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Summary. The paper describes a local solution method for the calculation of the interaction between a weak 
shock front and a turbulent boundary layer on a swept wing. A multiple-deck approach allows the 
simplification of the governing equations according to the physical character of each deck. The mathematical 
model is based upon small-perturbation theory. The final boundary-layer solution is given by an iterative 
coupling of the solutions for each domain. The results are compared with experiments and with other 
theoretical solutions. 

1 Introduction 

The aerodynamic performance of supercritical wings at transonic speeds is strongly influenced 

by shock boundary-layer interactions. The flow is characterized by a shock wave standing on the 
upper side of the wing. The adverse pressure gradient can induce boundary-layer separation, 
which may increase drag and reduce lift. A comprehensive review of the interaction problem is 
given by Delery and Marvin [1] and by Stanewsky [2]. 

In 1976 Bohning and Zierep [3] developed a local solution method for the two-dimensional 

interaction problem. This method could be adapted to the self-acting ventilation flow over 
a perforated wall induced by the pressure rise in the shock region [4] and has been inserted into 
a zonal solution procedure for the description of flows past airfoils and through channels 
without/with passive control device [5]. Due to the good agreement between theory and 

experiment [6], [7], the local solution method has been extended to the interactive flow over an 
infinite swept wing. 
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Fig. 1. Swept wing with shock front 



46 R-Ch. Nellner and J. Zierep 

A swept back wing is comprised of several two-dimensional airfoil profiles. The profiles can 
be thought of as being aligned side by side and shifted backward. At the tip of the wing and its 
root no simplification is possible with regard to the general three-dimensional flow. But in the 
middle part the derivatives with respect to the spanwise z-direction can be neglected. The infinite 
swept wing is thus a model for the flow field in the midspan of a large aspect ratio wing. 

Figure 1 shows an infinite swept wing with shock front. The leading edge, the shock trace 
(z-axis), and the trailing edge have the same direction. The angle q0 between the freestream 
direction (2-axis) and the direction normal to the shock front (x-axis) is the sweep angle. The 
freestream velocity can be splitted up into a component in x-direction and a component in 
z-direction. In the inviscid outer flow the z-component is constant (superposed tangential 
velocity). However, it is not possible to reduce the system of momentum equations to an 
independent two-dimensional flow in chordwise direction and a dependent spanwise flow, 
because in the boundary layer the change of density due to the tangential velocity depends on the 

distance to the wall. 

2 Multiple-deck approach and mathematical model 

The interactive flow is taken to be a local problem and therefore the velocity distribution at the 
boundary-layer edge is required, which yields the pressure distribution p~. The pressure gradient 
normal to the shock at the boundary-layer edge is large, even for weak shocks. Because this 
gradient is softened towards the wall, the classical boundary-layer assumption @/@ = 0 is not 
valid in the interaction region. The basic idea of the model for the flow field is to divide the 
interaction region into three decks: an inviscid outer flow, a shear layer, and a wall layer (Fig. 2). 
The estimation of the orders of magnitude for high Reynolds numbers [8] shows that in the outer 
part of the boundary layer the pressure gradient normal to the wall has to be taken into account, 
but the friction terms can be omitted. In the inner part the pressure distribution is given by the 
shear-layer flow, while the main friction terms are preserved. 

The thermodynamic quantities pressure p, temperature T, and density ~o are normalized by 
their critical values p*, ~o*, T*. The velocities u, v, and w are referred to the critical velocity of 

sound c* = 7 ~ - / ~ * .  Thus the absolute value of the modulus of the velocity vector is the critical 
Mach number. The boundary-layer thickness 6 is chosen as the characteristic length for the 
coordinates. Then the Reynolds number becomes Re = c*(5~*/#. 
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Considering a weak shock wave and a slightly curved body surface, it is obvious to use 
a perturbation technique. Because former studies of the second-order theory for the two- 
dimensional case have shown that the solution differs hardly from the first-order solution, in the 
present paper all unknown variables are replaced by the quantities for the basic flow (subscript 0) 

and for the first-order perturbations (subscript 1): 

p(x, y) = 1 + pl(x,  y) 

r(x, y) = To(y) + rl(x,  y) 

,o(x, y) = Oo(yl + o~(x, y) 

u(x, y) = uo(y) + ul(x, y) 

v(x, y) = vl(x, y) 

w(x, y) = wo(y) + w~(x, y). 

(1) 

(2) 

(3) 

(4) 

(5t 

(6) 

Due to the slight curvature of the flow field, it is assumed for the basic flow that the derivatives 
with respect to the x-direction can be neglected. The basic velocity profile is split up into the 

components uo = cos g'Mo*, Vo = 0, and Wo = sin ~Mo*, where ~, is the angle of the incoming 
flow to the x-axis. The critical Mach number of the basic flow can be converted to the local Mach 

number Mo: 

1 
Mo = Mo* = ~ o  Mo*. (7) 

k / ~ +  1 ; : -  1 
Mo .2 

2 2 

The basic pressure Po = 1 in the boundary layer is constant. Therefore it is possible to represent 
the turbulent velocity distribution by a power law [9]: 

Mo* = y~, Mo = ye. (8) 

In the wall layer, similiar to the laminar sublayer, the basic velocity distribution is a linear 
function. 

The basic flow with the constant critical pressure and the Mach number Mo* = Mo = 1 
at the boundary-layer edge represents the turbulent boundary layer on a flat plate, whereas 
the added disturbance variables describe the influence of the shock front and of the wall 
curvature. 

Taking into account (1)-(6), the perturbation equations of continuity, energy, and state 
become 

0ul 00i 0 
oo a 7  + uo ~ -  + ~ (oo~'~) = o (9) 

T1 = - ( 7  - 1) (uoul + wow1) (m) 

Pl = ~ooT, + 01To. (11) 
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With respect to the momen tum equations we have to distinguish between the outer and the inner 

part  of the boundary  layer. If the shear layer is considered, we obtain 

Out duo 1 @1 
OoUo ~x + #oVt dy 7 c~x (12) 

8vt 1 @1 
OoUo . . . . .  (13) 

Ox 7 OY 

Owl dwo 
~~176176 ~ x  + OoVt ~ - y  = O. (14) 

Adjacent to the wall the momen tum equations are given by 

~ut duo 1 ~Pt 1 ~2ul 
- - -  - -  ( 1 5 )  o~oUO ~x + Oovt dy 7 Ox + Re gy2 

@1 
- -  -=  0 ( 1 6 )  
~y 

c')wt dwo 1 32W1 
OoUo ~xx + 0oVt dy - Re ~y2 (17) 

3 L o c a l  s o l u t i o n  

3.1 Shear layer 

The solution for the outer boundary  layer is obtained this way: Replacing T1 in (11) by (10) allows 

to eliminate 01 in the continuity equation (9). Then the derivatives of u t and w t from (12), (14) can 
be applied. Now there are two equations under consideration: the continuity and the second 

momen tum equation. The only two unknown variables here are p~ and vt. Equation (13) can be 

satisfied by 

p~ = - y G  (18) 

1 
v, - ~y. (19) 

OoUo 

Using these representations, the system of the perturbat ion equations (9)-(14)  is reduced to one 

equation 

2 d (]//~oUo)~b =0 (20) 
(1 - 0oUo 2) ~x~ + fbyy ~ o  Uo dy 

for the unknown variable ~b. Due to (18), (19), boundary  conditions in terms of Pt and vt are 
needed. At the edge of the boundary  layer pt(x, 1) is given by the outer flow. If a parallel s tream 
adjacent to the wall is considered, vt vanishes at the inner boundary-layer  edge. At the beginning 
and at the end of the interaction region (x < xb, x > Xe) we assume 6/Ox ~ O. Hence, the 
boundary  conditions related to @ are 

1 
�9 x(X, 1) = - -  pt(x, 1) (21) 

7 

q~,(x, y,) = 0 (22) 

G(xb, y) = G(Xe, Y) = 0. (23) 
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The problem (20) - (23) can be solved using the separation method. The function ~b is represented 
by the sum of a function f ,  depending on y times a function g,, depending on x : 

q~(x, y) = L f,(Y) g,(x) - 1 ~ Pff~, 1) d~. (24) 
n = l  ]2 d 

~Zb 

The second term in (24) is utilized to obtain homogeneous boundary conditions for the 
functions f,. Now Eq. (20) divides into two ordinary equations coupled by the separation 
parameter 2,. 

With respect to (7), (8) the Sturm-Liouville problem in y-direction can be written as 

d ( 1  df,'] ( 1 - c o s  2 Oy2P) 
dT ~ dy] + Z. y2p f .  = 0 (25) 

f,(1) = 0 (26) 

G ( y . )  _ o .  (27) 
dy 

The integration of the eigenvalue problem (25)-(27) 

1 

f }  - cos 2 Oy 2p _ 1 df.(1) 
f .  ay (28) 

y2p }~n dy 
ru 

simplifies the representation of the coefficients d, in the equation of oscillation (44) below. To get 
the solution of the eigenvalue problem, at first, the expression 

1 - c o s  2 ffly 2fl "~ ay ~-~ - by 2(~-1) (29) 

is replaced. For the two-dimensional case we have 

/ / + l  

aeD=b2D=4fi(fl+ 1)- ~ (30) 

in 2 
XgD = 2fi (31) 

in (2/~ + 1) 

and in case of ~ @ 0 

2 sin 2 ~ - a2DX2D COS 2 ~t 

H = 4 sin 2 0 - 3a2D~D COS 2 0 (32) 

3 1 1 / -~2  _ 8H sin2~ (33) a = 2 s i n 2 ~ - -  ~ H + ~  

b = a - sin 2 0 (34) 

2 s i n  2 ~t - -  a2D~42D COS 2 ~t 
z = (35) 

a -- 2b 
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Then the coordinate y and the eigenfunctions f. are transformed: 

2 b[/~. Y~ (36) I /=  - = o-.y ~ 
Y 

h .= f~exp  r/ q- ~ (37) 

With the abbreviations 

2 f i + l + x  
co  - ( 3 s )  

(I) G n a 

q" 2 4 b'  (39) 

Eq. (25) changes into 

dZh. dh. 
rl dtl~ + (co - tl) ~ - q,h, = 0. (40) 

This type of differential equation is solved by confluent hypergeometric functions [10], in 
a general representation given by 

a(a + 1)...(a + n -  1) x" 
M(a ,b , x )=l+  ~ b ( b + l ) ~ . ~ - + n  l) n[" (41) 

n = l  

The solution of (40) is 

h.(11) = A" M(q., o, 17) + rll-~ M(1 + q. - co, 2 - co, r/). (42) 

Recalling the transformations (36), (37), the constants A, B can be determined with the conditions 
(26), (27). The solution of the eigenvalue problem becomes 

fdy)=exp ( - - 2  Y• N.{y2~+lM(l + q.--co, 2--co, G) M(q.,co, GY~) 

-- M(1 + q .  - co, 2 - -  co, a n y  ~) M ( q . ,  co, G)}.  (43) 

The parameter a, is obtained from the eigenvalue determinant, N, follows from the orthogonality 

relations. 
The equation of oscillation in x-direction and the associated boundary conditions are 

dZg" 2.g. = a.(x) (44) 
dx 2 

g.(Xb) = g.(xe) ---- 0. (45) 

With respect to (28) the coefficients d. can be written as 

1 

d.(x) _ Yl dpdX,__dx 1) f i - cos zy2r t~y2p f. dy ?1 dpt(X,dx 1) /l.1 df.(1)dy (46) 

Y~ 
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The solution of (44), (45) is given by 

; } 1 sinh ~ (x - Xb) 
g.(x)= ~ d . ( ~ ) s i n h ~ / ~ . ( x - ~ ) d ~ -  s i ~ / 2 7 ( X e ~ b )  d.(x) s i n h ~ ( x e - x ) d x  . 

Xb 

(47) 

With (43), (47) the function �9 follows from (24), and with the derivatives (18), (19) we get the 
disturbances p~ and v~. Integration of (12), (14) and adaption to the incoming flow yield 

pl(x, y)-- p~(xb, y) 1 duo i Ul(X, y) = 7O~oUo uo dy j vl(~, y) d~ + ul(xo, y) (48) 
Xb 

1 dwo f wl(x, y) - uo dy vl(~, y) d~ + Wl(Xb, y). (49) 

Xb 

Now the disturbance of the temperature and of the density can be obtained from (10), (11). 
Adding the quantities of the basic flow, all variables of the flow field in the outer boundary layer 
are given. 

3.2 Wall layer 

Because the solutions of the outer and the inner boundary layer depend on the thickness of the 
wall layer, the final boundary-layer solution is given by an implicit coupling of the outer 
boundary layer with the inner one. Varying the thickness y~ of the wall layer, y~ can be determined 
by the vanishing gradient of the wall-shear stress in x-direction [6]. In comparison with the 
overall boundary layer, the wall layer is very thin (order of magnitude: y~/6 ~ 10-2). 

Adjacent to the adiabatic wall we assume for the temperature gradient OT/Ox ~ O. To solve 
the wall-layer problem, the momentum equations (15), (17) are differentiated with respect to y. 
Combined with (9) merely ~ needs to be eliminated. This yields two equations for the 
disturbances u~ and wl. 

For ul we get 

•3ul c~2u~ dpl duo 
63y 3 ~~176 ~?x c~y QoUo dx dy (50) 

At the inner boundary-layer edge ul is given by the shear-layer flow. At the wall u~ has to vanish 
and from (15) follows 

32ul Re @z 
Oy 2 y dx uyy,w. (51) 

A particular solution (adapted to the incoming flow) of Eq. (50) is 

ulp = {pl(x) - pt(xb)} uo(y) + Ut(Xb, y). (52) 

Provided the homogeneous solution is of the same structure 

Ulh = {pl(x) -- pl(Xb)} f(y) (53) 
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we have to solve 

d3f 1 dpl duo df 
&~ - p1(x) -p~(x~)  d~- eo ~-y y d7 = 0. (54) 

The transformations 

df  = yl/2h (55) 
dy 

2 
r~ = -~ Gy a/2 (56) 

lead to 

( 9+) dr/2 + ~ dr/ 1 +  h 0. (57) 

The general solution [10] is given by 

h(r/) = AI-1/3(r/) + BI1/3(r/) (58) 

t 2  12k + v 
Iv(r/) 

L k ! r ( v + k + l )  
(59) 

k=O 
where the functions Iv are modified Bessel functions. F means Euler's Gamma function. 
Summing up the particular and the homogeneous solution, the constants of integration A, B are 

obtained from the boundary conditions. We get 

ul = ul(xb, y) + (Pl - pl(xb)) Uo + (1/2(AI-1/3 + BI1/3) d( (60) 

with 

Pl - pl(xO G 

Ul(X~_ Y_,u)_ • Ul(Xb, Y~) 1 (62) 
A = ~ pl  - pl(xb) - U o ( y . )  - 8 o /J21 , j3  dy i ~ y'J21-,,3 ay 

0 
The same procedure applied to wl yields 

~3W1 82W1 @1 duo 
0oUo - -  - -  (63) 8y3 OoUo 8x 8y - dx dy 

Wyy, W = 0 (64) 

Wl = Wl(Xb' y) + (Pl -- Pl(Xb)) {Wo + C i (1/2I-x/3 (65) 

C - --wo(yu) (66) Y~ 
yl/2I_l/a dy 

0 
Again the disturbances T, and 01 follow from (10), (11), and with the quantities of the basic flow 
all variables of the inner boundary layer can be calculated. 
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3.3 Coupling with the inviscid outer flow 

To apply the present boundary-layer method, the required local input data are derived this way: 
The incoming velocity profile is represented by the normal and the tangential component of the 
critical Mach number M* at the boundary-layer edge and by the incompressible shape factor 
Hi (ratio of incompressible displacement thickness and momentum thickness). In a first step, 
a pressure jump due to the Prandtl-relation for oblique shocks is considered. This "pressure 
distribution" is the boundary condition for the shear-layer problem, whose solution provides the 

distribution of the velocity v normal to the wall. In the next step, v is the boundary condition for 
the inviscid outer flow. The outer flow can be reduced to the two-dimensional case, because in 
this domain the spanwise velocity depends neither on x nor on y; the chordwise velocity depends 
on the local radius R of the wing surface normal to the shock [6], [11]. This leads to a new pressure 
distribution at the boundary-layer edge. Thereupon the shear-layer problem is solved again and, 

finally, coupled with the wall-layer problem. 

4 Results 

Figure 3 shows the pressure distribution at the boundary-Iayer edge (p~) and at the wall (pw), The 
shock position is at x = 0. The dashed lines refer to the pressure jump in the outer flow due to the 
Prandtl-relation (starting solution). At the wall the pressure rise is just the same, but it is a more 
gradual one. About six boundary-layer thicknesses are needed to reach the downstream value of 
the shock wave. The full lines show the pressure distribution due to the interaction with the outer 
flow (final solution). Even ahead of the shock front p~ increases, and behind the shock front the 
post-shock expansion can be seen; the latter was first mentioned by Ackeret, Feldmann, and Rott 
[12]. Accordingly, the pressure jump itself is smaller and the pressure rise at the wall is weaker. 

The pressure rise is responsible for a possible boundary-layer separation. As derived by 
Stanewsky [2] and according to our results, the interactive flow normal to the shock front, the 
associated upstream influence, and the separation onset are essentially independent of 
a superposed tangential velocity, If the spanwise component becomes larger, the level of the 
pressure distribution is decreasing, but the pressure gradient is much the same and the change of 
density seems to be not strong enough to cause a distinct influence. 

Mignosi, Dor, and Seraudie [13] have published an experimental study of the separation 
conditions given by the local Mach number M and the incompressible shape factor H~ upstream 
of the shock. Following this representation, the calculated separation onset for the two- 
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Fig. 3. Pressure distribution at the boun- 
dary-layer edge po and at the wall Pw, 
M* = 1.24, ~ = 14 deg, Hi = 1.30, 
R/g) = 400 
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Fig. 4. Comparison of the 2D-separation 
condition. Experimental results [13] and 
present theory (R in units of 6) 

dimensional case can be compared with the experimental results (Fig. 4). An increase of the shape 

factor leads to a lower incipient-separation Mach number. The experiments indicate a weaker 
influence of the shape factor than the present theory. The difference is caused by the dissimiliar 
local curvature of the investigated airfoil profiles, by the two methods for the determination of the 
shape factor, and by the different obstruction of the wind-tunnel test section due to the various 

size of the airfoil profiles. However, the difference between the theoretical limit for shock-induced 

separation and the experimental average is small. 
Considering the numerical simulations of the DFVLR-F5 complete wing experiment [14], 

a qualitative comparison with the present results was carried out for the midspan region. Most of 
the results show chordwise regions of separated flow along the midspan. The calculated skin 

friction line patterns there correspond to the direction of the flow in Fig. 5. The arrows show the 
flow direction in the xz-plane close to the wall. The limiting streamlines converge into the 
separation line immediately ahead of the shock front. Behind the shock the flow turns back. Due 

to the slight curvature of the wall, the post-shock expansion is weak and, therefore, the interactive 

flow does not reattach. 
The application of the present local solution method to a defined flow case allows 

a quantitative comparison with other theoretical results in the shock region. The incoming 
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Fig. 5. Direction of the streamlines close to the surface. M* = 1.30, t) = 14 deg, Hi = 1.36, R/6 = 600 
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Fig. 6. C o m p a r i s o n  wi th  a boundary- layer  calculat ion.  Numer ica l  m e t h o d  (Deutsche Airbus)  and  present  
local solut ion method.  N A C A  0012: incl. angle 1.7 deg, (p = 30 deg, M ,  = 0.8, Re~ = 9 - 106; a skin-friction 
coefficients cj.s, cf,, b d isp lacement  thicknesses 61s, ~ ,  c m o m e n t u m  thicknesses 62,, 62, 

velocity profile and the velocity distribution at the boundary-layer edge are taken from 
a boundary-layer calculation for the airfoil profile NACA 0012 with a sweep angle of 30 deg and 
an inclination angle of 1.7 deg. The freestream conditions are M~ = 0.8 and Re~ = 9 �9 106. 

Figure 6 ascertains the proficiency of the local method by the comparison of the skin-friction 
coefficient cs, the displacement thickness 61, and the momentum thickness 32 with the numerical 
solution. The thicknesses are normalized by the length of the airfoil profile. All quantities are 
taken in the direction of the external streamline (index s) and the direction normal to it (index n). 
Behind the interaction region (x > 5) the local solution is no longer valid. Taking into account 
that entirely different methods are used, the agreement is remarkable. 

5 Concluding remarks and outlook 

The local solution method for the two-dimensional interaction between a weak shock and 
a turbulent boundary layer has been extended to the interactive flow over a swept wing. The 
comparison with experimental data and other theoretical results shows a good agreement. 
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Numerical  calculations could profit by the present local method which benefits the resolution 

of the sharp gradients at the shock front. If required, a second-order solution can be derived. The 

first-order and the second-order solution have nearly the same structure. The coefficients d, in the 

equation of oscillation (44) show additional terms, whereas the eigenvalue problem (25) does not 

change. A second-order solution for the wall layer can be derived, too. 
A further application of the present method could be the investigation of the influence of 

a passive control device. An involved passive control device aims at weakening the shock 
strength and at delaying shock-induced separation. The pressure rise at the perforated wall 
causes blowing upstream of the shock and suction downstream of it. For  this case, the 

boundary  conditions for the function q~ and the inner solution depend on the distribution of 
the velocity component  v. In comparison with the flow over a solid surface, the velocity 

profiles are less bulgy in the region in front of the shock and more  bulgy in the region 
behind it. This can cause the undesired effect that  the boundary  layer separates even in 
a larger distance ahead of the shock than in the case of a solid surface. The local method 

adapted to swept wings with passive control device could be expedient to investigate such 

effects. 
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