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A model of non-equilibrium turbulence with an 
asymmetric stress. Application to the problems of 
thermal convection 

Y.A. Berezin and V.M. Trofimov 

A critical review of hydrodynamical models with asymmetric stress tensor is 
given. Particular attention is focused on the balance law of angular momen- 
tum as the necessary element for a correct description of the internal motions 
of turbulent oriented eddies. On the basis of this analysis a non-equilibrium 
turbulence model is proposed that is shown to be close to the hydrodynamic 
equations with intrinsic rotation and helical turbulence. 

We employ this model in the study of the initial stage of thermal convec- 
tion in a horizontal layer of a rotating non-equilibrium turbulent fluid that 
is heated from below. Linearizing the balance equations of mass, momen- 
tum, angular momentum and energy yields the boundary value problem, from 
which the general properties of the spectrum are determined. In the case of 
the horizontal layer with equilibrium boundary conditions on free boundaries 
we study the influence of the rotation and turbulent motion on the convective 
instability. 

1 Introduction 

The study of the formation and evolution of large-scale structures in rotating 
and/or shear turbulent flows [1] - [8] is of great interest both from fundamental 
as well as applied points of view. Extensive analytical and numerical investiga- 
tions were devoted to the helical large-scale structures supported by small-scale 
turbulent motions [3]- [8]. The description of such structures is based on the 
helicity, defined as the pseudo-scalar (v. (V x v)). When the helicity is non-zero 
the flow does not possess reflectional symmetry. The Reynolds stresses corre- 
sponding to such flows are not symmetric. Since new interesting effects are 
associated with such asymmetric Reynolds terms it is natural to pay attention to 
asymmetric continuum models. 

There exists a generalization of classical continuum mechanics, the asym- 
metric mechanics [9]- [11] often called the theory of Cosserat continua, 1909 - 
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it was first introduced into the theory of elasticity. To our knowledge, asym- 
metric stress tensors in fluid dynamics were first introduced in Ref. [12]. That 
paper contains the criticism of (i) Newton's fundamental hypothesis on internal 
friction in fluids and gases and (ii) of the Navier-Stokes equations, which are 
obtained with the help of the mentioned hypothesis. According to Newton's hy- 
pothesis, the fluid internal friction is determined by the defectus lubricatus and 
proportional to the first derivatives of the velocity with respect to the spatial co- 
ordinates. In a strict sense, such a representation is valid only for fluids consisting 
of particles that may be considered as material points. If one considers the fluid 
particles as objects with finite sizes which can rotate, then it is possible to obtain 
more general expressions for the internal viscous forces by taking into account 
in addition to the "usual" internal viscosity, the particle rotation associated with 
the fluid deformation [12]. In [13] the aforementioned fluid particles are called 
"subelemental" particles, which "may be atoms or molecules, or collections of 
these, or some larger aggregates, as is the case for turbulent eddies". On the ba- 
sis of these ideas [12] and by formulating the balance laws of mass, momentum, 
angular momentum and energy in [14] more accurate forms of the equations for 
the hydrodynamics of a fluid with an intrinsic rotation are represented. 

Perhaps, the first attempt to describe a turbulent fluid as a medium with a 
vortical structure on the balance laws of momenta was made in [15], however 
this idea remained unnoticed during many years. A similar description of tur- 
bulent flows was stimulated by the development of asymmetric hydrodynamics 
[9]- [11]. For example, in [16] a turbulent fluid is considered as a subclass of 
micropolar fluids, but this description does not take into account any change of 
vortices during their motion. 

Nikolaevskii in [17], [18] takes an intermediate point of view between the 
approaches taken in [15], [16] and the traditional models. In order to lay asym- 
metric hydrodynamics of turbulent flows on a solid foundation the author pro- 
poses to consider a turbulent fluid as a medium with a heterogeneous distribution 
of hydrodynamic fields and to let all quantities that are described by general bal- 
ance laws be mean values averaged over some elementary macrovolume. Such 
fluid elements are small compared to the significant spatial scales of the problem 
but sufficiently large to contain the turbulent eddy microstructure. The asym- 
metric stress effects enter through the employed averaging procedure. They are 
not present in the Euler or Navier-Stokes equations from which the derivation 
begins; however, these equations are regarded as sufficient for the description of 
the fluid flow at any point on the microvolume scale. According to [17], [18], the 
very choice of the averaging procedure may contain a tacit assumption about 
the stress asymmetry beyond that already implicitly contained in the Navier- 
Stokes equations. The equations deduced in [17], [18] are formally identical to 
the conventional ones, however with the Reynolds stress defined as a surface 

~-  ! I V/ integral 3"ij --(~TJiVj) where denotes an average of the velocity over the 
surface normal to the j-axis. This Reynolds stress is in general not symmetric, 
and the angular momentum intrinsic to the volume element is non-zero. These 
considerations are represented in the review [13] along with the examples of 
other flows with significant orientational effects (liquid crystals, suspensions). 
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Besides, the author of [13] alludes to the fact that "Reynolds in his original 
papers drew a careful distinction between spatial and temporal averages, and 
recognized the possibility that the stress tensor might be asymmetric". 

A thermodynamical theory of turbulence is proposed in [19]-[21]; it also 
describes the anisotropy of turbulent flows by means of an asymmetric stress 
tensor. In contrast to the usual description of a continuum the authors of [19] 
introduce two independent kinematic fields: the ordinary particle velocity v and 
the director velocity w. This means that they consider the fluid continuum as 
a directed medium with each of its material points being endowed with an 
additional independent kinematical vector field, a director d having the physical 
dimension of a length. In asymmetric continuum mechanics the fields of internal 
angular momenta or internal angular velocities are introduced. 

Multiplying (2.6)2 in [19] by x and (2.6)3 by d and subtracting the resulting 
equations from (2.6)4 yields the equality 

fp d x k d v  : O, 

where k is the intrinsic director force per unit volume, dv  is a volume element 
and P is any part of a directed medium under consideration. Since the volume P 
is arbitrary, the above relationship says that the intrinsic director force k is either 
parallel to the director d or k -- 0. Thus, equations (2.6) in [19] are not linearly 
independent, and the independent invariants whose number equals the number 
of independent governing equations are mass, momentum, angular momentum 
and energy, as in asymmetric mechanics. 

The internal angular momentum M of the present paper corresponds to "the 
moment of momentum" of [19 ] - [21], i. e., d × (ylv + y2w), where ylv  + yzw, 
is the director momentum per unit mass; the coefficients yl, y2 depend on the 
position, and for their determination it is necessary to introduce constitutive re- 
lations. The function M, having the meaning of an effective intrinsic internal 
angular momentum of turbulent oriented eddies in every point of the continuum, 
is treated as the independent variable which can be determined by the conser- 
vation law alone. As will be shown later on, the scale parameter of oriented 
turbulent eddies is defined by the usual and topological internal invariant of 
turbulence, i. e., 

K - 1 ~  / ] M ]  2 d r / / ( M * - ( V ×  u ) -  M . ( V x  u*)) dr.  

This is the ratio of the energy associated with the intrinsic motion of the oriented 
eddies to the part of their energy linked to the vortical field of the large-scale 
motion, the latter corresponding to the typical spatial scales that are much larger 
than the maximum turbulent scales. In our model the quantity K is a free pa- 
rameter. 

The internal structure of the continuum is manifest through the formation of 
turbulent oriented eddies due to the mentioned "link" mechanism. Along with 
the term "oriented eddy" we shall use the term "mole" to emphasize the physical 
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reality of the oriented eddies and distinguish them from the mathematical notion 
"vortex". Furthermore, we shall employ the term "non-equilibrium turbulence"; 
by this we mean turbulent states of fluid elements in which intrinsic angular 
velocities of moles deviate from local angular velocities of the corresponding 
mean flow. At such conditions the Reynolds stress tensor is not symmetric. The 
corresponding mathematical structure of the theory is that of asymmetric me- 
chanics. In our model, we introduce two new coefficients, a rotational viscosity 
and a diffusivity of the diffusion of oriented eddies, that arise in the equation 
for angular momenta of such eddies. 

We have no intention to belittle the importance of the conventional descrip- 
tions of turbulence that are based on the Navier-Stokes equations and are suc- 
cessfully applied to problems of fluid dynamics; however we would like to 
make two remarks: First, the turbulence models as noted in [22] need not only 
be Galilean invariant; the Reynolds stresses and the higher turbulence correla- 
tions based on an ensemble average are frame indifferent tensor relations, i. e., 
they are form invariant under time dependent rotations and translations of the 
spatial frame of reference, i. e. the group x* = Q(t )x+b( t ) ,  t* = t + c ,  where c is 
any constant, b(t) is any time-dependent vector, and Q(t) is any time-dependent 
proper orthogonal tensor; the Reynolds stress transport equations are only form 
invariant under the group of translations, i. e. x~ : Akixi -t- bk(t)  where Aki is 
any constant  proper orthogonal tensor. 

Second, according to Noether's theorem [23], the conservation law of angular 
momentum is the consequence of the invariance of continuous transformations in 
space-time under the group of spatial rotations; classically, this law is identically 
satisfied, however, if one includes an additional parameter such as e. g. internal 
angular momentum associated with oriented eddies it is necessary to include 
this balance law as an independent statement. 

In section 2 we describe the method for obtaining the governing equations 
of our model based on a generalization of the Boussinesq hypothesis to the 
turbulent stress-mean velocity field relationship. In section 3 the equations of 
thermal convection for a horizontal layer of a rotating non-equilibrium turbulent 
fluid are obtained. These equations are used to determine the general properties 
of the disturbance spectrum. In section 4 the boundary-value problem for the 
linear form of the mentioned equations is solved. Finally, we represent the 
solution for laminar fluids. 

2 Description of the non-equilibrium turbulent model 

Consider a shear flow of a turbulent fluid containing oriented eddies (moles) 
with a typical spatial scale A _< & where 8 is the spatial scale of the shear flow. 
It is not difficult to show that the conventional description of turbulence based 
on the Reynolds averaging procedure of the Navier-Stokes equations does not 
take into account the internal (intrinsic) motions of these moles. In fact, the 
averaging time period T for a mean function of a turbulent field, for example, 



Turbulent thermal convection with asymmetric stress 419 

for the velocity, 

1 /.t+T/2 
v(r, t) dt  (v(r, t)) = ~ at-r~2 

must satisfy the following conditions: the period T is (i) long as compared to 
typical temporal scales of turbulent fluctuations and (ii) short as compared to 
a typical time interval of the essential change of the mean flow characteristics. 
The latter can be evaluated as 6/(v) ,  where (v) is the transverse component of 
the mean shear flow velocity. Thus, a typical spatial scale of fluctuations is small 
with respect to 6, and the behavior of eddies having the typical sizes A < 6 is 
ignored. 

If  one takes into account the intrinsic motions of the moles, then the Reynolds 
stress will have an asymetric form. This can be shown as follows. Consider a 
fluid volume element AV = A x A y A z  with linear size A < 6. If this volume 
element rotates about the y-axis, then 

AlygOy = ( ~ ' x z A y A z ) A x -  ( z zxAxAy)Az  = (Zxz - r z x ) A V ,  

where ~ = (wx, &y, 6)z) is the angular acceleration of the considered fluid 
volume, and Aly is its moment of inertia with respect to the y-axis. Since 
AI ~ A s, AV ~ A 3, we have Zxz -7"zx ~ 6)yA 2 7 ~ 0, because A is some 
finite quantity. Due to the orientational properties of large-scale moles [13], 
the differences of mean tangential Reynolds stresses will also be non-zero, i.e., 
(V~/)j) -- (V}7)'i) ~ 0, for i 7~ j .  

The Reynolds stress tensor can be represented as the sum of symmetric and 
asymmetric parts, viz., 

1 1 

In equilibrium, the angular velocity of the internal motion of moles at any 
arbitrary point equals the observed angular velocity of the time-averaged flow, 
(oY) = A-Z(M) = (~) ,  where (~)  = (1/2)(V x v), and (vlv}) = (v}@. A 
deviation from the equilibrium state is obviously the deviation of the difference 
(1~) - A 2 (M) from zero. Now we must introduce constitutive equations relating 
the Reynolds stress to mean flow characteristics. The linear relationship between 
the symmetric part of (v~v}) and the mean strain-rate tensor is known as the 
Boussinesq hypothesis. 

In this paper we introduce the following constitutive equation 

{vlvj) - (v}v}) = y(l]ij  - A-2Mij) .  (2.1) 

It can be regarded as a generalization of the Boussinesq hypothesis. ~'-~ij = 
(1/2)eijlf~l, Mij = (1/2)eij lMt are the antisymmetric pseudo tensors dual to 
1~ and M, sijl being the Levi-Civita tensor. The quantity y plays the role of a 
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rotational viscosity, which later will be considered to be a constant. Making use 
of the representation (2.1) the momentum equation for a turbulent fluid can be 
written as 

O2(Vi) O / 1 , ,  , ,  ) 
(~o) D<Vi>D~ - O(p}oxi + # ~  + ~xj ~--2 (O)(<vivj) + (vjvi)) + 

+ (V) axjaxj + I ( v  x (M)) i . (2.2) 

Here (0), (P) are the averaged density and pressure, respectively; /z is the 
dynamic coefficient of molecular viscosity, and the two last terms are caused 
by the asymmetric parts of (vlv))which are absent in the conventional Reynolds 
equations. 

In the absence of external long-range force fields the function M changes 
owing to both the asymmetric part of the stress tensor and a diffusion through 
the surface of a fluid volume considered 

D(M) 
- -  - -  y ( ( ~ >  - K ( M ) )  + r / k ( M ) ,  ( 2 . 3 )  

Dt 

where r / is  a coefficient of the diffusion of moles. 
Equations (2.2), (2.3) can also be obtained by a formal time averaging pro- 

cedure of the equations of fluid dynamics with internal rotation [14], by analogy 
with the averaging of the Navier-Stokes equations. According to [14], the inter- 
nal energy of such a medium equals 

E -= Eo(S, ~) q- (1/2)A-2M 2 - M .  ~ ,  

where S is the entropy. The equilibrium value of the internal angular momentum 
M can be determined from the condition OE/OM = 0, thus M = I~/K, and 
Eo = E(S, O) - (1/2) A-2M2. 

The physical processes in open non-equilibrium systems (non-equilibrium 
turbulence, in particular) are described by methods of nonlinear thermodynamics 
[24]. These processes give rise to a change of the type of fluid symmetry, hence 
to a corresponding change of the number and type of conservation laws. As 
known, homogeneity and isotropy of small-scale components can be violated. 
Apart from the ordinary cases characterized by the direct energy cascade there 
are situations where the inverse energy cascade exists, for example, in large- 
scale turbulent convection, supported by small-scale helical turbulent motions 
[7]. The stress tensor of a turbulent fluid can be written as 

O-ij = -A(~ i j  ~- B'lT"ij , (2.4) 

where A is the pressure, B is an "eddy" viscosity, and ~ij the viscous stress 
tensor. 

In real turbulent flows (for example, boundary layers, wakes, jets), the role 
played by large-scale turbulence is very essential. Such turbulent flows are under 
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the influence of pressure gradients, caused by external forces. Therefore, the 
turbulent moles are exposed to the V x (v)-field, having pseudo-vector properties. 
From a physical point of view this means, that there exists an internal angular 
momentum exchange. A new dissipative process and new added terms in the 
total stress tensor co~Tespond to such an interaction mechanism, e. g. according 
to (2.2) 

o'ij = - P a i j  + (t z + I*;)rrij + (T/2)( ,UZMij  - f~ij). (2.5) 

Here mij and ~'~ij are antisymmetric tensors, duals to the pseudo-vectors of the 
turbulent moles' angular momenta Mt = (1/2)gijlMij and the angular velocity of 
the mean flow f~l = (1/2)'gijlflij respectively; #t is a turbulent "shear" viscosity 
and A is the mean turbulent scale. 

Now, consider the pseudo vectors Ml, f11 dual to the tensors Mij , ~'~ij and 
make use of the following transformation rule of the antisymmetric pseudo tensor 
Eijk 

o A Oya ay# Oy r 
eca'GY = ~ [  8ijl OXi OXj OXl' 

where A is the determinant of the matrix If Oy,~/Oxi I1 and y,~ = yee(Xj). By simple 
algebra one may then deduce the relations 

A Oy~ Oy 5 Oy___~ .. ~,, 
]A[ OXi Oyj Oyz e,jtlvlz 

A Oyo~ Oyt3 077 eijl~l 
13,1 Oxi Oxj oxl 

= ~6-ijleO[~yMij, 

1 0 
= "~Eijlf.oq3y~ij. 

Let the new coordinate system be such that ceijle Ooq3y 
ol ¢ / 3  ¢ Y). Then, since k/[AI denotes the sign of A the quantity 

A Oy,~ ay# Oy r 

[Af Oxi Oxj Oxi 

(2.6) 

= 1 (for i ¢ j ¢ 1, 

O'ij = --P'~ij 3. (I,* 3- Ixt)rrij 3- d(/~-2Ml - ~l)eijl .  (2.8) 

This expression agrees with the total stress for the steady, isotropic and non- 
parity-invariant turbulence, [5], [6]. 

In the special case of equilibrium between the angular momenta of the moles 
and the angular velocity field A-2<M) = <~>, the turbulent moles lose their 
individuality, become identical to each other, and the stress tensor (2.8) reduces 
to (2.4). 

It is known [25], that experimental data collected at the outer part of a 
boundary layer are very well described by an asymmetric stress function, called 

is a pseudo-scalar function. Substituting (2.6) and (2.7) into (2.5) yields 

y = d, (2.7) 
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the "function of wake". The non-equilibrium turbulence concept points at the 
physical reasons for the appearance of such asymmetric functions in some types 
of shear flows. It arises because of pseudo-vector properties of both the angular 
momenta of the turbulent moles and the angular velocity of the mean flow. The 
loss of equilibrium between them gives rise to the asymmetric part of the stress 
tensor (2.8). 

3 Equat ions  of  thermal  convect ion 

Consider a horizontal layer of an incompressible fluid heated from below and 
uniformly rotating about the vertical axis with steady angular velocity 1"~ = De 
(e = {0, 0, 1} is the unit vector in the z-direction). We confine attention to 
the case I~ll  << g2 where 1 is a typical horizontal length, g is the gravity 
acceleration, so that the centrifugal acceleration can be ignored. 

Suppose now that in this fluid a statistically uniform steady, nonequilibrium 
turbulence (in the mentioned sense) with typical spatial and temporal scales A 
and ~- = A2/T is excited. Let a large-scale (L >> l) disturbance of velocity or 
temperature be given; we study the possibility of its growth due to interactions 
with the turbulent field. 

The governing equations for the mean (convective) values of velocity (u) 
and temperature (®) in the Boussinesq approximation take the form 

O(u) ~--t- 1 ( ~ Y) A(u) + / 3 g e ( ® ) -  + ((u>. V)<u> = - Vp + + 

K'y 
- 2(D., x ( n ) )  4- T ( V  x (M)),  (3.1) 

I 

o---T- 4- ((u) • V)(M) -- 7 V x (u) - ~¢(M) 4- ~TA(M) 4- (m), (3.2) 

D(T)  
- -  + q(q)  = O, (3.3) 

Dt 

V(u)----O, e----(O,O,t), (3.4) 

where K = A-2;/3 is the coefficient of thermal expansion; the coefficient of shear 
viscosity is renormalized, e. g. v 4- vt -+ v; T is the total temperature, which 
we represent as the sum of some reference temperature T°(z)  and a deviation 
®(r, t), e. g. T(r,  t) = T°(z)  + ®(r, t). In what follows we choose this reference 
temperature in the form T°(z)  = To - Az, A = const by analogy with the 
mechanical equilibrium of a laminar fluid. The last term on the right-hand side 
of (3.2) is caused by an averaged moment ~9(m) of the gravity pulsation ~9'g. 

e<m) = g x (e'R), (3.5) 
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where R is the instantaneous moment arm with respect to the center of mass 
of the mole; it is of the order of the spatial scale of the turbulent mole, so that 
IRI  ~ .~. 

The equation of state takes the form ~9 = ~)0(1 - /3T) ,  hence 

O' = -00/3@', (/3 > 0). (3.6) 

Substituting (3.6) into (3.5) yields 

0(m) = -0 /3(g  x (®'r)). (3.7) 

In the linear case we can assume a linear relation between e(®'R) and the 
angular momentum of turbulent moles, implying 

o(m) = oflgko (M), (3.8) 

where k0 is a phenomenological constant characteristic of the fluid properties. 
The heat flux density in the balance law of energy (3.3) consists of two parts, 

viz., 

q = x V T  + (u'®') (3.9) 

each associated with molecular and turbulent heat transfer, respectively. Here X 
is the coefficient of thermal conductivity. The angular momentum of a turbulent 
mole equals 

M = u' x R, (3.10) 

from which one obtains 

R x M = u'R 2. (3.11) 

The averaged value of R 2 is a 2, where h is a free parameter of the model 
considered. Representing the angular momentum of a mole by the sum M ---- 
(M) + M' and substituting (3.10) and (3.11) into (3.9) yields the following 
formula for the turbulent component of heat flux 

(frO') : K ( ( R  x ( ( M ) +  M ' ) )O ' )  : 

= K((R x (M))O') + K((R x M')O'). (3.12) 

On the right hand side of (3.12), the first, nonlinear, term will be ignored and 
thus 

q = x V T  + x1V®. (3.13) 

We now consider the stability of a layer of a turbulent fluid with respect 
to disturbances of the mean (steady) turbulent field. The spatial scale of these 
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disturbances is assumed to be much larger than the typical spatial scale of energy- 
containing (oriented) turbulent eddies. For an initial stage of the evolution we 
shall set (u) << u" ~ ((u J f )  2) 1/2 and ignore the nonlinear terms in the equations 
describing the large-scale disturbances. 

Substituting relations (3.9) and (3.13) into equations (3.1)-(3.4) and lin- 
earizing them with respect to the mean large-scale velocity and temperature 
yields 

a(u) 1 (v 7 
Ot - ~ V p +  + X )  A ( u ) + / 3 g e ( O ) - 2 ( f t × ( u ) ) + - K f ( V x ( M ) ) , ( 3 . 1 4 )  

Ot --  3/ (V x (u)) - K(M) + ~?A(M) -/3gk0(M), (3.15) 

Ù(o) 
- n(e .  (u)) + xA(®), (3.16) 

Ot 

V(u) = 0, (3.17) 

where X + X1 has been replaced by X. Note that in equilibrium eqs. (3.14)- 
(3.17) reduce to the classical equations for thermal convection of a rotating fluid 
[26] 

O(u) 1 
Ot 0 

0(0) 

Ot 

V(u) = 0, 

Vp + vA(u) +/3ge(®) - 2f~(e x (u)), 

Ae(u) + xA(®), 

since the effect of turbulent small-scale motions is taken into account in the 
coefficients v and X only. For the problems of thermal convection in the Earth's 
atmosphere such an equilibirum is possible in a comparatively small part of the 
near ground layer. In the main part of the atmosphere turbulence must most 
probably be considered as being non-equilibriated, even though this difference 
from equilibrium is probably quite small. For the instability analysis we confine 
our attention to the case of a small non-equilibrium state of turbulence. 

Let us assume, that u ~ ~7 ~ X ~ Af t ,  and introduce also the dimensionless 
parameter y --+ y/v.  Eqs. (3.14)- (3.17) can then be rewritten in the following 
dimensionless form 

a ( u ) - - V p + ( l +  T)  at ~ A(u) + Ra(O)e - f~(e x (u)) + T ( V  x (M)), (3.18) 
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0 ( M ) -  7K ( ~ ( V X  (U) ) -  ( M } ) + A ( M )  +Ra(M)  
Ot 

425 

(3.19) 

a(o) 
-- (u) - e + A(19), (3.20) 

at 

V(u) = 0. (3.21) 

Here the scale values of length, time, velocity, temperature, pressure, angular 
velocity and angular momentum are L (the layer depth), to = L2/p, uo = 
v/L ,  To = AL, Po = QoV2/L2, ~0 = (2LZ/v) -1, M0 = 2vK-1L -2. Besides, 
ko = ALZ/v ,  and the Rayleigh number Ra = ( g f l A L 4 ) / p  2. If the fluid layer is 
immersed in a heat conductive massif, it is necessary to close eqs. (3.18) - (3.21) 
by the following equation for the massif temperature 

v O®m 
- A@m, (3.22) 

Xm Ot 

where Xm is the thermal conductivity coefficient of the massif. At the fluid- 
massif boundary the velocity must vanish, and the temperature and heat flux 
must be continuous. If this boundary is smooth (no roughness), the angular 
momentum of the turbulent moles must also vanish. Besides, we assume that in 
the massif far from the fluid the temperature disturbances decay to zero. 

Eqs. (3.18)- (3.21) subject to some boundary conditions define a boundary- 
value problem. Let the velocity components, mole angular momentum compo- 
nents, the pressure, the temperature deviations be proportional to time as follows 

{(u), (M), p, 19, 19,n} ~ exp(-~ot) (3.23) 

w is the growth rate of small disturbances. Substitute (3.23) into (3.18)- (3.21); 
this yields the following set of linear differential equations for the disturbance 
amplitudes 

-~ou= - V p +  1+~- Au+Ra19e+f~(exu)+y(VxM),  (3.24) 

- e o M  = y (~K(V x u ) -  K M ) + A M + R a M ,  (3.25) 

- o919 = u .  e + A19, (3.26) 

Vu = 0, (3.27) 

- -  ( - o ( P / X m ) 1 9 m  = A{~)rn. (3.28) 

The boundary conditions for these dimensionless amplitude functions that must 
hold along the boundary S between the fluid and the solid massif are, 

019 019 m 
u = O, M = O, 0 = O r e ,  ( . ) ( / f l (m)  - -  (3.29) 

On On 
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The boundary-value problem (3.24)- (3.29) is an eigenvalue problem. In case 
of a closed domain (for example, a plane layer) the spectrum is discrete and can 
be determined. 

Some general properties of the spectrum that can be deduced without con- 
cretizing the domain can be determined by a method, described in [27]. Notice 
that the special case of the horizontal plane layer had been examined previously 
in [28]. For the sake of simplicity we take homogeneous boundary conditions 

u = O ,  M = O ,  @ = 0 ,  

corresponding to the case when the heat conductivity of the massif is much 
larger than that of the fluid. 

Multiply equations (3.24)- (3.26) by complex-conjugate functions u*, M* 
and 0* respectively, and integrate the resulting equations over the fluid vol- 
ume. Taking into account that for an incompressible fluid and uniform boundary 
conditions 

Vp .  u* = V(pu*), 

u* • Au = u* • (V × (V × u)) = V × (u* • (V × u)) - (V × u ) .  (V × u*), 

/ ( u * . A u ) d V = -  f lV×ul2dV, 

f (M* . AM) dV = - f lV x Ml2 dV 

and 

f V(pu*) dV = / pu* dS = O, 

one obtains 

- o  lu[ ~ d v =  - 1 + - ~  

-~0 IMI 2 d v = - ~ -  M * - ( V × u )  d V - K 7  IMI 2dV 

- f lV x MI2 dV + Ra f lMIz,tV 

(3.30) 
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Subtracting the complex-conjugate relations from (3.30) yields 

(~o*-o,) f lul2dV = Ra f (Ou*.e-O*u.e)dV+ 

+a(J(exu).u*dV-f(exu*).udV)+ 

+ y / ( u * .  (V x M) - u .  (V x M*)) dV. (3.31) 
J 

f (~o* - ca) [MI 2 dV = - f  M * -  ( V  × u) - M .  (V  x u*))  dV, (3.32) 

(~o* - o)) / ]O]2 dV = - J (@u* . e - @*u . e) dV. (3.33) 

The last term in (3.32) equals zero. Multiplying now equation (3.33) by Ra and 
adding the result to (3.31) yields 

(co*-o)) . / ( ,u[2  + Ra]O, 2) dV = -2f~ . / (u* x u ) . e d V +  

+ ~ f ( u * . ( V × M ) - u - ( V × M * ) )  dV. 

Multiplying this equation by K/4 and adding the emerging equation to (3.32) 
we obtain 

o)* - o) = A--f (u* × u ) e  dV 

+ 5-- (M*.  (V x u) - M .  (V x u*) - 

"1 

( v  x M) - u .  ( v  x M*)) dV / ~ U ~  ~ 

A 

i [ t d l / ( I m u x R e u )  e d V +  
A+ 

+ ~ -  Re u.  (V x Im M ) -  

lm M- (V x Re u) - Im u.  (V x Re M) 

+ ReM.  (V x Imu)) dV], (3.34) 
/ 
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A+ = IMI 2 dV + 7 (lu12 + RaIOI 2) dV. 

Return now to eqs. (3.30) and add to every equation its complex-conjugate; then 
one obtains 

-(oJ* + ~o) f lul2 dV = Ra S (ou* . e + O*u . e) dV + 

+Yi(u*'(V×M)+u(V×M*)) d V  - 

-2 (1 + 4) f ly×  ul2dV, (3.35) 

-(~o* + oJ) IMI 2 d V  = ~ -  (M*. (V × u) + M.  (V × u*)) d V  - 

-2Ky S IMl2dV-2 i IV × Mi2 dV + 

+ 2Raf IMI 2 dV, (3.36) 

-(o,* +oJ) i lOI2 dV-- f (O*u.e+Ou*.e)dV- 2 i  lVOI2 dV. (3.37) 

Multiplying (3.37) by the Rayleigh number Ra and subtracting (3.35), yields 

(,o* + ,o) ( f lul2 dV - Ra f lOt2 dV) = 

= - 3 / 7  (u*. (V × M) + u- (V × M*)) d V  
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Multiplying this equation by K/4 and subtracting (3.36), one obtains 

co*+o)=~__  2Ky [M[2UV+ 7 1 +  7 

Ky J (u*. (V x M) + u. (V x M*) + u. (V x M*) + 
4 < 

+ M *  • (V x u) + M .  (V x u*)) dV 

i i  " i ]  +2 IV×MI2dV-2Ra IMI2dV -Taa IVOI2dV , (3.38) 

where 

A_ = JMr 2 dV q- 7 (luJ 2 - Ra l@ 2) dV. 

The third term in the numerator of this expression can be reduced to the following 
form 

2 ( u * . ( V x M ) + u . ( V x M * ) + M . ( V x u * ) )  dV= 

K / ( R e M  ( V x R e u ) + I m M  ( V x I m u ) +  
2 

(V x ReM) + I m u .  (V x I m M ) )  + R e u .  dV. 

This term does not exceed the sum of the first two terms in [.. .  ] of (3.38). In fact, 
the equilibrium condition in dimensionless variables has the form (1/4) (V x u) = 
M, and in case of small non-equilibrium turbulence this expression can be used 
for the estimation of the amplitudes of the mole angular momentum M, hence 

2KT [M[2dV > ~ (ReM (V x Reu) 

+ I m M .  (V x Imu)) dV, 

I )I K l + y  IV x uJ2dV > - (Reu.  (V x ReM) 
7 2 

+ I m u .  (V x ImM)) dV. 

Therefore, the sum of the first three integrals in (3.38) is always positive. 
The expressions (3.34) and (3.38) allow to draw some inferences on the real 

and imaginary parts of instability increments. Let a fluid be heated from below. 
In this case the Rayleigh number Ra is positive, since the equilibrium tempera- 
ture gradient A is positive. The denominator A on the rhs. of expression (3.34) 
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is positive, and the sum of the terms in [. . .  ] is real and in general non-zero. As 
can be seen from (3.34), this non-zero value is conserved at f~ = 0. Therefore, 
when the turbulent fluid is heated from below, the increments of normal distur- 
bances are complex, and so they decay or grow with oscillations. In the absence 
of turbulence and rotation all normal disturbances at A > 0 change monoton- 
ically [26]. Hence, turbulence removes the monotonicity principle for normal 
disturbances. If it is absent, non-zero rotation at A > 0 leads to oscillations; 
this is confirmed by calculations and experiments for a plane layer of arbitrary 
domain. 

Now, consider heating from above (A < 0, Ra < 0). According to formula 
(3.38), for the decrement real part Re o) = (co+w*)/2, all integrals containing the 
Rayleigh number are positive at Ra < 0. The sum of the remaining integrals is 
also positive, and Re o) > 0. Therefore, in the case of moderate non-equilibrium 
turbulence all normal disturbances decay at heating from above, and equilibrium 
is stable with respect to large-scale disturbances. 

4 Stability of a turbulent rotating fluid 

Recall that we consider the stability of a fluid layer with respect to large scale 
disturbances of the mean steady turbulent field. The typical spatial scale of 
these disturbances is much larger than the spatial scale of the energy-containing 
oriented turbulent eddies. The estimates mentioned above show that during an 
initial stage of evolution the effect of the nonlinear (with respect to the mean 
flow velocity) term in the averaged equations can be ignored. 

From eqs. (3.18)-(3.21) one can eliminate the pressure p and horizontal 
components of (u), V x (u), (M), V x (M) and then obtains 

~ A u 3 =  ( I +  4)  A A u 3 + R a A I @ - - ~  OF3 8x3 + TAG3, 

Ot ~ -- yAM3' 

0 1 
~AM3 = -~KTAF3 - KTAM3 + AAM3 + Ra AM3, 

OG3 1 
-- 4KTAu3 -- KTG3 + AG3 + RAG3, 

Ot 
O@ 
- - = A O + u 3 ,  Vu-----0. (4.1) 
Ot 

Here A1 = 02/Ox~ + O2/Ox 2 and the brackets ( are omitted; furthermore 

F3 ~ (V x u ) 3  , G3 = (V x M)3. 

To formulate the boundary conditions, we consider the layer boundaries as free 
surfaces, at which the tangential stresses vanish. We further suppose that these 
surfaces are not distorted by the convective flow and remain fiat. As mentioned 
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above the temperature disturbances also vanish at these boundaries. In such a 
case the equilibrium condition 

1 
~ ( V x  (u)) = (M) (4.2) 

applies, and the asymmetric parts of the components of the stress tensor caused 
by non-equilibrium turbulence vanish, e. g. expression (2.5) reduces to (2.4). 
Therefore, as in the classical case we obtain 

bl 3 = O, Obll/OX 3 = OU2/OX 3 = 0 ,  ® = 0, at x3 = 0 and x3 = 1. 

Making use of the boundary conditions for the velocity yields 

02/13 
- 0 ,  a t x 3 = 0 a n d x 3 = l .  

Ox 2 

The function F at the free surfaces must obey the condition F '  = 0, because 3 

OU2 OU 1 OUl OU2 
F3 - -- i(klu2 - k2ul) ,  and - - 0. 

OXa OX2 OX3 OX3 

This condition means that because of (4.2) M~ = 0 at x3 = 0, 1. Hence, the 
necessary boundary conditions for the horizontal layer with free flat surfaces 
have the following form 

02bt3 
u 3 = O ,  Ox 2 - -0 ,  ® = 0 ,  F ~ = 0 ,  M ; = 0 ,  a t x 3 = 0 , 1 .  (4.3) 

Eigenfunctions for the boundary-value problem (4.1), (4.3) are simple harmonics 

u = a . s i n n r r x 3 ,  ® = b . s i n n r r x 3 ,  F = c . c o s n r r x 3 ,  

G = d - s i n n r r x 3 ,  M =  f . cosnrrx3 ,  ( n = 1 , 2 , 3  . . . .  ). 

The dispersion relation for n = 1 turns out to be 

K2B k 2 Ra 
0 = - ( ~ 0 -  K 2 ) K  ~ + + - -  

o) - K 2 + R a  - K y  

(~'~77") 2 (D -- ((.0 -- K 2 ) K  2) 

((.0 - K 2) ( D  --  (0) - K a ) K  2) -}- B K  2' 

where 

1 2 
B = ~KTK , 

o) - -  K 2 

z) = ~ r K  2 - K 2 ~a ,  X 2 = ~ + ~2 + ~2, k2 = k2 + ~ .  
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This is an algebraic equation of  the fifth power with respect to w. In order to 
find the neutral stability curves determining the critical Rayleigh number as a 
function of the wavenumber k, we assume o) = 0 and obtain the following cubic 
equation for the Rayleigh number 

Ra 3 + r  Ra 2 +s  Ra + t  = 0, (4.4) 

where 

r -- k2al (82K 6 + k2 (2SK 2 -I- KT(S q- 1)) + (~'~TT) 2) 

1 ( 1 6 
s = ~ K66 (28K 2 -t- KT(6 q- 1)) q- k2(KT q- K2)(KT -I- 6K 2) - ~KTK a q- 

\ 

+ 2(K7 + K2) (~.Q'/r) 2) , 

t -- k2 ~1 (K6(Icy-l-(~g2) Q(~(K91-]-K2) - ~K91) q- (~gg)2(K~-}-K2)2) 
91 a=l+g. 

The solution of  (4.4) consists of three branches Ra(k), corresponding to its 
three roots. In order to choose the physically relevant branch, consider the limit 
K --+ 0, 7 -+ 0. Then equation (4.4) can be represented as 

K6 + ( a r t ) 2 ) .  (Ra - K 2 )  2 = 0. (4.5) 
Ra -k-g ,] 

The first root corresponds to the neutral curve of the classical convection in 
a horizontal layer of a rotating fluid without turbulence. The two other roots 
correspond to a branch, having the meaning of the neutral curve on an internal 
turbulent scale level and satisfying the equilibrium condition (4.2). In fact, in 
case of  equilibrium on a level of turbulent scales it is necessary to add the 
equilibrium condition (4.2) to eqs. (4.1), viz, 

1 
0 -~ ~-F3 - M3. (4.6) 

4 

From eqs. (4.1), (4.6) one obtains 

0 -~ --((0 -- K2)K 2 - KTK 2 q- KTK 2 -- K 2 Ra 

and at o) = 0 we have 

Ra = K 2 (4.7) 
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which was to be proved. (4.7) implies that for long wavelengths any equilibrium 
on the level of turbulent scales is absent at Ra > ~.2. It means, that at practically 
interesting values of the Rayleigh numbers the turbulence is of non-equilibrium 
type. 

The analysis of the considered limit case of the dispersion relation (4.4) 
shows that large-scale equilibrium is determined by that branch Ra(k), which 
associates asymptotically with the first root of (4.5). 

The neutral curves corresponding to changes of parameters y and K at ~t = 0 
are depicted in Figs. 1, 2. The lowest curve corresponds to the asymptotic case 
7 -+ 0, t~ --, 0 and coincides with the classical neutral curve for a horizontal 
layer in the absence of turbulence [26]. From the neutral curves corresponding 
to 7 7 ~ 0, K 7~ 0 one can see that nonequilibrium turbulent fluids are more 
stable with respect to long wave disturbances, when turbulence is in equilibrium 
on the domain boundaries. This conclusion can be interpreted as follows: In 
a fluid with developed small-scale turbulence there is a possibility to transfer 
a part of the heat that is entering from outside and which is a source of long 
wave disturbances, to inner degrees of freedom which are caused by the angular 
momentum of turbulent moles. Growth rates for the mentioned disturbances 
that lead to a loss of large-scale equilibrium, become smaller because the total 
energy is conserved in the considered system at the same rate of heating on the 
boundaries and corresponding value of the Rayleigh number. 
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It is interesting to note that the instability domain becomes more narrow 
with increasing parameter y (Fig. 1) and more gently sloping in the vicinity 
of the minimum of the neutral curve with increasing parameter K or decreasing 
turbulent scale 3/(Fig. 2). In other words, the critical Rayleigh number "scatters" 
over wave number. 

In Fig. 3 the depencence of the critical (minimum) Rayleigh number Ram 
on the rotation parameter f~2 is displayed for various values of the parameter K 
and for y : 1. The lowest curve coincides with that for convection in a rotating 
horizontal layer of a nonturbulent fluid [28]. At f~2 < 102 the dependence of 
Ram on the rotation parameter is rather weak and the values of Ram increase 
uniformly with increasing parameter K, as mentioned earlier. At ~'~2 >. 10 2 all 
curves tend asymptotically to a limit curve, that corresponds to the non-turbulent 
case. Such a behavior can be explained by gradually increasing the predominated 
influence of the rotation energy of the fluid layer as a whole in comparison with 
the total energy of the rotating turbulent moles. Therefore, both rotation of the 
layer as a whole and rotation of individual turbulent moles exert a stabilizing 
influence on the instability development and slow down the beginning of the 
thermal convection. At small and moderate values of f~2 the second process 
prevails. 
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5 Conclusion remarks 

On the basis of the model of non-equilibrium turbulent fluid with intrinsic mo- 
tions of turbulent finite-size eddies or moles (proposed by the authors) we have 
considered the thermal convection of a horizontal layer of a rotating turbulent 
fluid heated from below. Even though the conventional models of fluids (and 
conventional Euler and Navier-Stokes equations), in which the fluid has no 
structure and remains structureless when it flows, remain adequate for the solu- 
tion of many problems of fluid dynamics, there are some situations for which 
the main properties of the flows are determined by asymmetric stress tensors. 
For example, such situations occur in atmospheric turbulence processes, in the 
mechanics of liquid biological systems, in shock wave interactions in turbulent 
boundary layers, and so on. 

We have shown that the intrinsic motions of finite-size turbulent moles and 
the orientation of their angular momenta in the field of axial forces give rise to 
stresses which have to be taken into account as antisymmetric additions to the 
Reynolds stress tensors. The corresponding mathematical methods are similar to 
the methods of generalized mechanics. In particular, the balance law of angular 
momentum is no longer identically satisfied, and it must be included in the 
governing equations as a basic balance statement. 

The typical scale of oriented turbulent eddies is defined by the ratio of the 
conventional and topological internal invariants of turbulence. This ratio char- 
acterizes the relation of the energy associated with intrinsic motions of oriented 
eddies to the part of their energy that is linked to the vortical field of large-scale 
motions, and corresponds to the typical spatial scale. 

For the problem of thermal convection it is shown that a rotation of the 
horizontal layer and independent motions of turbulent moles exert a stabilizing 
influence on the convective instability, and thus slow down the beginning of 
the thermal convection process. Such an effect occurs in the considered case 
of equilibrium boundary conditions and free boundaries of the horizontal layer 
heated from below. Finally, we note that the theory can be extended to the case of 
non-equilibrium conditions on one of the plane layer boundaries, corresponding 
to atmospheric processes, and we intend to consider such cases in future studies. 
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