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Summary 
I t  is shown that elastic-plastic response of metal matrix composites reinforced by 

aligned continuous fibers can be described in terms of two distinct modes. In the matrix- 
dominated mode, the composite deforms primarily by plastic slip in the matrix, on planes 
which are parallel to the fiber axis. In the fiber-dominated mode, both phases deform 
together in the elastic and plastic range. Constitutive equations are derived for the matrix- 
dominated mode of deformation in composites with elastic-perfectly plastic matrices. 
Response in the fiber-dominated mode is approximated by the self-consistent and Voigt 
models The two deformation modes give different branches of the overall yield surface 
which identify the state of stress that activates a partmular mode, and indicate the 
conditions for mode transition in a given composite system. The matrix-dominated mode 
~s found to exist in systems reinforced by fibers of large longitudinal shear stiffness, such 
as boron or silicon carbide. Systems reinforced by more compliant fibers, such as graphite, 
appear to deform exclusively in the fiber-dominated mode. The results show good agree- 
ment with experimentM data, and with predictions obtained from a more accurate material 
model. They also help to reeoncde several different plasticity theories of fibrous com- 
posites, and suggest limits of their validity 

1. Introduction 

This paper  explores certain new aspects of plastic deformat ion  of  metal  matr ix  
eomposit, e materials  reinforced by aligned cont inuous  fibers, which were revealed, 
in part ,  in the course of a recent  exper imental  p rogram conducted  in cooperat ion 
with Professor Phillips in his l abora to ry  at Yale Univers i ty .  

To in t roduce the subject ,  imagine tha t  an unreinforced elastic-plastic layer  

is subjected to incremental  loading by  macroscopical ly  uni form states  of  plane 
stress. At  each point  of  the loading pa th  there is a certain macroscopieal ly  uni form 
plastic strain ra te  field which m a y  be related, e.g., t h rough  Tresca or Mises yield 

conditions,  to  a hypothe t ica l  family of  slip planes and directions on which the 
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overall field is resolved into simple shear deformations. Now, if the layer is 
reinforced by aligned, elastic fibers, and subjected to the same incremental 
loading history, plastic slip may  still take place on those planes which are parallel 
to the fiber axis, but  not necessarily on planes which intersect the fibers. Slip 
on the intersecting planes may  be impeded to a certain extent ,  depending on 
the fiber properties and the state of stress. For example,  fibers with large shear 
stiffness, such as boron, silicon carbide, or alumina (FP), may  render all off-axis 
planes inactive in a wide range of stress states; whereas fibers which are more 
compliant  in shear, such as graphite, m a y  only have a limited effect. 

These considerations suggest tha t  elastic-plastic response of the fibrous ply 
may  be analyzed in terms of two distinct deformation modes. In the case of stiff 
elastic fibers, macroscopic plastic straining will be preferred in certain directions, 
through local deformation of the matr ix  interlayers which are, in actual com- 
posite systems, only 10-100p thick. Under such circumstances one expects tha t  
simple shear will be the dominant  mode of local plastic deformation of the matrix,  
and tha t  the fiber will not part icipate in this mode. Therefore, the composite 
ply may  be regarded as an elastic-plastic continuum with slip planes parallel to 
the fiber axis. Apar t  from this restriction, the ply deforms plastically in the 
same way as the matr ix,  and therefore, this type of deformation will be referred 
to as the matr ix-dominated  mode. 

In  systems reinforced by  more compliant  elastic fibers, and under overall 
stresses which do not favor the matr ix  mode, both phases must  deform together 
in the elastic and plastic range. The fiber often has a significant influence on 
the overall response, hence this case will be referred to as the fiber-dominated 
mode. No particular deformation mechanism is suggested, the mode must  be 
t reated as a general case of plastic deformation of heterogeneous medium. 

Of course, a theory which can be applied to the general ease should be able 
to predict both modes. I t  will be shown in the sequel tha t  this is true for some 
theories, but  not for others. In fact, certain approximate  procedures appear  to 
be adequate for the f iber-dominated mode, but  not for the matr ix-dominated  
mode. Therefore, it is desirable to have a plastici ty theory which describes overall 
response in the matr ix  mode, and which indicates the conditions responsible for 
mode transition. 

This paper  considers elastic-plastic response of composite plies which may  
deform in either mode, depending on material  properties and the state of stress. 
The matr ix-dominated  mode is analyzed first. This is followed by  a brief de- 
scription of the self-consistent and Voigt approximat ions  which appear  to rep- 
resent certain aspects of ply behavior in the f iber-dominated mode. Each mode 
gives certain branches of the overall yield surface which is then found as their 
internal envelope. In  each material  system the overall yield surface identifies 
the stress states which can act ivate  a particular deformation mode. The results 
are compared with experimentM data, and discussed in terms of their connections 
with other theories. 



A Bimodat Plasticity Theory of Fibrous Composite Materials 221 

2. Matrix Dominated Plastic Deformation 

2.1 Yield Condition 

Consider a thin layer of a fibrous composite under macroscopieally uniform 
state of plane stress. The fibers are aligned in the direction of the Cartesian 
coordinate xl, the xlx2-plane coincides with the midplane of the layer. Overall 
elastic properties of the layer are known in terms of elastic constants and volume 
fractions of the phases. In  this section we consider only the matr ix  dominated 
mode of plastic deformation in the thin interlayers of matr ix  which seperate the 
stiff, aligned fibers. To model this deformation mode, we assume tha t  the in- 
terlayers may  deform plastically only by simple shear on planes parallel to the 
fiber axis. Although the matr ix  is a polycrystal,  the assumption implies tha t  
the kinematics of plastic deformation of the composite is somewhat  similar to 
tha t  of a single crystal. Therefore, in the analysis tha t  follows we regard the 
fibrous aggregate as an anisotropic cont inuum with slip planes parallel to the 
fiber axis xl, and use several results from single crystal plastici ty to obtain its 
overall response. Figure I shows the geometry  of the two conjugate slip systems 
]c = 1, 2, tha t  may  become active under a macroscopic state of plane stress in 
the xlx2-plane, n~ denotes the normal  to the slip plane, and s~ the slip direction. 

Let  

13 = 131 = x - 132, 0 = 01 = 02. (1) 

Then, 

n 1 = [0, cos [3, - sin ~3] (2) 
st = [cos O, sin 13 sin O, cos 13 sin O] 

X3 

X2 

X~ r 

Fig. I. Geometry of conjugate slip systems of the matrix-dominated deformatlon mode 



222 G.J .  Dvorak and Y A. Bahm-EI-Din 

ne = [0, - cos 13. - sin 13] (3) 
s., = [cos 0, sin [3 sin 0, - cos [3 sin 0]. 

The resolved shear stress on the plane n k in the direction sa. is 

and for the plane stress case considered: 

1 
vi,ls j = - s i n  2 [3 sin 0 e~.e,2 + cos [3 cos 0 %1 (5) 

2 

= - v ..... (6) 

The ma t r ix -domina ted  mode of plastic deformat ion  of  the fibrous composi te  

medium can be quite complex on the microseale. For  example,  slip in the lon- 

gi tudinal  direction a'l takes place on surfaces parallel to xl. In  contrast ,  slip in 
the t ransverse  direction, with s perpendicular  to x I. m a y  involve interact ion of 

slip planes with individual  fibers, except, perhaps  in composi te  plies reinforced 

by monolayers  of  fiber. Accordingly,  one would ant ic ipate  the macroscopic  flow 
stress % to depend on the direction of  s. However ,  bo th  mieromechanieal  mod- 

eling of  plastic flow in the fibrous medium [1], [2], and the experimental  results 

presented in the sequel indicate t ha t  the directional  dependence of  v0 is negligible. 
Therefore, the yield condit ion for eaeh slip plane k can be wri t ten as 

- ( m a x  - = o ,  ( 7 )  

where Vo > 0 is the mat r ix  or ply yield stress in simple shear. To find a specific 

form of (7) in terms of  the applied stress, it is necessary to evaluate  the max ima  

of (13, 0 ) .  

For  k = 1, f rom (5): 

(7 m(,!~)/0 ~ = %_~ (cos 2 ]3 sin 0 - q sin 13 cos 0) = 0 (8) 

0 zl;I/~ 0 = (5~,.~ ~ sin 213 cos 0 - q cos 13 sin 0 = 0, 

where 

q = %il~e->, for %e # 0. (9) 

I t  can be veriiied t h a t  equat ions  (8) give max ima  of zl,a~l and tha t  their 
solution is : 

For  [q] ~< 1 : 

sin [3, = I ~ ( 1 -  q : ) l  I;e = q t a n 0 ,  

]11, 
cos ~l = (1 + q2) 

sin01 = [(1 - q")/(1 + q2)]1:'_> = tan  131 (10) 

cos01 = [2q2/(1 + q2)]1/2. 

O <~ ftl <~ n/4: O <~ 01<~ 2rt 
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and, for Iql >/1 : 

~1 = 0 

01 = 0 for (~)1 = %,0  < (~2_~ < % (11) 

01 = rc for r = - % 

0l = 2 u for (721 = TO, 0 > (722 > - -  "C(). 

For  the conjugate  slip sys tem k = 2, one can write f rom equat ions  (1) and 

(6), in ana logy  with (10) and (11): 

For Iql ~< 1: 

sin ~2 = sin [31, cos [32 = - cos [31 

sin02 = s in0b  cos02 = cos0~ (12) 

and, for [ql >~ 1 : 

~32 = 0, 02 = 01. (13) 

The m a x i m a  of  xn~ can now be found for the two par ts  of  the solution of  
equat ions  (8). Subs t i tu te  (10) or (12) into (5) or (6), respectively,  to obta in :  

1 
max~(~) = - maxz~ 2) = ~(1 - q2)(~22 + q(~21, for[qt ~< 1 (14) 

and, f rom (13) and (5) or (6): 

max~(n~ ) = - max~(~ 2) = (~21, forlq[/> 1. (15) 

(t,) 
The direction of  max  %~ coincides with t h a t  of sk in equat ions  (2) or 

(3), t aken  for values of  ]3t., 0e (k = 1, 2), given by  (10) to (13). The sign of  
max  ~!~.~ refers to the  direction of  the shear  stress vec tor  in the  coordinates  of  

Fig. 1. Note  tha t  the absolute value of  the terms in equat ion (14) does not  depend 

on the respective signs of  (~22 and (~')1. 
Now, the m a x i m a  o f ~ ) ,  given by  equat ions  (14) and (15), m a y  be subs t i tu ted  

in the yield condi t ion (7). As expected,  bo th  slip systems k 1, 2 s tar t  to  yield 

at  the same macroscopic  stress level, hence a single overall  yield surface f((~) 
exists in the stress space r However ,  because the max  ~;/ are given by  the 
two different forms (14) and (15), the overall  yield surface has two branches.  

The first branch,  for [ql ~< 1, will be denoted  by  f~((~); it is given by  

_ 1  2 q'))2 2 = 0 .  fa(~) =5(522(1 -4- - -- t 0 

I f  q is el iminated f rom equat ion  (16), then  one obtains  

- + " '-T-1 - 1 = 0 .  
k % / k % 

(16) 

(17) 

The second branch  of  the overall yield surface , for ]q[ >~ 1, will be denoted  
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Fig 2 
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Transverse cross section of the initial yield surface of the matr ix-dominated  
mode 

by.f6(r I t  is obtained from equations (7) and (15) as: 

.) 
]i, (~) - ~ - g = o. (18) 

Note tha t  at IqJ = 1 the two branches coincide. 
The cross section of the overall yield surface is shown in Fig. 2, the complete 

surface is an infinite cylinder with axis (s1i. Figure 3 indicates the magnitudes 
of the angles [3 and 0 for the slip system k = 1 at different points of the two 
branches of the yield surface. Note tha t  the magnitudes of [3 and 0 are indicated 
by the distance, measured along the normal to the yield surface, between the 
yield surface itself and the [3 and 0 curves. I t  is now apparen t  tha t  on ~he branch 
.f~(r which is a function of q, there is a',2 # 0. as demanded by the definition 
of q in equation (9). 

2 . 2  S t r e s s - S t r a i n  R e l a t i o n 8  

The rate of deformation is given by 

d~ = d~ ~ + dsP. 

The elastic par t  is 

d ~ =  M ~ d ~  

(19) 

(2o) 
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I 
-4  ~ \ 

3 

"~ o~>~"'~ o l 
,~//~', ,  

/ ,  q o 

_ 

-2 

-3 

0-21 / TO 

q= 0"21/0"22 

xaLB ~ x2 

fb 

01 

~176 t 180 

270 ~ 

o;.v~ ~ fl = c~ [q2]/2 // 0 = tan-~[(1 - q2)/2q2]~ 2 

I 
1 ",, 2 3 4 

" ~  0-22//'0 

Fig. 3. Values of the angles ~3 ~nd 0 at initial yielding, as functions of the a.pplied stress 
ratio q = (;-21/~2~ 

where M e is the elastic compliance matrix.  For the plane stress case this becomes: 

d 8~ 1 = ( 1 / E ~ )  d (~]] - (vA/EA) d ~2.~ 

de~2 = - (vA/EA)d~I1 + (1/ET)d(~22 (21) 

d e~3 = - ( v 4 / E A )  d cql  - (v~/ET) d %2 

2 d ~ 1  = (1/GA) d(J2], 

where E A, GA, v A are overall elastic constants of the composite for axial extension 
and longitudinal shear, and ET, VT the Young's  modulus and Poisson's ratio in 
the transverse plane. 

In  evaluation of the plastic par t  of the strain rate,  we assume tha t  the matr ix  
does not harden, and tha t  constraint  hardening caused by phase interactions 
on the slip planes can be neglected. This implies tha t  % in equations (7), (16), 
and (18) remains constant  during plastic deformation. Also, we assume tha t  on 
each slip plane the plastic strain rate  vector  is normal  to the local yield surface 
at  the current loading point. 

To examine the consequences of normal i ty  on the active slip plane k, we 
introduce local stress coordinates Xl, % in this plane. In  the slip planes shown 
in Fig. 1, ~, is parallel to x~, and % is perpendicular to xl. F rom equation (5), 
for 0 = 0, and 0 = u/2, respectively : 

T1 = ~21 COS ~, T 2 = CY22 sin ~ cos ~. (22) 
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In these coordinates the yield condition (7) is a circle 

f(k) (~) - t ~  + t.~ - ~ = 0 (23) 

on each plane k. 
I t  now follows from equation (22) that  in the overall stress coordinates the 

yield condition (23) is 

f(a') ((~) = ((~-~1 + (~)e sine ~) cos2 [3. (24) 

I t  can be verified that  for Iq[ E 1 equation (24) gives the fo((~) branch (16) of 
the overall yield surface, providing that  ~ is taken from equations (10) and (12). 
Similarly, for Iqt>_-l, and ~ taken from equations (11) and (13), one recovers 
from equation (24) thefb(~) branch given by equation (18). Therefore, the overall 
yield surface (16) to (18) is a projection of the local surface (23) from its original 
zl%-plane into the overall ~.).~2vplane. Since the local surface is a circle, the 
current loading vector coincides with the direction of its outside normal at the 
loading point. 

The normali ty condition for the local plastic strain rate then suggests that  
on each active slip plane k: 

d ?P~ = d k max t(,~ ). (25) 

The overall plastic strain rate is obtained as a sum of all local contributions in 
the form 

de~j = ~ (n, sj + s, n3)dTP~/2, (26) 

where the summation is taken over all active slip planes. The components of s/, 
and n k for k = 1, 2 are given by equations (2) and (3) and by the extremum 
conditions (10) to (13). Specific results are: 

For Iql ~< 1: 

dd'~ = 0 

d d . ,  = 1 -d~(1  - q4)(s.,., 

de~a = - 1-d~ (1 - q4)(~22 = - d e P 2  (27) 
2 

2de~.) = 2de~l = 0 

2d~1 = d)v(1 + q'2) (y.~ 1. 

F o r  I~'1 > 1: 

de,~ = o for  io" # 21 (2s)  

2d~1  = 2d)v(Y21. 

Note that  (27) implies that  the composite ply is plastically incompressible 
in the matrix-dominated deformation mode. 

I t  is possible to show that  normali ty and consistency on each active slip 
plane guarantees normali ty and consistency on the maeroscale. In particular, 
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from the local s t rain increment  used in equat ion  (26), with (1) to (3): 

da22 z' = 4s in~3cos~s in0d7~, /2  (29.1) 

2 de~l = 4 cos ~ cos 0 d 7,Ps/2, (29.2) 

where ~ and 0 are given by  equat ions  (10) to (13). 
Therefore ,  for Iql ~< 1 one obtains:  

d ~22 1 - q2 
2dr - 2q (30) 

and for Iql>~ 1; using (5) and (11) 

d ~ 2  = 0, 2 d ~  = 2d7~.~ = 2d)~z2~. (31) 

Note  t ha t  these expressions are consistent  with (29.2) when Iql = 1 and [3--,0, 
0 - ,  0, and t ha t  t hey  imply  the existence of two conjugate  slip systems even for 

Iql/> 1. 
Equa t ions  (30) and (31) can also be der ived from the normal i ty  condit ion 

for the plastic strain vec tor  on the maeroscale.  
For Iql ~< 1, from equation (16): 

d e~2 _ d )~ 0fa (~)/~ z22 _ 1 - q2 
2d~1 d)~(?fo (~)/0(~21 2q ' (32) 

and for lqt >~ 1, f rom equat ion  (18): 

d ~2.2t~ = d Z ~ f  b ((~)/0 (~92_ = 0, (33) 

Next ,  the equa t ion  of consis tency for the local yield funct ion (7) is: 

d f  (k) (~) = 2 max  z(~) d ~I~ ) = 0. (34) 

Using equat ions  (5), (6), and (9) to (13) one obtains:  

d (~22 _ 2 q 
for Iql ~< 1 (35) 

d ~21 1 - -  q2, 

and 

d(~2! = 0, forlql/> 1. (36) 

In  a similar way,  the equat ions  of consistency for the macroscopic yield 
funct ions f , (~)  in equa t ion  (16) and fb((~) in (18) lead to: 

d %._, _ 2 q - 2 d ~1 
for Iql ~< 1 (37) 

d ~21 1 - q2 d e.~2 ' 

and 

dr = 0, forlql /> 1. (38) 

I t  is of ten advan tageous  to write the macroscopic stress-strain relat ions in 
terms of overall  ins tan taneous  stiffness r a the r  t han  compliance.  For  [q[ ~< 1, 
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e q u a t i o n  (37) sugges ts  t h a t  

( l  - r 
d ~ e l =  - P d ~ . ~ z ,  w h e r e p -  

2q  

T h e n ,  e q u a t i o n  (19) c an  be w r i t t e n  in  t e r m s  of  (21) a n d  (27) as 

(39) 

del l  = (1lEA) d(~ll -- (vA/EA) d(5.~z 

de22 = - (VA/EA)d(511 + (1/ET)dcYe2 + 2 p d e ~ l  

P de33 = -- (vA/EA)d(~I  - (VT/ET) d~2. 2 -- 2 pde21 

2de21 = (1/GA)d~.~1 + 2 d ~ l .  

(40.1) 

(40.2) 

(40.3) 

(40.4) 

F r o m  e q u a t i o n s  (39), (40.1), (40.2), a n d  (40.4) one o b t a i n s  t he  overa l l  i n s t a n -  

t a n e o u s  s t ress  i n c r e m e n t s  caused  b y  ap p l i ed  s t r a i n  i n c r e m e n t s :  

w h e r e  

1 
d~ l l  = ~-2[C4de11 + C3vAde.22 - 2C3 pK4de21 ] 

1 
d(~.)2 = C--([vA d e l l  + dee.) - 2 pde .~ ]  

d %3 = d (~ae = d (~a~ = 0 

d(~z~ = - pd(~ee, 

1 v~4 + 

[1 
C3 = [1 - p~/(a4C~)] 

(41) 

F o r  Iql/> 1 
(38): 

dcH = (1/EA)d~11 - (vA/EA)d(Ye2 

de22 = - (v ~ /EA)d~ l l  - (VA/EA)d~2z 

d e33 = - (vAlE A) d ~1| - (VT/ET) d ~22 

2de21 = 2de~l  

1 
d ~1! = ~ [(EA/ET) d 811 + V A d ~;22] 

1 
d~.~ = ~ [ v ~ d e l l  + de22] 

d~el  = d~as  = d~s2 = d~31 = 0. 

one  can  der ive  s imi la r  resu l t s  f rom e q u a t i o n s  (19), (21), (28), a n d  

(42) 
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3. Fiber Dominated Plastic Deformation 

3.1 Local Fields 

Consider again the thin layer of a fibrous composite under macroscopically 
uniform state of plane stress, described in Section 2.1. The elastic properties of 
the layer remain unchanged. However~ plastic deformation in the matr ix is now 
regarded in terms of the fiber-dominated mode, in which the applied stress may 
activate slip on many planes that  intersect the fiber axis. Matrix-dominated 
plastic deformation of the ply is suppressed to allow examination of the fiber- 
dominated mode in the entire plane stress space. Therefore, simultaneous de- 
formation of both phases must be considered in the plastic range. 

Accurate micromechanieal modeling of such plastic deformation processes is 
rather difficult; a comprehensive t rea tment  appears in references [1] and [2]. 
Our present scope is more limited. We wish to analyze the fiber-dominated mode 
in an approximate manner which would allow us to identify the boundary 
between the two deformation modes in the overall stress space, and which would 
also permit evaluation of plastic strains of the fiber-dominated mode in material 
systems where it is not particularly prominent.  This purpose is served by an 
approximation in which the overall response of the composite aggregate is derived 
from certain averaged responses of the phases. 

In particular, we adopt  and review briefly, the approach and notat ion de- 
veloped by Hill [3]. The volume averages of stress and strain increments in the 
phases are described by (6 • 1) column vectors d(~r, da~, r =f,  m, and related to 
the applied overall uniform increments d~, d~ through certain (6 • 6) matrices, 
or concentration factors: 

d ~ f  = Afd~, d~.~ = Amd~ (43.1,2) 

d(~f= Bfd(L d(~,, = B,~d(~. (44.1,2) 

The phase and volume averages are related by 

cfdsf + cmd~.,n = d~.: cfdqf + cmd(~ m = d ( L  (45) 

where cf + c,, = 1 are phase volume fractions. 
The local constitutive relations for the phase volume averages are assumed 

to be known in the form 

du~=M~d~r, d,~,.=L,,d~r, ( r = f , m )  (46) 

where M,, L are instantaneous compliance and stiffness matrices of the phases. 
In an elastic phase the local properties are constant, hence equations (46) are 
exact. However, if the phase deforms plastically, its properties become stress- 
dependent. Then, equation (46) can be accepted only as an approximation which 
may become unsatisfactory if changes in the local fields are not sufficiently 
uniform. 

In any event, the overall constitutive relations of the composite aggregate 
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can be writ ten in the form 

d~ = Md(y, d~  = Ldr.  (47) 

and, if (46) is accepted, then it follows from equations (43) to (47) tha t  

M =  cfMfBf  + c.,M.~B.,., L =  c /L fA f  + cmL. ,A  .... (48) 

and tha t  

cfA f + % A,~ = cfBf + % B,, = L (49) 

where I is a (6 • 6) identi ty matrix.  
Determinat ion of overall properties is thus reduced to evaluation of one of 

the concentration factors which needs to be found for a selected model of the 

composite material.  
For example, in the self-consistent model the concentration factors are ob- 

tained from solutions of inclusion problems in which each phase is embedded in 
an infinite, homogeneous composite medium under uniform overall strain or 
stress. In  the elastic case, the concentration factors for a fibrous composite were 
derived, for example,  by Walpole [4, Section 5]. Evaluat ion of their plastic 
counterparts  is difficult [5] and possibly unreliable if equation (46) becomes 
inaccurate. 

A part icularly simple form of the concentration factors can be found if one 
adopts the Voigt assumption:  

d ~.f = d ~.~ = d ~. (50) 

which immediately  gives 

and 

A f  = A.~ = I 

L =  c/Lf + c , ,L , ,  

Using equations (44), (46), and (47) one can write for each phase r =f . .m.  

d~, = L ~ d ~ =  B r L d ~  

whieh~ in combination with equation (50) gives: 

R, = L r L - 1 ,  

where L follows from equation (52). 

(51) 

(52) 

(53) 

(54) 

3.2 Yield Surfaces 

The overall yield surface of a composite medium is a boundary  of all stress 
points which can be reached from current state by purely elastic deformation. 
Suppose tha t  the fibrous ply consists of an elastic fiber and an elastic-plastic 
matr ix  with a local yield surface given by 

g.~ (~,,, - ~,,,) = o, (55) 

where am identifies the current position of the center. To each local stress vector 
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((L,~ - a,,,) there corresponds the vector  

(6  - ~t) = Bze 1 (%,  - a,~)  ( 5 6 )  

in the overall stress space; B,, e is the elastic matr ix  stress concentration factor. 
Now, if the overall yield condition for onset of macroscopic plastic deformation 
is defined in terms of local stress averages, then it is the projection (56) of the 
surface gm to the overall stress space 6. This can be writ ten as 

g (~ - a) = 0, (57) 

subject to (56). 
Now, suppose tha t  the composite aggregate is under current stress ~ at yield, 

and subjected to a loading increment d~. The corresponding matr ix  stress in- 
crement follows from equation (44): 

d ~,,, = B~ d ~, (58) 

where B,,~ is the stress concentration factor for elastic-plastic straining, given, 
for example,  by  equation (54). Differentiation of (56). and substi tution from 
(58) gives, after rearrangement :  

d a  = ( I -  B,7~ 1 B , , ) d ~  + B ~ J  da,,,, (59) 

which describes the incremental  translation of g in (57), or overall strain hard- 
ening. The first te rm is caused by interaction between the phases and is referred 
to as constraint  hardening. The second te rm represents the contribution, if it 
exists, of local or phase hardening to the overall response. 

Of course, these results do not reflect the actual onset of plastic flow on the 
microscale, which depends on local stress gradients. Instead,  they should be 

regarded as approximat ions  of the overall yield surface for onset of macroscopic 
plastic deformation of the aggregate. In  tha t  regard, they are similar to the 
results obtained for mat r ix-dominated  plastic deformation in Section 2. 

As an example,  we select g,~ in the nonhardening Mises form: 

i T "~ 
g.~ (~.~) = ~ . ,  Q ~ . ~  - w) = O, 

where %~ = [Ull G220"330"31G32(~21],~ T 

Q . . . .  .... . q =  e /a  l / a |  
ksym. 2/3J 

(60) 

We recall tha t  according to equation (59) d a  r 0 even if da , ,  = 0. Hence the 
t ransformat ion (56) of equation (60) gives the overall yield surface (57) in the 
f o r m  : 

1 
g (,~ - r = ~ (,~ - a )  ~" ( B ~ e  Q B , , O  ('~ - r - t o  = O, (61) 

with a = 0 for an initial yield surface of a stress-free composite. 
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3 . 3  S t r e s s - S t r a i n  R e l a t i o n 8  

The connections between volume averages of local and overall stresses and 
strains can be utilized to estimate overall strains of the plasticMly defornfing 

composite aggregate. 
To illustrate the procedure, we use the Mises form (60) of g .... and as in 

equations (32), or (33), write for the matrix plastic strain. 

d ~',;~ : d ~.,?, g,,,/o ~,7- (62) 
mp 

Since d~ is not known, it is best to add the elastic strain to dav , and find the 

stresses in terms of strains, as in equations (41) and (42). The inversion can be 

found in [6], and written as: 

d 6.~ = (L .~  - G.~ T ", s,,~ s;~jz 5) d z . .  (63) 

where Line is the elastic stiffness of the matrix materiM, s,, is matrix deviatoric 

stress vector, and G,~ is the elastic shear modulus. 

I f  the deviatoric stress s,~ is found from a variant of equation (44.2) : 

s.,  = B,,, ~, (64:) 

where B,,~ is obtained from 

;:l ~,,, = O B  .... q . . . . . .  (65) 

and q is given in (60), then, in equation (63), the instantaneous stifthess of tile 
matrix materiM at current overall stress 6 assumes the form: 

For the elastic fiber: 

Gm - T -T (66) 

Lj = L~e. (67) 
The overall stiffness now follows from equation (48), providing that  A,, or A] 

are known. 
As an example we again use the particularly simple results indicated by the 

Voigt model : 

L =  c/L/ + c.,I.,,, (52) 

with 

B m = L,,, L -  ~ (540 

Now, L,~ from (52) is substituted for the left-hand side in (66), and also into 

(54). This last result, with (65), is substituted into the right-hand side of (66). 
Note that  L,,, L, and ~ are symmetric. After rearrangement, (66) leads to an 
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implicit expression for L: 

L = L e - G m  c,~ "c 2 • [ I -  c / L / L -  1] • (~T [I - c f L  - 1  Lf] O. (68) 

Evaluat ion of the overall stiffness L which corresponds to the i-th increment 
in stress 

(~ = ~ - 1  + d ~  

can be made in a certain number of iterative steps j ,  using the recurrence formula. 

G m  ^ - l 
L(,.j) = L~ - c m , c ~ Q [ I -  c fLfL( i - )_])]6 , (~T[I  - cjL(~.j-1)L]] (~. (69) 

The iteration starts at L(i" o), which is known from the previous step (i - 1), and 
continues for N steps until a selected convergence criterion is satisfied. For  
example, one can use 

(ILL(, ~+ ~) -  L(,,N)Ii)/IIL(,,.~)II <~ s (70) 

where s is a suitable error bound, e.g.. l0 -3, and [] [[ denotes norm of a matrix. 
The updated value of L can now be used to find B,, in (54) and then da in 

(59). In this way the Voigt model can be used to identify approximate limits 
on the extent  of the matrix-dominated deformation mode. One can also obtain 
plastic and total strains in the fiber-dominated mode from the Voigt model, but  
in view of the assumption involved, such results should be regarded with caution. 

4. Selected Results 

We can now identify the boundary in stress space between the fiber and 
matr ix-dominated deformation modes of the composite ply. This is best done 
by comparison of the overall yield surfaces found for the two modes. We recall 
tha t  the yield surface in the matrix-dominated mode, given by equations (16)- 
(18) is a straight cylinder with the cross section in Fig. 2, and with generators 
parallel to the (~l~ stress axis. The shape of this yield surface does not depend 
in any way on fiber or matrix elastic properties, but, of course, the magnitude 
of the ply yield stress t0 may  be affected by the fiber volume fraction. Fur- 
thermore, if the ply does not harden, the matrix-dominated yield surface remains 
fixed during deformation. In contrast, the fiber-dominated yield surface is af- 
fected by fiber and matrix elastic properties and by phase volume fractions. 
This dependence is introduced through the elastic stress concentration factor 
Brae , which depends on phase properties as indicated, for example, by (54). Of 
course, this surface also translates during fiber-dominated plastic deformation. 
c.f., equation (59). 

Accordingly, the comparison of the two modes is best done in terms of initial 
yield surfaces of the ply. This is shown in the sequel for two fibrous composite 
systems, boron-aluminum and graphite-aluminum. Phase properties are given 
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Table 1. Elastic Properties of Selected Matrix and Fiber Materials 

EA GA VA ET GT 
(10 a psi) (10 ~ psi) (10 a psi) (10 ~ psi) 

[GPa] [GPa] [GPa] [GPa] 

6061 Aluminum 10.5 3.95 0.33 10.5 3.95 
[72.5] [27.2] [72.5] [27.2] 

Boron 58.0 24.2 0.20 58.0 24.2 
[400.0] [166.8] [600.0] [166.8] 

T-50 Graphite 56.0 2.2 0.41 1.1 0.38 
[386.4] [15.2] [7.6] [2.6] 

X3 
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- - ' - -  FDM (VOIGT)  f 
B' B-AI, cf = 0.5 x~ 
G: Gr-AI, cf = 0.5 o=Jro 

I . , /  ~ ' "  " [  ~" "~. 

/ ' /  , / . , -~- ~-- \ 
- - ' " , , ,  B x 

z. x G ', \ ' '  I I '  I , [  ( ( (  / G ~ I G ~ ,  } : , '  ,; , , 
-8 -6 -4 \ - 2  "& 01 ~"__2 ] 4 6 8 

:\ \ \  ~ . ~  "~---,.,-,q~"~ j / /  / 0-22/,/0 

\ \ ,  . 2~ f / .  / 

Fig. 4. Initial yield surfaces in the ~21%..plane. Comparison of fiber-dominated (FDM) 
and matmx-dominated (MDM) yield modes in boron and graphite-aluminum composite 

systems 

in Table I, the phase volume fract ions were selected as c f=  0.5 for bo th  systems. 
To facili tate labeling of the yield surfaces we use the following abbrevia t ions:  

MDM - yield surface for the ma t r ix -domina ted  deformat ion  mode 
FDM - yield surface for the f iber-dominated deformat ion  mode 
SCM - yield surface for the self-consistent model of  the composi te  
V O I G T  - yield surface for the Voigt  model of  the composi te  
B - yield surface of  the B - A / p l y  
G - yield surface of  the Gr -A/p ly .  

Figure 4 shows the various yield surfaces of Figs. 2 and 3 in the o ~ 2 ~ - p l a n e .  
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Fig. 5. Initial yield surfaces in the ~2l(~]l-plane. Comparison of fiber-dominated (FDM) 
and matrix-dominated (MDM) yield modes in boron and graphite-aluminum composite 

systems 

For the boron-aluminum system the yield surfaces of the fiber-dominated mode 
are generally larger than the yield surface of the matrix-dominated mode, hence 
plastic deformation in the ~22a2]-plane starts, for most loading directions, in 
the matrix mode. The opposite is true for the graphite-aluminum system. There, 
the FDM yield surfaces always lie within the MDM surface. Also, the Voigt and 
SCM surfaces are almost identical. 

The longitudinal sections of the yield surfaces, in the ~1 ](~2]-P lane are indi- 
cated in Fig. 5. The earlier comments again apply. The fiber-dominated mode 
now affects plastic deformation of the B-A/system at high ratios of (~11/~2], the 
FDM yield surface forms end caps of the overall surface which is primarily 
matrix-dominated.  Response of the Gr-A/ system is dominated by the fiber 
mode. During plastic loading the FDM yield surface will translate according to 
equation (59). 

Figure 6 shows what  may  be regarded as a top view of the yield surfaces in 
the al]~22-plane. I t  makes it apparent  tha t  the B-A/system deforms in matrix- 
dominated mode in most instances, except when the axial normal stress a]] in 
the fiber direction z] is very high in comparison to other stress components. 
Also, it is now clear tha t  the initial yield surfaces for the graphite-aluminum 
ply are always of the fiber-dominated mode, and that  both the self-consistent 
and Voigt approximations give very similar shapes. 

The differences in shape and size of yield surfaces of the boron-aluminum 
and graphite-aluminum systems are caused by the different longitudinal shear 
moduli G(4 of the fiber. This is suggested by Table 1, and it can be verified 
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Fig. 6. Initial yield surfaces in the ~ee%l-plane. Comparison of fiber-dominated (FDM) 
and matrix-dominated (MDM) yield modes m boron and graphite-aluminum composite 

systems 

analytically. The implication is that fibers with a large shear rigidity prevent 
plastic slip on planes which intersect the fiber axis. while more compliant fibers 
cannot serve as equally effeetive barriers to slip, 

5. Comparison with Experiments 

In a related program, conducted, in part, at Yale University by the late 
Professor Aris Phillips, and by his students Dr. Y. Macheret and .~ir. C. H, Liu, 
initial yield surfaces were found for an annealed 6061 A/-B ply in several stress 
planes�9 These experiments were performed on tubular specimens reinforced in 
the axial direction by aligned boron fibers. The tubes were 38 m m  in diameter, 
about 200 m m  long, and the wall thickness was 1.27 ram, i.e., about seven 
monolayers of  fiber; c f  = 0.45. The onset  of  yielding of" tile tubes was determined 
in incremental tension, torsion, and internal pressure, following the method 
described by Phillips et al. [7] and using the definition of yielding in terms of 
proportional limit with zero offset. 
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Fig. 7. Initial yield surfaces of a B-A/ composite in the ~.~i~11-plane. Comparison of 
experimental results with yield surfaces derived from the bimodal plasticity theory and 

from the periodic hexagonal array (PHA) model 

Figure 7 shows results for combined torsion and axial tension, with loading 
paths and individual yield points nmnbered according to the loading sequence. 
The yield surfaces which appear in the figure were calculated as those in Fig. 
5, with t0 selected for best fit of the data. The center of the surface was found 
from an interpolation of the yield points 8, 9, and 10 by the fiber-dominated 
branch of the yield surface found from the self-consistent model. The Voigt 
model yield surface is shown for comparison. 

Figure 7 also shows the yield surface found from the periodic hexagonal array 
(PHA) model of the composite medium [1], [2]. This model provides estimates 
of upper and lower bounds on overall instantaneous properties and thus permits 
calculation of stress-strain curves which bracket that  of an actual composite 
along a given loading path. The bounds are rigorous in the initial par t  of elastic 
deformation. The PHA model yield surface was obtained from several calculated 
stress-strain curves, with the same definition of yielding as tha t  used in the 
experimental evaluation of the yield points. 

Figure 8 presents results obtained from continuation of the experiment, now 
under torsion, internal pressure, and axial compression adjusted so that  (~ll = 0. 
Again. the yield surface, and its center, were obtained by fitting the matrix- 
dominated branch of the yield surface shown in Fig. 4. Also, the upper and lower 
bound yield surfaces found with the PHA model are plotted in Fig. 8. 

Figure 9 shows the last set of data  obtained for the tube which was then 
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loaded only by torsion and internal pressure so that the axial stress ~1t = ~.,/2. 
The yield surface and its center were constructed as a section of the surface 
found in Fig. 8 in the current stress plane. 

These results agree well with the theoretical predictions. Note, however, tha t  
the % in Fig. 7 is somewhat smaller than that  in Figs. 8 and 9. The reasons for 
the difference are not known ; they may be possibly related to strain hardening 
caused during the few plastic loading steps which are necessary to determine 
the yield point on each loading path. 

I t  is significant that  the experimental points in Figs. 8 and 9 confirm the 
existence of the matrix-dominated yield surface given by equations (16)-(18). 
The f ,  (6) branches appear to be circular and this justifies the assumption, made 
in equation (7), that  the ply yield stress t 0 is independent of the slip direction. 
Fur ther  support for the bimodal plasticity theory is provided by its agreement 
with the predictions given by the PHA model. We note that  a very good agree- 
ment also has been found between the PHA and the SCM or Voigt yield surfaces 
for the graphite-aluminum system shown in Figs. 4 to 6. This reinforces one's 
confidence in the bimodM theory, at least with regard to initial yielding. 

6. Discussion 

The existence of the two deformation modes was recognized in some of the 
early investigations of inelastic behavior and failure of metal matrix composites 
[8]-[10]. A deformation mechanism similar to the matrix-dominated plastic 
yielding was also identified by Spencer and associates [11]-[13] in plastically 
incompressible, rigid-perfectly plastic materials reinforced by inextensible fibers. 
I t  is probably obvious that  fiber inextensibility is sufficient but  not necessary 
for slip to take place only on planes parallel to the fiber axis. Indeed, Helfinstine 
and Lance [14], in their s tudy of such ideal fiber reinforced materials of the 
Tresca type, found a yield surface of the same shape as tha t  shown in Fig. 2. 

In the present work the matrix-dominated mode was obtained from entirely 
different assumptions. Plastic incompressibility was recovered from these as- 
sumptions, but  elastic response of both the fibers and the composite were pre- 
served. This is an advantage in many applications where the elastic and plastic 
strains are of comparable magnitude. Also, it. was found that  the presence of 
the matrix-dominated mode in a particular composite system depends on the 
fiber shear stiffness C~[4, rather  than on the axial Young's modulus E~ which is 
related to extensibility of the fibers. For example, Figs, 5 and 6 show that  very 
different deformation modes exist in the Gr/AI and B/A1 systems, even though 
the fibers have similar axial Young's moduli. 

Clearly, neither the self-consistent method, nor the Voigt model are able to 
detect the matrix-dominated mode, but  they appear to predict initial yield 
surfaces of the fiber-dominated mode which are in agreement with experiments, 
and also, as we found herein and in a related but  as yet  unpublished study on 
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the g raph i te -a luminum system, with the bounds  obta ined  from the periodic 
hexagonal  a r ray  model. At  least for the Gr/A/ system, the l imitat ions of the 

self-consistent me thod  appear  to be less severe than  previously  t hough t  [15]. 
Al though  we did not  present  here comparisons  between the exper iments  and 

the predict ions obta ined  f rom our Vanishing Fiber  Diameter  (VFD) model  [16]. 

we would like to point, out, t h a t  fbr the plane stress case considered the model 

predicts  an ellipsoidal yield surface with axes ~l ,, o~.,, (~:~1, which is contained 

within the MDM/FDM envelope, and  which has points  of  con tac t  with this 

envelope at  all three stress axes. Theretbre, the V F D  model  tends to underes- 

t imate  the onset  of  yielding, and it also suggests plastic strain directions which 

are different f rom those indicated by  the present  results. 
I n  m a n y  respects the present  work reconciles the various plast ici ty theories 

of fibrous composites and suggests limits of their val id i ty ;  but ,  addi t ional  corn 

parisons are needed with exper iments  in the hardening range, to establish such 

connections and l imitat ions as m a y  exist in a broader  spec t rum of material  

response. 
Pract ica l  applicat ions of  the present  results are ant ic ipa ted  in problems where 

extensive ma t r ix -domina ted  plastic s t raining is evident.  For  example,  this ap- 

pears to be the ease in unidirect ional  plies and laminates  which are reinforced 

by  fibers of  high shear r igidity and contain  cracks or similar stress concentrat ions .  
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