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Summary — Zusammenfassung

On the Frame Dependence of Electric Current and Heat Flux in a Metal. The ideas
and methods of the kinetic theory of metal electrons are used to show that Ohm’s law of
electric conduction and Fourier’s law of heat conduction in a metal both contain frame de-
pendent terms. It follows that the principle of material objectivity does not hold rigorously.

Zur Bezugssystem-Abhiingigkeit des elektrischen und des Wirmestroms in einem
Metall. Die Ideen und Methoden der kinetischen Theorie der Metallelektronen werden ver-
wandt, um zu zeigen, daB das Ohmsche Gesetz der elektrischen Leitung und das Fouriersche
Gesetz der Warmeleitung in einem Metall systemabhéingige Terme enthalten. Es folgt, daf das
Prinzip der materiellen Objektivitit nicht in Strenge gilt.

1. Introduction

This paper makes use of the simple ideas underlying the kinetic theory of
metal electrons to derive approximate expressions for the relations between
electric current and electric field and between heat flux and temperature gradient
in a metal. In continuum mechanics and thermodynamics such relations are
called constitutive relations and, according to the principle of material frame
indifference, these relations should be independent of frame. It is shown here that
the kinetic theory of metal electrons does not support the principle of material
frame indifference; indeed, both Ohm’s law of electric conduction and Fourier’s
law of heat conduction are shown to be dependent on frame. The frame dependence
of these laws is due to the action of the Coriolis force upon the electrons in free
flight between collisions. Formally, the effect of the Coriolis force is similar to the
effect of a magnetic field on the free flying electrons, and therefore both the frame
dependent parts of Ohm’s law and of Fourier’s law are governed by the Hall
coefficient. It is true though that the Hall effect is much bigger then the Coriolis
effect because of the large specific charge of an electron.

To my knowledge the first authors to remark upon the frame dependence of
constitutive relations in the kinetic theory were CEAPMAN and CowLiNg (see [1],
p. 266) who observed without comment that in a gas the Burnett equations for
stress and heat flux show a dependence on the antisymmetric part of the velocity
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gradient. In [2] TrRuesDELL found the same dependence and rejects the corre-
sponding terms as improbable; he suggests that there may have been an error in
the kinetic theory analysis or that such terms are cancelled by higher iterates.
This latter proposition was found invalid when M¥LLER [3] showed that even the
exact equations of transfer, which can be derived in the case of Maxwellian mole-
cules, contain frame dependent terms. Miiller exhibited the consequence of one
such term to the heat flux of a rigidly rotating gas and showed that the effect
produced by it is negligible under normal conditions. EpELEN and MoLENNAN [4]
recently rediscovered the dependence of the Burnett equations for stress and heat
flux on the antisymmetric part of the velocity gradient and discussed its impli-
cation upon the principle of material frame indifference. Even more recently
Waxe [5] has criticized MULLER [3] and EpELEN and McLENNAN [4] because their
analyses are not rigorous and, of course, it is quite true that the iterative schemes
in the kinetic theory are in want of a rigorous basis. On the other hand, these
schemes offer suggestive approximations and it is generally accepted that they
lead to the statistical version of macroscopic constitutive equations.

The present paper has the purpose to exhibit yet another case of frame
dependence of constitutive relations. In linking this frame dependence to the well
observed Hall effect the paper seems to make a convineing argument for the pro-
position that the principle of material frame indifference is only approximately true
in a metal.

Further research is clearly indicated to determine where this approximate
principle ceases to be reliable.

2. The Collision Equation for Metal Electrons and Some Moments
of the Distribution Function

a) The Collision Equation

The kinetic theory of metal electrons is based upon the idea that the electrons
in a metallic body move like free particles which occasionally collide with a lattice
ion but not with each other. The ions are assumed to be rigid spheres of radius s
which are at rest at their lattice points; their (uniform and constant) density will
be denoted by n,. The electrons are assumed to be mass points of mass m, and due
to the large mass ratio of ions and electrons it is reasonable to consider the energy
of an electron to be unchanged by a collision. Therefore, the velocities ¢; and ¢;” of
an electron before and after a collision are related by

of = ci — 2ei(caes) (2.1)

when ¢, is the unit vector from the center of the ion to the point of impact of the
electron. The mean free path between two collisions will be denoted by 7; it is

defined as = .
NS>

The state of the “electron gas™ is characterized by the phase density f(x, ¢;, £)
of electrons at the point x;, time ¢ and with velocity ¢;. Thus

F(x;5 ¢, ) day day dacy dey dey deg = f dae de
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is the expected number of electrons in an element d de of phase space. This phase
density obeys the collision equation®

2% w

L AT TR R S ;L i

pra ks 6xi+cz P _nlffc(f f) cos 0 sin 0 46 de, (2.2)
00

where ¢ is the magnitude of the electron velocity, 6 is the angle between ¢; and ¢;
and ¢ is the angle of the plane spanned by ¢, and ¢;” with an arbitrary fixed plane
through ¢; - f and § are the values of the phase density for the velocities ¢; and ¢,
respectively. '

The components x;, ¢; and ¢; of position, velocity and acceleration respectively
are referred to coordinate axes in a non-inertial observer frame. The corresponding
quantities referred to coordinate axes in an inertial frame are denoted by z;*, ¢;*
and é;* and we have the transformation formulae

C; = Oijcj* + W,-,-(x,- — by) + i)i, (23)
& = 4™ -+ 2Wise; — by) — Winlay — by) + Walwg — ) + bs,

where 0,;(1) is a time dependent proper orthogonal matrix and b;(#) is a time
dependent vector. W; is defined by 0;0; and represents the antisymmetric
matrix of angular velocity of the non-inertial observer frame with respect to an
inertial frame.

If in the inertial frame we have an electro-magnetic field with components E;*,
B;*, the electrons of velocity ¢,* are subject to the Lorentz force —e(H* 4- g

¢;*By*), and their acceleration is ¢* = — % (B;* + &c;*B*). Insertion of this

value into (2.3); leads to the expression

o € .
i = — - (Bi + eijciBy) + 2Wiile; — by) — Wiy — by) (2.4)

+ Walwe — be) + b
for the acceleration of the electrons in the non-inertial frame. In Eq. (2.4) E;
and B; denote the components of the electro-magnetic field in the non-inertial

frame and use has been made of the fact that the components of the Lorentz
force —e(B,* 4 eqpc;*By*) transform into

—e(H; + s5CiBr) = —O0spe(By* 4 enjpt;i*Bi*)

under the transformation (2.3); (e.g. see [7], p. 672).
We denote the velocity-independent part of the acceleration in (2.4) by k;
and write

¢ =k; + (2Wi;‘ — 7;‘ 8ijkBk) Cj- (2:5)

1 B.g. see [6], p. 311f. As far as convenient I follow [6] in notation and argument.
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Thus we have for the collision equation

o4, Ty (o L 1o
ot + Cq 8.’1;i i:kz + <2Wzy m ezkak) 07:| 8ci

(2.6)

2n n
:iffcq'_f)cosesmedede,
7l
0 0

where k; is given by the equation

by = — 2

m

E; — 2W;b; — W?j(%‘ — bj) + Waplm — by) + b;. (2.7)

b) Moments of the Distribution Function

From the definition of the phase density it follows that

o= [ mfdc 2.8)

is the density of the electron gas; the integration extends over all velocity com-
ponents from — oo to oo, The quantities

oV = fmcif de, 2.9
Py= f meqif de, (2.10)
qi_:_fﬁ;- ce,f de, 2.11)

are the mass flux, momentum flux and energy flux respectively due to the motion
of the electrons. Also the electric current carried by the electrons is given

Ji = —% oV = — f@cif de. (212)

Since the lattice ions are supposed to be at rest according to the model exploited
here, they do not contribute to the electric current nor to the flux of energy
and therefore ¢; and J; as defined in (2.11) and (2.12) represent the energy flux
and the electric current respectively in the metal. The objective of this paper
is the calculation of approximate expressions for ¢; and J;.

3. Sommerfeld’s Iteration for the Phase Density

a) Bquilibrium Phase Densities

The equilibrium phase density of the electrons is known from statistical
mechanics of systems of identical Fermions:

2m? 1
fole) = 25— 3.1)
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where h is Planck’s constant, T'is the temperature and ¢ is a function of p and T'
whose form follows from the requirement

3
0= 2—;”3— " e (3.2)

me?

—C'B%_T—[—l

While the phase density f, makes the collision production on the right hand side
of the collision equation (2.6) vanish, it does not necessarily satisfy the collision
equation. This will only be the case, if the fields ¢ and 7', or { and 7' satisfy the
conditions

=0. (3.3)

- i

ﬁ_o) @=O’ Iﬂalng_k o

ot ot m  ox; ox;
Therefore, in equilibrium density and temperature must be time-independent
and the temperature field must be uniform, while a density gradient may exist
when it i balanced by a conservative field k;. In particular, however, if H; is
chosen so as to make k; in (2.7) vanish, the density field must also be uniform
in equilibrium.

by Approximate Phase Density in Non-Equilibrium

When the fields of { and 7' do not conform to the conditions (3.3), the collision
equation cannot have the solution (3.1). For that case, following Sommerfeld I lay
down the expansion

f="o+ Uk + Upciey + UpimCyCiCm -+ -+ (3.4)

for the solution of the collision equation. Here f, is the phase density of “local
equilibrium”, ie., it has the form (3.1) but with { and 7 being unrestricted
functions of %, and ¢; the coefficients Uy, Uy, Ui, -.. in (3.4) form symmetric
and traceless tensor functions of z,, ¢ and the magnitude ¢ of the velocity. These
functions are determined by an iterative scheme of which I describe the first two
steps:

First Step: The left hand side of the collision equation (2.6) is calculated by use
of the term f, in (3.4), while its right hand side is calculated by use of the two
terms fo -+ Uie, in (3.4). An easy calculation shows that

27 7

ilff eley’ — ¢;) cos Bsin 8 df de = — —ll— cCy (3.5)
TT!
0 0

and therefore this first step gives an expression for Ui, in terms of first deriva-
tives of the fields ¢ and 7.

Second Step: The left hand side of the collision equation (2.6) is calculated by use
of the two terms f, + Uic, — the latter of which has been calculated in the first
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step — while its right hand side is calculated by use of the three terms fy +- Ujcy
-+ Upce;. One shows easily that

2

ilffc(ck’c,’ — o) cos 0 sin 0 dO de = %— ¢ (ckcl - % 026k1> (3.6)
7T

and therefore the second step gives an expression for Upcic; in terms of first and
second derivatives of the fields ¢ and 7.

Further steps follow the same prescription and some reflection makes it clear
that this iterative scheme provides us with an expansion of f into terms of in-
creasing powers of the mean free path L.

With the prescription thus given the actual calculation of Uy, and Uy,
is a straightforward matter even though it is somewhat tedious. Therefore, I re-
strict the attention to the case where the phase density is time-independent and
even in that case 1 only list the result: With the definitions

c*\n
(_ em>
_ 3 ¥ ol
A, = — e and F; = P, — k&, (3.7)
EE z

and if one ignores terms of third order in the mean free path I, the phase density
comes out as

29 ¢ c2eolnT
= Ay — 14, = —
h3{° 1ckT<'+2 c?xk)

1 opcy ME 2 olnT 2 elnT
— =24, — 24,) XL P+ — —
2 [( ! ) \F T3 oy, L
. Ol M ?ﬂcﬁ 6111T__¢f_ alnTalnT_azlnT
Ve B o ko, 2\ ow, om  ow,om
: 2 oln T
A4, %™ g (L .
-4, (P - (3.8)
2 olnT
— 4 2Ichk<Fk+2 axk>
2 olnT
+ 4L =TT (2Wllc — &y Bu ) <Fk + 2 Tom )]}

This expression I consider as a sufficiently good approximation of the phase
density for the purpose at hand which is the calculation of the electric current oJ;
and of the flux of energy ¢;.

4. The Laws of Ohm and Fourier for Eleetrical Conduction and Heat Conduction

a) The Electric Current and the Flux of Energy

The phase dengity (3.8) is now introduced into the integrands of the integrals
{2.12) and (2.11) which define the electric current and the flux of energy respec-
tively. Inspection shows that only the second and the last term on the right hand
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side of (3.8) contribute to J; and g; and we obtain

oo

eyt (s U W, — 2, 3 ¢ ehnT
Ti= o B 1 [ o (Wi — g o) | s (P 5 T2T) e,
¢ (4.1)
m 2m® ,dm m - l e 2 olnT
4y = —?ﬁlgﬁ [(%k—f-—o*( uc—2—8um )}CAl (Fk+'2_ o )dc.
0
With the definition
I=[c4,de  (n=2,3,...,7) (4.2)
0
we may rewrite the Eqs. (4.1) in the forms
2 47
J; =eh—"§l§ ]Z, [{Is zk+Il( zk_é%esikan)}Fk
1 e olnT
5 {Isaz’k + Il (Wik o 8ikan)} po },
(4.3)
m 2m® ;4dn m e
6 =—7 7 l; 7 [{155ik + 1 (Wik o EilmBn)} F

|~

_+_

cln T
{I7ailc + Il (Wilc — %n EilmBn)} Gazk ]

b) Ohm’s Low

Let us consider a metal in which the temperature and the electron density
are uniform and which is subject to an electric field. In such a situation we have

Fp= % B = ;e; By + 2Wib; — Wiila; — by) — Wl — by) + b

and Eq. (4.3), reduces to Ohm’s law of stationary electrical conduction?

87

To= T g Al — L Vew By — 2 T W)l By

The factor of #; on the right hand side of (4.4) is called the electric conductivity
which we denote by o, and the factor of (B XE’) is called the Hall coefficient
which we denote by §':

4 m2e® 2

Ly, §=_fmme P (4.5)

’ T 3 W kT

I

w|§
3

Pl

? I/ is the part of the total electric field ¥ which creates a current, the rest of J, merely
counterbalances the force 2W; b Wiz, — b; i) — Wil — b)) + b; so that the density
of electrons is kept uniform.
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The whole matrix which relates J; to £, is called the tensor of electric con-
ductivity. While this tensor is often considered to be a constitutive quantity,
inspection of (4.4) shows that it depends on frame through its dependence on
the angular velocity matrix Wy. To be sure though, the dependence on frame will
generally be negligible because of the large value of the specific charge of electrons.

¢) Fourier’s Low

Elimination of ¥} between the two Eqs. (4.3) leads to an expression for the
flux of energy in terms of the electric current and the temperature gradient, viz.

e Am s (L I L
9 = 20 1, [azk ; (15 13)Z<Wzk om 8zlcmBm>] Jk'
_mmiadn m [ I 3
> % '3 T [<I7 13>5““ (4-6)
2Ll | LI} e oInT
+ (IG 1, + 12 ) Z(Wzlc om 3@!:an)] £ .

In particular, when, there is no electric current the Eq. (4.6) reduces to Fourier’s
law of heat conduction which relates the energy flux ¢; to the temperature gra-
dient:

—_Zmm I A Y
w= T [(I =) o (4.7)
(g, el LI e g, p o™y (| L
e

The factor of %1— on the right hand side of (4.7) is the negative heat conductivity
;

which we denote by . The factor of (B X grad 7') governs the effect of the magnetic
field on the flux of energy, and we denote it by K:

I K= _mme B (p 20l
Is H 6

I
- +ﬁ). (4.8)
- 3

IS I32

The whole matrix which relates ¢; to —S—T is called the tensor of heat conduc-
&,

tivity and we conclude from (4.7) that this tensor is frame dependent, because
it depends on the angular velocity matrix W of the frame.

Therefore, the kinetic theory of metal electrons does not support the view
of continuum thermodynamics according to which the flux of energy ¢; is related
to the field of temperature in a manner solely dependent on material.

8 In the derivation of (4.6) from (4.3) terms of higher than second order in the mean free
path were neglected for consistency with the approximation (3.8) of the phase density.
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5. A Suggestive Interpretation of the Frame Dependence and of the Magnetic Field
Dependence of Current and Energy Flux

a) Currents and Energy Fluxes under Lorentz- and Coriolis Forces

A well-known argument for the visualization of the Hall effect runs as follows:
We consider first a metal plate as drawn in Fig. 1 which is subject to an electric
field in the direction indicated there and we focus the attention to a small volume
element whose linear dimensions are of the order of magnitude of a mean free
path of the electrons. A blow-up of this element is shown in Fig. 2 and 3. Fig. 2

i |
8 ] .
I ‘ 5
' O wy= &,
A—t—R— 4 A—- I . - A
: |
L ]
Fig. 1 Fig. 2 Fig. 3

is appropriate to the case when there is no magnetic field and the metal is at rest
in an inertial frame; it shows schematically the paths of some electrons between
collisions and these paths are straight lines. More electrons move upward than
downward because of the electric field and therefore we have a net charge trans-
port, or a current across the plane 4—A4 but no current across the plane B—B;
this illustrates the first term on the right hand side of Eq. (4.4). Fig. 3 shows
the paths of the same electrons, but now the metal rotates with respect to an
inertial frame in the plane of the plate, or is subject to a perpendicular magnetic
field, or both. The electron paths are curved under the influence of the Lorentz
force and the Coriolis force and as a result there is a charge trangport, or current,
across the plane B—B, ie. perpendicular to the electric field. This argument
offers a suggestive interpretation of the Hall current which is represented by the
second term on the right hand side of Eq. (4.4).

Let us now leave the case of electrical conduction and consider heat con-
duction instead. Fig. 4 shows the same metal plate as Fig. 1; however, now there
is no electric field but a temperature gradient in the indicated direction and the
mean velocity v; of the electrons is zero. Fig. 5 shows a blow-up of a little element
of the plate and straight electron paths appropriate to the case when the plate
is at rest in an inertial frame and when there is no magnetic field. Now the numbers
of electrons going up or down through the plane A—A is equal but the upward
bound electrons carry a higher energy in the mean than the downward bound
electrons. There results a net flux of energy across the plane 4—A4, but no flux
of energy across the plane B-—B, and indeed by (4.7) we expect ¢; to be parallel
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to _gil’__ in this case. Fig. 6 shows the same situation when either a magnetic field
]

is present or the plate rotates or both. Now there is also a flux of energy across

the plane B—B which in (4.7) is represented by the second term on the right

hand side.

B B

1 |

. . 7 T ® 5

| | Owy= &y

A—————i——————A A— A A

8

i T+al ‘[ 7+aT
Xy
Fig. 4 Fig. 5 Fig. 6

We note that the current perpendicular to the electric field or the energy flux
perpendicular to the temperature gradient can either be created by a magnetic
field or by the rotation of the frame. In general of course both effects may be
present and one may cancel the other, although it takes an extremely high angular
velocity to offset the influence of a magnetic field for which the Hall effect is
observable.

b) The Low of Wiedemann-Franz

The coefficients ¢ and § in Obm’s law (4.4) and the coefficients » and K in
Fourier’s law (4.7) can be made more explicit by evaluation of the integrals I,
which were defined in (4.2).

The evaluation of the integrals I, is facilitated by the fact that the electron
gas in & metal represents a strongly degenerate Fermi system. Under the assump-
tion of complete degeneration — where { = (> 1 — one can easily prove that*

-

n—
2\ 2 ntl n—1 328%2 23

¢ = (= 2 0) 2 0 .
I, (m) (&T) (Ing% 2, where In(gl= Szl BT

(5.1}
and the index ¢ on I, denotes complete degeneration.
Thus according to (4.5) the electric conductivity and the Hall coefficient come
out as
167

o =—
3

me 0 = _ & 7_’”13 Z 2 0)1/2
W (kT In 29), S = T 7% Vm (kT In {012, (6.2)
Insertion of (5.1) into the coefficients » and K in (4.8) shows that both these
coefficients vanish in a completely degenerate gas so that there can be no flux

4 T.g., see [6], p. 262ff. While there is no actual calculation of I, in [6], the method of
determining similar integrals of this type in the case of a completely degenerate and a strongly
degenerate gas is explained there.
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of energy in that case. For the calculation of these coefficients it is therefore
necessary that we take account of the fact that, while the electron gas is strongly
degenerate, the degeneration is not complete. For the strongly degenerate gas

n

I, . . . .
one can expand 75 In a series of increasing powers of
n

G of which we only

need the firgt two non-vanishing terms; these read®

I, =1, (1 i —1)(n—3) — (n— 1] ;—1 <1n150)2)' (5.3)

Thus we obtain for » and K according to (4.8):

1673 mk? 47 mk2e®
= My 0 = _
P T T&T 1n £9), K P

PT(ET In 202, (5.4)

Comparison of (5.4); and (5.2), shows that

% w? k2
T3 (5.5)
so that the ratio of the heat conductivity to the electric conductivity is pro-
portional to the absolute temperature with a universal factor of proportionality.
This result is known as the law of WIEDEMANN-FRANZ and its explanation was.
a major success for the kinetic theory of metal electrons. It may be noteworthy
that the coefficient K in the flux of energy and the Hall coefficient S in the
electric current have the same ratio, i.e.

K 2 k2

82 _ = il
8 3

62
according to (5.4), and (5.2),.

Thus we conclude that the frame dependence of the flux of energy is governed.
by the Hall coefficient.
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