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Summary. The linear stability of axial parallel Poiseuille-Couette flow in an annulus between concentric 
circular cylinders is considered. Using a long-wave version of the axisymmetric Orr-Sommerfeld equation 
the stability chart of this flow in the velocity ratio-radius ratio plane is derived. It is shown that pure sliding 
Couette flow can become unstable if the radius ratio is below a specific threshold value. Finally, applying the 
results to other flow geometries, it is shown that the boundary layer along a slender cylinder can become 
unstable in a confined region downstream the leading edge only. 

1 Introduction 

The hydrodynamic  linear stability of viscous flows has received considerable attention in view of 
its importance in the mechanism of the natural  transition from; laminar to turbulent flows. This 
paper  is devoted to the investigation of linear stability of the axial flow of an incompressible 

Newtonian fluid in the annulus between concentric circular cylinders. The stability characteris- 
tics of annular Poiseuille flow were first analyzed by Mot t  and Joseph [8] and this flow was found 

to be unstable, unlike the Hagen-Poiseuille flow in a circular pipe. The case of annular sliding 
Couette mot ion was investigated recently by Preziosi and Rosso [12] and they did not find any 
indication of linear instability. 

The present investigation examines the stability properties of combined axial Poiseuille- 
Couette flow in a cylindrical annulus. One does not know a priori whether a superposition of 
Couette flow on Poiseuille fl0w will cause the flow to be more or less stable. This problem was 

investigated in the case of plane flow by Pot ter  [11] and later by Cowley and Smith [1]. Their 
methods are applied to the cylindrical flow geometry in Section 2 of this paper  and the solutions 
of the governing equations are presented in Sections 3 and 4. One important  result, the linear 
instability of annular  sliding Couette flow (in contrast to the findings of Preziosi and Rosso [12]) 
is given in Section 5. Finally, the application of the results to annular Poiseuille flow and to the 
boundary  layer flow along a semi-infinite cylinder is discussed in Section 6. 

2 Problem formulation 

We consider the incompressible, axial flow in the annulus between two concentric cylinders with 
r ad i i /~  and/~2 ( /~  </~2), see Fig. 1. Throughout  this study, dimensional quantities are denoted 
by superscript ~. (g, g, ~?)r denotes the velocity vector in tt!e cylindrical coordinate system 
(f, ~, z') r. The mot ion of the fluid is generated by a fixed axial pressure gradient (Poiseuille flow, 
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Fig .  1. Poiseuille-Couette flow in a cylindrical annulus 

maximum velocity l~p) and/or by the sliding velocity of the outer cylinder ~ (Couette flow). The 
analysis in this paper will be restricted to axisymmetric motions and disturbances, i.e. 8/~?q~ -= 0. 

Three nondimensional parameters enter the problem: 

the radius ratio t / =  R 1 / R 2 ,  

the velocity ratio Kc = W~/W v 

and the Reynolds number Re = W~=yR1/~. 

(i) 

~/varies within the range 0 < t / <  1. The limit t/--+ 0 characterizes the single inner cylinder in 
unbounded flow while */--+ 1 corresponds to the case of plane motion. ~ denotes the kinematic 
viscosity. For  the present the reference velocity 14/~el is taken to be ~ (later on in the case of pure 
Couette flow we will take 17~ef = 1~7~). We scale the lengths with/~1, the velocities with lg4~ef, the 
pressure with olTvr2f and the time with R ~ / l ~ e l  to obtain nondimensional quantities. The 
governing Navier-Stokes equations can be integrated to yield the velocity distribution of the 

unperturbed basic flow 

1 -/]2r2 -1- 7(ln r + in  t/) in  r 

Wo(r) = 1 -- 7(1 -- in 7/2)/2 --  Kc l n~ '  (2) 

with 7 = 0/2 - 1)/ln t/. 
As usual, the stream function for the small disturbances is harmonic in z and t, with the wave 

number ~ and the complex phase speed c = cr + ic~: 

7~(r, z, t) = ~b(r) exp [ic~(z - ct)]. (3) 

For the non-harmonic component  ~b(r) we get after insertion of (3) into the Navier-Stokes 
equations and linearization the axisymmetric Orr-Sommerfeld equation 

E3 ~ i~  2 qs'" + 2c~ z 
r ~5-- 

+ { c ~ 4 + i ~ R e E W o ,  , WO'r 

1(1) i~  R e  (14/o - c)  ~b" - - ~b' 

_ .  %_ ~2 (Wo__ c) l} ~ = 0. (4.1) 
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Imposing the boundary  conditions 

~b(1) = (b'(1) = q5(1/~7) = (bi(1/tl) = 0 (4.2) 

we thus obtain the eigen-value problem describing the linear stability characteristics of 
axisparallel Poiseuille-Couette flows between concentric cylinders. The eigen-value problem 

requires that ci = 0 if no growth or decay of the disturbance is allowed. The minimum Reynolds 
number  of the neutral-stability curve representing the above relationship is the critical Reynolds 
number  R%.. 

Annular Poiseuille flow (1~ = 0) was studied first by Mot t  and Joseph [8] for axisymmetric 
disturbances. Asymmetric disturbances were taken into account later by Mahadevan  and Lilley 

[7] and Dzygadlo and Chlebny [3]. All these investigations show that Rec~ increases without 
bound as the radius ratio 17 ~ 0, starting from the plane Poiseuille flow limit t / =  1 (see Section 5, 
Fig. 9). The authors argue that the velocity distribution assumes the Hagen Poiseuille form as the 

inner cylinder vanishes (t/--, 0) which explains the unrestricted stabilisation of the flow in this 
limit. This point will be discussed again later in Section 5, 

Preziosi and Rosso [12] investigated pure annular sliding Couette flow (17r v = 0) and state the 
result: ". . .  the flow always turns out to be linearly stable". As will be shown later this is only true 
for a limited range of the radius ratio t/. 

In this study we will consider the stability of axisparallel, annular Poiseuille Couette flow. In 

the case of plane motions ( r /= 1) Poiseuille flow has a finite critical Reynolds number  while 
Couette flow always behaves linearly stable. Pot ter  [11] was the first to investigate the question 
how the superposit ion of these two flows influences the overall stability properties. Starting from 

plane Poiseuille flow, Kc = 0, his results show an increase of Recr for increasing values of Kc. As 
Kc approaches a cut-offvalue, Kc* ~ 0.70, Recr tends to infinity and the neutral curve disappears. 
Therefore plane Poiseuille-Couette flow is always stable to infinitesimal disturbances if the 

Couette component  exceeds ~ 70% of the maximum Poiseuille velocity. As can be imagined the 
calculation of Kc* as a function of ~/using this method would be a very cumbersome procedure. 

In [1] Cowley and Smith introduced an asymptot ic  method to compute "exactly" the cut-off 

value Kc* for plane Poiseuille-Couette flow. This method makes use of the fact that the 
asymptot ic  behaviour of the neutral curves for Kc = 0(1) is given by ~ = 0(Re- 1) for large Re in 
contrast  to pure Poiseuille flow where ~ = 0(Re-1/7) and 0(Re-1/11) on the lower and upper 

branch, respectively. Using the parameter  ), = 1/(~ Re) which is constant in the limit Re ~ o% 
c~ ~ 0, Cowley and Smith formulated a somewhat  simplified "long-wave" eigen-value problem 
whose solution is sketched in Fig. 2. The two values 2~ and 2, corresponding to each value Kc, for 

Kc < K~*, define the asymptotes of lower and upper branch of the neutral curve. For  K~* = 0.704 
the two branches coalesce and the neutral curve disappears. If Kc > Kc* the flow is always 
linearly stable. 

I t:,- Fig. 2. Qualitative sketch of the long-wave eigenvalue relation 
Kc according to Eq. (5) 
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Let us now apply this method to annular Poiseuille-Couette flow. Equation (4) in the limit 

Re ~ 0% with 2 = 1/(c~ Re) = const, takes the form 

~i~ 2 , +  - (Wo-c )  {b" +~ Wo" 
- r  7 - - 

~b(1) = ~b'(1) = 4~(1/,/) = 4~'(1/t/) = 0 

corresponding to a long wave version of the cylindrical Orr-Sommerfeld equation. 

(5) 

3 Method of solution 

The eigen-value problem (5) was solved numerically by means of the Compound  Matrix Method 

which was applied to hydrodynamic stability problems for the first time by Ng and Reid [9]. 

A short description of this method can be found for instance in Drazin and Reid [2]. By means of 

the Compound  Matrix Method the two point boundary value problem is simply changed to an 

initial value problem which can be solved using a standard integrator. This yields the eigenvalue 

relation in form of a complex-valued function F(2, c,; t/, Kc) and the zeros of F determine the 

eigenvalues in dependence on the parameters. 
The Compound  Matrix Method has the advantage of giving very accurate results which was 

the main reason for adopting it in this investigation, since the eigen-value problems (4) and (5) 

develop complex numerical properties for small values of t/. As a minor drawback the method 

requires very good initial guesses for the eigenvalues. Starting with a radius ratio of t / =  0.8 and 

2 = 2.2.10 -6 it was impossible to get converged eigenvalues by means of the usual Newton- 

Raphson iteration procedure. 
To clarify the reason for this failure the eigenvalue relation F was calculated at a large number 

of values of c, and kc (gridpoints). Then the contours of Re (F) = 0 and Im (F) = 0 were plotted by 

means of interpolation between the gridpoints, Fig. 3 a. This contour plot - showing two 

intersection points, i.e. two eigenvalues where Re (F) = I m  (F) = 0 - reveals the handicap of the 

Compound  Matrix Method: the eigenvalue relation has a strong oscillatory behaviour indicated 

by the large number of nearly straight lines in almost constant distance. Therefore, in a modified 

/ 
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Fig. 3. Contour plot of the eigenvalue relation F for r/= 0.8, 2 = 2.2.10-6; Re(F) = 0, - - - - Ira(F) = 0. 
a Original Compound Matrix Method; b modified version 
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numerical scheme the complex-valued function F is smoothed by multiplication with an 
experimental term F = F exp [i(Tcr + zKc)]; herein the complex coefficients 7 and z are 
computed automatically by the program. The improvement can immediately be seen in Fig. 3 b. 
One can imagine, the Newton-Raphson procedure now needs much less accurate initial guesses 
to get a converged eigenvalue. Together with a similar modification which helps to suppress 

oscillations occuring during the integrations of the Compound Matrix equations it was possible 
to speed up the computations by a factor between 5 and 10. 

4 The long wave eigen-value problem 

Figure 4 shows the main results of the numerical computations of the long wave problem: the 
stability chart for axisparallel annular Poiseuille-Couette flow in the Kp - ~I plane. (Kp = 1/Kc 
is more suitable for a clear and simple graphical presentation of the results.) For t /=  1, 
representing the plane flow situation, we can apply Potter's result: the flow is linearly stable if the 

relative Poiseuille component K v = Wv/W~ is less than a cut-off value K*, = 1.42 = 1/0.704. The 
same limit applies for negative Poiseuille components, K*z = - 1.42, since the velocity profiles 
are identical for positive and negative values Kp and - K p  in the plane case (~/= 1). In the 

cylindrical annulus (71 < 1) we get different velocity distributions and, therefore, we have to 
compute separately the second, lower stability boundary K*z(t/) in addition to the upper one 

K*,(~). Inside the shaded regions (Kp > K*, or Kp < K'z) the flow always exhibits a neutral 
stability curve with a finite critical Reynolds number Reef. 

Each point of the stability boundaries K*, or K*t corresponds to the apex of the upper or 
lower marginal curve defined by the long wave eigen-value problem (5) for a given value of 11. To 
compute these boundaries for decreasing values of t /an automatic search algorithm with 2 nd 

2 

Kp 

1 

-1 

-2 

-3 

-4 

-5  

-6  
0.2 

1.42 

-1.42 

0.4 0.6 0.8 1.0 Fig. 4. Stability chart for annular Poiseuille- 
q Couette flow 



6 

o( 

2.0 

1.5 

1.0 

0.5 

2.0 

1.5 

1.0 

0.5 

0 

2.0 

1 , 5  - -  

1.0 - 

0.5 - 

0 " 

Fig. 5. 

I I I I I I I I I I I I I I I I I I I I t I I I I I I I I I I I I I I I t I I I I I I I a 

100 000 200 000 300 000 f~00 000 500 000 
Re 

I u 
I I 

I 

_ ,, 
- -  I 

- -  I 
- -  I 

- -  I 

- -  i [ ,Recq ]Recr2 
"~  I n  a h  J J a a l u n l l n  J x J  n a l n a t  f n l n l n l a  J a a u  n l l f J ] a n  

l i  I I I I I i l f  I l l l l l l t l l l f l l l i l l l l l l l  Z I I I I I I I ~ C 

Marginal curves for t /= 0.5 and (a) Kc = 0, (b) Kc = --0.05, and (e) Kc = --0.07 

Ph. Gittler 

order tracking using small A~/steps was implemented. The results for K*z ended with a vertical 

slope near t? = 0.428 and no solution of the eigen-value problem (5) in continuing the lower 
stability boundary for t / <  0.428 could be found. To close the stability chart in this region the full 

Orr-Sommerfeld problem, Eq. (4), has to be investigated. Characteristic results for ~/= 0.5 are 
presented in Fig. 5. Figure 5 a shows the neutral-stability curve for pure annular Poiseuille flow 
(Kc = 0) in the wave number - Reynolds number plane. Adding a small negative Couette 
component  of Kc = -- 0.04 changes the neutral curve significantly, as can be seen from Fig. 5 b. 

A second apex is formed and a further decrease of Kc results in a splitting of the curve, Fig. 5 c, 

with two corresponding critical Reynolds numbers Reef1 and Rec,2. 
These critical Reynolds numbers are depicted in Fig. 6 a as functions of the velocity ratio 

Kc for 1/= 0.5. The stability of the flow for -0 .121 < K~ < -0 .070  is determined by the second 

neutral curve, since Reef2 < Re~rl in this interval. For  Kc < -0 .121 the change from stable to 
unstable behaviour is given again by Reef1 which tends to infinity as Kc approaches the cut-off 
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value K* = 1/K*~ = -0 .358  4 in agreement with the long wave results, eigen-value problem (5), 

Fig. 4. An analogous plot of Re~r(Kc) for t / =  0.4 is shown in Fig. 6 b. For  decreasing values of Kc, 
after the change from Recta to Re~2 and the vanishing of the first neutral curve, Re~z continues to 
be the determining critical Reynolds number  of the flow. Since this second neutral curve does not 
exhibit the asymptotic  behaviour c~ ~ 1/Re for Re --, o% on both the upper and the lower branch, 

the long wave eigen-value problem (5) cannot be applied (and yields no solution). Therefore, the 
cut-off value K* has to be determined directly from the Orr-Sommerfeld results. 

As can be seen from Fig. 6b it is useful to plot the 1/Rc~ - K~ relationship which turned 
out to be nearly a straight line in the limit Re~, ~ oe. Extrapolat ion of the numerical results 
with acceptable accuracy then yields K* ( t /=  0.4) = -0 .215.  Finally the value K*z ( t /=  0.4) 
= -1 /0 .215  = -4 .65  is indicated by a small circle in Fig. 4. Using six additional values - 

obtained by the same cumbersome procedure - it was possible to close the stability chart, 
Fig. 4. 

A useful asymptote  for the relationship Kp(t/) holding in the limit t / ~  0 can be obtained by the 
following simple argument. Since the instability of the flow for t/--. 0 is triggered by the shear 

stress near the surface of the inner cylinder a velocity distribution Wo(r) with dWo/dr(r = 1) = 0 

must always yield stable behaviour. For  vanishing wall shear stress we thus get 

K p o ( t / ) = [ l + 2 ( l n 2 - 1 ) l / [ t / 2 ( 1 - 2 1 n t / ) - I  ] (6) 

with y(t/) defined in Eq. (2). This result, shown as a broken line in Fig. 4, is in complete agreement 

with the numerical calculations in the limit t / ~  0 (with Kpo(t/-~ 0) = - 1). 

5 Annular sliding Couette flow 

The most  striking feature of the stability chart is the fact that  the upper stability boundary  
K*u crosses the t/-axis (Kp = 0). This indicates that pure annular  sliding Couette flow can become 
unstable for t / <  t/c = 0.1415 (in contrast  to the statement of Preziosi and Rosso [12] who 
considered larger values of t/only). We now turn to the full Orr-Sommerfeld problem (4) to 
investigate the stability characteristics of this axial Couette flow. The marginal curves for the 
radius ratio t / =  0.1 are depicted in Fig. 7 and they exhibit the usual shape, characteristic for 
a shear induced instability. The critical Reynolds number,  based on the sliding velocity of the 
outer cylinder (17r = 1~), is found to be Reef(t/= 0.1) = 8.026' 105. F rom Fig. 7b we find the 
critical wave speed ccr = 0.037 9; together with the velocity distribution Wo(r) = - i n  r/ln t~ for 
1 < r < l / t / th is  yields the location of the critical layer rc,(t/= 0.1) = 1.091. 

Figure 8 shows the influence o f t / on  the critical values Reef, ccr and C~c~ for axial Couette flow. 
In complete agreement with the long wave results instability sets in for t/less than t/~ = 0.1415. 
With decreasing t/-values, Rear decreases until it reaches its minimum value at t / =  0.08, before it 
starts to increase again tending to infinity for t / ~  0. This behaviour can be explained in the 
following way: Initially, the flow becomes more unstable as the gap width increases. For  
sufficiently small values of t /however, another counteracting effect comes into operation. Since 
the reference velocity is the sliding velocity of the outer cylinder which moves outwards as 
t/decreases, the shear stress which evokes the instability in the critical layer r = rc~ near the inner 
surface decreases, resulting in an increase of Reef. This suggests a new velocity-scaling: The 
velocity distribution 

Wo(r) = lYr = in r (7.1) 
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Fig. 7. Marginal curves for annular sliding Couette flow for ~/= 0.1 (a) wave number ~, (b) phase speed cr 

with the reference velocity expressed by the wall shear stress ~w and the radius R1 of the inner 
cylinder 

~ = {~R,/g (7.2) 

remains unchanged as the outer boundary/~2 goes to infinity. Therefore we have to rep]ace the 
Reynolds number  Re by R e / ( - i n  t/) and the phase speed c by c ( - I n  17) whereas the wave number  

remains unchanged. As can be seen from these rescaled results (broken lines in Fig. 8) the 
influence of the outer cylinder on the stability properties vanishes if 11 < 0.05 (that means 
/{2 > 20/~1) since all three critical values become approximately constant. For  smaller values of 
~7 the numerical solution of the eigenvalue problem becomes extremely difficult. However, results 
could be obtained down to 17 = 0.01. 
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Fig. 8. Critical values for annular sliding Couette flow: (a) Re~, (b) % and c~, 

Carrying out the limit t/--, 0 (/~2 --' oe) we have thus obtained the stability characteristics of 
an unbounded fluid flow along a single cylinder/~1 with the logarithmic velocity profile (7): 

R e ~  = (O~wt~12)/fi 2 = 2.753 0-105,  

o 0.16681, (8) 

Ccr~ = 0.087 709. 

6 A p p l i c a t i o n s  and  d i s c u s s i o n  o f  the  resu l t s  

Let us first apply this result to annular Poiseuille flow in the limit I/--~ 0 [Eq. (2) with 
Kc = 0]. Figure 9 shows the influence of the radius ratio r/ on the critical Reynolds number,  
as already discussed in Section 2. The numerical solution given by the solid line is in 
complete agreement with the results of Strumolo [15]. The Reynolds number  in Fig. 9 
is based on the average velocity (I;V) 

<Re) = , (9) 
2g 

< # 5  _ 1 + */2 _ 7 #p  with 7 = (,/2 _ 1)/ln */. 
2 + 7(ln 7/2 -- 1) 

Accordingly, the critical value in the case of plane mot ion is given by <Re>or = (2/3). 
5772.2 = 3848.1 (cf. Orszag [10]). In the limit * /~  0 the ln-term in the velocity distribution 
becomes more and more dominant  in the vicinity of the inner cylinder and therefore, Eq. (8) can 
be applied to yield: 

<Re>or (*/~ 0) = 2.753' 105 (1 -- I/) (1 + * / 2  _ 7) 
2*/(27 - 4/ /2)  (10) 
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This asymptotic relationship, shown in Fig. 9, is in very good correspondence with the numerical 
results. As a consequence, the assumption that the flow approaches the linearly stable 
Hagen-Poiseuille flow in a pipe seems to be incorrect. Rather there is always an instability near 
the surface of the inner cylinder whose critical values become constant in the limit t / ~  0 if the 
proper scaling - based on the wall shear stress ~w and the radius/~1 of the inner cylinder - is 
used. 

Another problem to which the result (8) can be successfully applied is the axisymmetric 
laminar boundary layer flow along a semi-infinite cylinder of constant radius/~. The constant 
free-stream velocity is denoted by IYF~. As shown by Glauert and Lighthill [4] and Stewartson [14] 
the velocity distribution inside the boundary layer near the surface is given to leading order by 
the logarithmic profile (7). The flow is characterized by two Reynolds numbers, defined with the 
radius/~ and the axial coordinate 5, respectively 

ReR = !TQ/~/g and Rez = l ~ i / g .  (11) 

According to Eq. (8) instability sets in for "~w~R2/# 2 ~ 2.753 0" 105. Using Glauert and Ll~,hthlll s 
result, valid far downstream, this condition can be expressed as 

ReRo. = 2.7530" 10 sin (~/2) for ~ ~ c~ (12.1) 

with ~ - a suitably scaled axial coordinate - given by 

= 4 ~ - ~ / R e . .  (12.2) 

Figure 10 represents the stability chart for the boundary layer flow along a cylinder in the 
ReR - -  ~ plane. For given free stream velocity W~o, radius/~ and viscosity F, i.e. ReR = const, we 
are interested to find the values of ~ for which linear instability of the flow sets in. Since the wall 
shear stress ~w decreases for ~ --* oo the region of unstable flow is located upstream of the dashed 
line, defined by the asymptotic relationship (12.1), shown at the right hand side in the upper part 
of Fig. 10. Therefore, using linear theory and applying parallel flow assumption, the boundary 
layer stabilizes again when passing the stability boundary (12.1) downstream along the cylinder. 
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Fig. 10. Stability chart for the axisymmetric laminar boundary layer flow along a semi-infinite cylinder 
(n = 2 from Kao and Chow [6]) 

It should be noted that this stability boundary does not depend on the displacement thickness of 
the boundary layer, which is the second length scale entering the problem. 

This behaviour is in sharp contrast to the results holding for a classical Blasius boundary 

layer where the flow destabilizes downstream along the flat plate with decreasing wall shear stress 
~w if the Reynolds number R% based on the displacement thickness 6 exceeds a critical value 
R%or = 520 (cf. Jordinson [5]). Let us consider a hollow cylinder of constant radius/~ with a sharp 
leading edge at 5 = 0. For sufficiently large values of ReR instability sets in in the almost 
two-dimensional boundary layer near the leading edge and the stability limit of the Blasius flow 

can be applied. In terms of ReR and ~ we get the asymptotic expression 

Regor = 1208.7/4 for ~ ~ 0  (13) 

which is shown as a dashed straight line in the double-log diagram, Fig. 10. 
Finally, to close the stability chart in the region ~ = 0(1) between the asymptotic results (12) 

and (13) valid for ~ ~ cc and ~-~ 0, respectively, it was necessary to carry out numerical 
calculations of the full Orr-Sommerfeld problem (4). To each value of ~ belongs a particular 
velocity profile W0(r; 4). These mean flow profiles were determined using the two equation local 
nonsimilarity method which has been applied to the axisymmetric boundary layer first by 
Sparrow et at. [13]. Using this velocity distributions Wo(r; 4) the axisymmetric eigen-value 
problem (4) yields the neutral-stability curves with the corresponding critical Reynolds numbers 
ReRc~(~) which are shown in Fig. 10 (curve n = 0). These results form the lower boundary of the 
region of instability and fit very well to the asymptotes (12) and (13). 

During the final preparation of this work the author received a copy of a recently published 
AIAA-paper by Kao and Chow [6]. In their numerical study Kao and Chow considered also non 
axisymmetric modes for the linear stability problem, characterized by an azimuthal wavenumber 
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n #: 0. They found that n = 2 is the most  unstable mode in the boundary  layer along the circular 
cylinder with a min imum Reynolds number  ReR* = 8487.5 at 4" = 0.33 and their numerical 
results are depicted in Fig. 10 (curve n = 2). The authors just remark that "at  a higher value of 
ReR the transition value ~.t~ shifts to a lower value on the left branch of the critical curve" (Kao 
and Chow, p. 7 and Fig. 7) but they do not give any comment  concerning the "right branch of the 

critical curve". 
According to the present investigation which is restricted to linear theory, pure temporal  

stability analysis and parallel flow assumption, we can finally characterize the stability behaviour 
of the boundary  layer flow along a circular cylinder as follows. No  instability occurs for Reynolds 

numbers below a critical value ReR*. For  sufficiently larg e values ReR > ReR* the flow becomes 
unstable but inside a confined region downstream the leading edge only. This novel feature of the 

stabilization of a simple boundary  layer flow without pressure gradient is strongly confirmed by 
the asymptote  (12). It would be interesting to study the implications of this behaviour since the 
logarithmic formula (7) represents the velocity profile on an extremely long cylinder in both 

laminar and turbulent flow (see White [16]). Furthcr  investigations will aim on the influence of 
non axisymmetric modes on the long wave eigen-value problem [Eq. (5), Fig. 4] and sliding 
Couette flow (Fig. 8) and on problems of nonlinear perturbations introduced in the boundary  

layer along the cylinder near the state of "marginal  instability" (given by 4" and ReR*). 
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