik 

Universit~it Di~sseldor/ 
Universitgtsstrafle 1 
19-4000 ;Digsseldor] 

Federal Republic o/ Germany 


