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S c h r / S d i n g e r  O p e r a t o r s  

w i t h  S i n g u l a r  M a g n e t i c  V e c t o r  P o t e n t i a l s  

Barry Simon* 

w 1. Introduction 

In this paper we wish to consider domains of essential self-adjointness 
for Schr6dinger operators 

n 

n = - i 2 + V (1) 
j = l  

where gj=~/gxj and where a~, V are measurable functions on IR" with 
additional conditions which will vary from theorem to theorem. Through- 
out we employ the not~tion: 

D j  = c j  - i aj  

Y+ =max(V, O) 

1 / =  max ( -  V, 0). 

The interest in operators of the form (1) comes, of course, from the 
theory of non-relativistic quantum mechanics but we emphasize that 
for all operators of direct physical interest, we know that C~ ~ (F,.,) is 
a core due to the work of Kato [8], Stummel [19] and Ikebe-Kato [6]. 
We are interested in the mathematical question of determining minimal 
conditions which assure essential self-adjointness on C~ ~ 

Let us begin by summarizing the "general principles" which have 
been discovered in the study of operators of the form (1). The first two 
are classical going back to the work of Weyl and others on the case n = 1 : 

(1) Almost all theorems are stated in terms of separate hypotheses on 
a, V+, V .  This is an empirical fact. In case ~=0,  this is partly expressed 
by the recent theorem of Davies and Faris [3, 5] that if V is - A  bounded 
with bound less than 1 and - A +  V+ is essentially self-adjoint on 
O(- A) n D(V), then - A + V is essentially self-adjoint on O(-  A) ~ D(V). 

(2) A global condition is needed on V .  Explicitly, a suitable local 
average of V should grow no faster than Ixl 2 at or. 
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(3) [2, 19] Only local conditions are needed on V+. 

(4) [6] Only local conditions are needed on a. 

(5) [19, 1, 4, 18] Call p n-canonical if p = 2  when n<3,  p > 2  when n = 4  
and p =�89 n if n > 5. Local L p (or, at least, local weak L p [18]) estimates are 
needed on V .  

(6) [15, 9] Only local L 2 conditions are needed on V .  

In this paper, we wish to explore the question of minimal local regu- 
larity conditions on 4, the magnetic vector potential. Since the work of 
Ikebe and Kato [6], it has been standard to suppose that de C 1. At 
first sight, it does not appear that one can weaken this much, for terms 
of the form (3j a j ) � 9  appear when ( ~ - i a j ) 2 ~  is expanded. For this to 
be in L 2 when ~ e  C~ ~ it seems natural to demand that aj be in (H1)loc, 
the local Sobolev space of functions with locally L 2 (distributional) 
derivatives of first order. However, this view does not take into account 
the fact that the ak are not "physical" but only/~ = curl a is "physical", 
i.e. it ignores the freedom of gauge transformations. To be more explicit, 
we make two remarks. First, we have the formal relation 

oxpi  [- + expt-i 
j=~ j=l 

where Dj=~j-i~tj with ~j=aj+Oj).. Secondly, the only term in 
( - ~  D 2 + V)~b which involves derivatives of a is (div 4 ) � 9  and div ~ is 
not invariant under the gauge transformation a ~ ~. In fact, it is quite 
common in quantum theory to work in the Coulomb Gauge where 
div 6 -- 0. Most of our results (w167 2, 5) will impose the condition div fi = 0. 

If divfi=0,  ~(L~)loc and V~(L2)loc, then we define the operator H 
on C~ by: 

n 

Hq~= -Aq~+ 2 i ~  aj~jq~+(a2 + V) r (2) 
j=l 

It is a simple excercise to see that (2) defines a symmetric operator since 
div 6 = 0. 

Our main results concerning the operator (2) when div/~=0 appear 
in w 5. They depend on an idea of Kato [9] and a purely technical argu- 
ment found in w167 3, 4. To illustrate the simplicity of working in Coulomb 
gauge, we first show that when t~L4(~x3)--}-L~176 3) and VeL2(]R3)+ 
L~176 then div f i=0 and a perturbation theory argument proves that 
(2) is self-adjoint on D(-A). This argument, which appears in w is 
included solely for motivational purpose and may be skipped by the 
reader interest in our main results. In w 6, we briefly consider results 
when div 6 :~ 0. 
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We conclude this appendix by saying a few words about the definition 
of Schr/Sdinger operators with singular magnetic potentials by the 
method of quadratic forms [13, 14]. Suppose V>O, Ve(L1)loc. Define 
a quadratic form on C~ x C~ by 

h(~,  ~ ) =  ( ( c j - z a j ) ~ , ( c j - z a j ) ~ ) + ( v ~ P , v ~ )  
j=l  

h is a positive closable quadratic form (because 3 ~ - i a j  and v ~ are 
closable operators) whose closure is thus the form of a unique self- 
adjoint operator H [10, 11]. Thus, if we only seek a "natural"  meaning 
for H and don't care about operator cores, ae(LZ)lo~ is all that is required. 
This was first commented by E. Nelson (unpublished) who based his 
comments on the use of stochastic and path integrals rather than forms. 

It is a pleasure to thank E. Nelson for stimulating my interest in the 
question of singular magnetic potentials, to thank O.E. Lanford III, 
J. Lions and L. Tartar for discussion of the technical material in w 4, to 
thank M. O'Carroll for the hospitality of PUC-Rio de Janeiro where this 
work was begun and to thank N. H. Kuiper for the hospitality of I. H. E. S. 
where this work was concluded. 

w 2. Coulomb Gauge, I: Theorem with a Global Hypotheses 

The Kato-Rellich theory of regular perturbations can be applied to 
prove a simple result on Schr~dinger operators with singular magnetic 
fields: 

Theorem 1. Let ~ be an lR3-valued function on IR 3 with fi ~L  4 + L ~ and 
3 

div fi =0. Let  V~L  2 + L ~~ Then H = - ~ ( ~ -  i aj) 2 q- V is essentially self- 
j = l  

adjoint on C~ (and self-adjoint on D ( -  A)). 

Proof  Since H = - A + 2 i 4. r + a 2 + V and a 2 s L 2 + L ~, we need only 
prove an estimate of the form: 

1[(4. V) ~11--<~ IIA ~ll +/~ [1~11 (3) 

for some ~ < 1 and all ~ s C~. On the one hand for any ~: 

113~ ~112 <e IIA ~112 +~ -x 11~112 (4) 

and on the other hand for any e, these is a c so that 

II~ ~114<~ IIA ~112 +c  il~li2, (5) 

(4) follows from the Plancherel theorem and the bound 

Lips ~112< Ilpff ~ll II'Pll <e2 [IPj ~112 +~-21[~112 <~2 lip2 ~112 + e-2 ii~ll 2. 
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(5) comes from the Plancherel theorem, the Hausdorff-Young inequality 
and IIp~q, l l~<llpj(l+~p2) -~ 1141-11~112+~11p2~112]. (3) follows immedi- 
ately from (4) and (5). [] 

Remarks. 1. In some ways, it is more natural to place restrictions on 
and a 2 + V rather than fi and V One sees that it is then only necessary 

to have a2+VEL2+L ~ and gt~LP+L | with p>3,  for the proof to go 
through. 

2. It is quite easy to discuss scattering theory for operators of the 
type dealt with in Theorem 1 (see also [7]). For example, by using Cook's 
method, one can prove s-lim e iHt e-inot exist if V~ L z + g (2 < r < 3) and 
gt~ L4 c~ L ~ (s< 3). 

3. The condition div ~i =0  may be replaced with div ~eL 2 + U ~ 

w 3. Kato's Inequality and the Reduction to Condition Kp 
In Kato's recent discussion of Schr6dinger operators with (L2)loc 

potentials [9], a major role is played by: 

Proposition ( Kato' s Inequality). I f  u~(L1)lo~ and - A u~(L1)loc, then 

A ]u[ > Re ((sgn u) A u) (6) 

where (6) is understood as a distributional inequality and sgn u is defined by: 

(sgn u) (x) = ~0 /f u (x) = 0 
( u* (x)/lu(x)l /f u(x)*0. 

In our extension of Kato's method, we make heavy use of the fact that 
in applications u is in (L2hoc rather than merely in (L1)loc. 

Definition. Let ps[4,  oo] and let q = ( 1 - p - ~ ) - L  We say that a func- 
tion fi from IR n to IR n obeys condition Kp if and only if 

(i) a ~(L')lor 
(ii) If u~ (L2)1o~ and - A u + 2 i div (fi u)~ (Lt)lo~, then grad u~ (Lq)lo~. 

Lemma 1. Suppose div ~ =0. I f  p-1 +q-1 = 1, /f ~(LP)loc, uE(Lq)loc 
and grad u ~ (Lqhor then 

div (d u) = a grad u. 

Proof Let j~ be an approximate identity, i.e. j~(x)=J-l j (x /6)  where 
j s C ~ ,  j>O and ~ j ( x ) d x = l .  Let a~=a.j~ so that d iva~=0 and let 
u '=  u . j , .  Then by Lebnitz' rule, 

div (~  u *) = d ~ grad uL (7) 

Using the given L p estimates and H61ders inequality, it is easy to prove 
that the two sides of (7) converge in (C~)' to div(fi u) and ~ grad u as 6, 
~ 0 .  [] 
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L e m m a 2 .  Suppose ?t obeys condition Kp, that d i v & = 0  and that 
- A u + 2 i div (fi u) ~ (Ll)loc. Then - A u ~ (LX)loc. 

Proof. This follows from L e m m a  1. [ ]  

Theorem 2. Let ~ obey condition Kp for some p~[4 ,  oo] and suppose 
div fi =0 .  Let ,Q be the operator from (L2)lor to (C~)' given by: 

f l u =  - d  u+ 2i ~ ~3j(aju)--ka 2 u. 
j=l  

Then for any u~(L2)lor with HuE(L1)loc we have 

A [u[ > - Re  [(sgn u) (/-) u)] (8) 

as a distributional inequality. 

Proof. Following Ka to  [9], we first prove a modified version of (8) 
when u is smooth  and then obtain (8) by a double  limiting proceedure.  
So let u be C ~ and define u~=(lui2+e2) ~. Since u 2 ~-U* U-'}-/~2: 

2 u, ~j u~ = u* ~j u + (3j u)* u 

-- u* (Oj u) + (D~ u)* u (9) 

= 2 Re(u* (D j u)) . 

In particular, since u~ =>[u [, we obtain ]~j u~ [=< [Dj ul. Letting 

(i, ; II~ll = v i i  2 , 
\i=1 

we obtain 
Ilgrad u~ll _-< Iib utl. (10) 

Moreover ,  by (8), 

2 ~j(u~ t3j u~) = (3j u)* (Dj u) + u* (3j D i u) + complex conjugate 

= (Dj u)* (Dj u) + u* (9  2 u) + complex conjugate.  

Summing over j, and using div ~ = 0, we obtain 

I[ grad u, II 2 + Ue Z~ Ue = [[ D u 112 _ Re  [u* (/~ u)]. (11) 
Define 

U* 
sgna u 

ue 
Then (10) and (11) imply 

A u~ > - Re ((sgn~ u)(Irlu)). (19) 

N o w  suppose that ue(L2)loc and/)ue(L1)loc.  Let j6 be an approximate  
identity and let u~-u, j6 .  By L e m m a s l  and 2, d i v ( ~ u ) = ~ g r a d u ,  
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A u6(L1)loo and grad u~(Lq)lor Thus/-)u~ ~ / - ) u  in (L1)lo~. By passing to a 
subsequence we can also be certain that u6~u pointwise a.e. so 
sgn~ (u 6) ~ sgn~ (u) pointwise a.e. As a result, for any cp ~ C~:  

q~ [sgn~ (u ~) (/~ u 6) - sgn~ (u)(H u)] 

= ~ q~ [sgn~ (u ~) - sgn~ (u)] (/~ u) + ~ ~o [sgn~ (u~)] (H u ~ - / ~  u) 

goes to zero (by the dominated convergence theorem). We conclude that 
(sgn~ u ~) d u  o converges to (sgn~ u ) H u  in (C~)'. Moreover,  since 

Ibl ~ I 
[ I1//a~+~2+l/Ib12+~21= I~ _ x(x2wez)--~dx <lb-a[ .  

us ~ u~ in (L1)1or and so in (Cb~) '. Thus (12) holds for u since it holds for u 6. 
Taking e ~ 0, (8) follows. [] 

Theorem 3. Let ~ obey condition Kp for some pc [4, ~ ]  and suppose 
that d iv f i=0 .  Let V+ EL2(IRn)Ioe , V_ GLV(IR n) with p n-canonical. Then the 
operator H from Cg to L 2 defined by 

n 

Hq~= - Atp+ 2i ~ a~O~q)+a2 q)+ Vcp 
i = 1  

is essentially self-adjoint. 

Proof Since V_ is A-bounded with arbitrarily small bound, we can 
find Eo with l[ V ( - A  +Eo) -~ll < 1. We will prove that  H+Eo has a 
dense range. If not, we can find ueL 2 with (u, (H+Eo)q))=O for all 
q~ e Cb ~. Since the opera tor /~  of Theorem 2 is defined with distributional 
derivatives, 

Flu+ Vu+ E ou=O. 

Since V~ (L2)1o~, we conclude tha t /4  u = - V u -  Eo u ~ (U)lor so Theorem 2 
is applicable. We conclude that  

A lu[ > - Re((sgn u ) ( -  Vu-Eo u))> Vlul +Eo ]ul > - V lu] +Eo  lul. 

Thus 
( -  h +Eo)lul_-< V_ lul. (13) 

But both sides of (13) lie in 6e(IR3) ' and ( -A+Eo)  -1 is a positivity 
preserving map of 5 e into 6 e and so of ~ '  into S ~ Thus 

tuI=<(- A +Eo) -1 V_ lul 
so that  

Ilull < II(-A +Eo)  -1 V_II Ilull. 

Since I[(-A +Eo)  -1 VII = II[V_(-A +go)-X]*lj <1, Null--0. [] 
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Remarks. 1. V_ ~L p was not essential. All that was needed is that 
V e(LZ)lo~ and that V_ is -A-bounded  with bound strictly less than 1. 

2. By following arguments in [9] or [16], one can prove a whole 
class of other results when a obeys Kp. For example there are theorems 
when V = O ( - r  1-~) at oo [9] or O ( - c r  -~) at 0 for suitable c [16]. 

w 4. Investigation of Condition Kp 
In order to apply Theorem 3, we need to know when condition Kp 

holds. If n<4,  the situation is very simple: 

Lemma 3. I f  n<3 and ~ is a function from IR" to IR" with ~ ( L 4  (IR"))loc, 
then d obeys condition K4. 

Proof We must show that if u ~ (LZ)loo and f -  - A u + 2 i div (d u)~(L~)zo~ 
then grad u~(L~)lo~. Without loss, we need only prove grad u is in (L~)lo~ 
near 0. Let q~ be a function which is one in a neighborhood of 0. Let g 
be defined by: 

g=(1 - A )  -~ [ ( f +  u) ~o] - 2 i  ~ [(1 - A )  -1 ~j] (aju ~o) 
j=1 

where (I-A) -~ and [(i -A) -I ~3~] are the usual integral operators on L ~. 
Then g is in L ~ and 

(1 - A )  g=( f+u)  q~-2i div(h u ~p) 

so that (1 - A ) ( g - u ) =  0 in a neighborhood of 0. By the elliptic regularity 
theorem (see, e.g. [12]) g - u  is C ~ near zero so we need only prove that 
grad g~L ~ to conclude that grad u is in (L~)lo~ near 0. Now 

n 

~ig=[~i (1-A)- l ] ( f  +u)q~-2i ~ [~i(1-A)-l  ~](a~uq)). (14) 
j=l 

Since n<  3, 0i(1-A) -~ is a convolution operator with a function in U 
so the first term is in L ~ by Young's inequality. Moreover, on each 
L p (p4= 1, oo) ~ ( 1 - A )  -a Oj is a bounded (singular) integral operator (see, 
e.g. [17]). Since a~u q~L  ~ by H61der's inequality, the second term in (14) 
is in LL Thus grad gELL [] 

The following result is all we have been able to prove when n > 4 ;  
as we will explain, we feel this is far from optimal if n>4 :  

Lemma 4. I f  p> n >_>_4 and fi is a function from IR" to ~" so that gt~(LP)lo~, 
then gt obeys condition Kp. 

Proof As in the proof of Lemma 2, we need only prove that 

[~ (1 -A) -~] ( f  +u)q~-2iZ(~(1-A)-~j ) (a juq~)  (15) 
j=l 
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is in (L~)1or with q=p/p-1  when ue(L2)lor g0e Cg and fe(L1)loc. Since 
ajrpeL p, ajugoel_Y with r=2p/p+2 by HSlder's inequality. Since p>4,  
r>4/3  and q<4/3 so Ec(Lq)lor Since Oi(1-A)-18i is bounded from 
g to If,, the second term in (15) is in (Lq)loc . Moreover ~i(1 - A )  -1 is con- 
volution with a function in/2 for any s<  n/n-  1, so by Young's inequality, 
the first term is in/2 for any s < n/n - 1. But since p > n, q < n/n-  1, so the 
first term in (15) is in (Lq)loc. [] 

We conjecture that if p > 4 and fi e L~oc ( ~ ) ,  then a obeys condition Kp. 
This conjecture is based on the fact that if - A  ue(L~)lo~ and ue(L2)lo~, 
then grad ue(L~)~oc for any q>4/3.  In fact (L.Tartar, private communica- 
tion), if - A  ue(Lt)toc and ue(L2)lor then grad ue(L~,)lor the weak L ~ space 
(but not in general in L~). 

w 5. Coulomb Gauge, II: Theorem with a Local Hypothesis 

By combining Theorem 3 and Lemmas 3, 4, we obtain 

Theorem4. Let ajeLq(]Rn)~oc, j = l  .... ,n. Let ~ ~jaj=O. Suppose 
j = l  

q> n; q> 4. Let V+e(L2(IR"))Io r and V eL p with p n-canonical. Then: 

- ~ (~j-  i ay) 2 + V 
j = l  

is essentially self-adjoint on C~. 

Remarks. 1. By a good deal of extra work, Lemma 3 can be extended 
to the case p = n if n > 5 so that the condition in Theorem 4 becomes 
aje(Lq)lor with �89 n-canonical. 

2. If our conjecture at the end of w is correct, q>n, q>_4 can be 
replaced with q > 4  if n~3  and q > 4  if n>4.  

w 6. Other Gauges 

We first note that all the arguments in w 3 remain valid if div d~L2oc 
rather than div fi = 0. Thus: 

Theorem 5. The conclusion of Theorem 4 remain valid if the hypothesis 

~jaj=O is replaced with ~ ~jaj~(L2)~oc. 
j = l  j = l  

In particular we recover the Ikebe-Kato C 1 result and a result when 
fie(HI)lot. Our attitude about other gauges is better expressed by the 
following which suggests that C~ is the "wrong" domain to consider: 
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Theorem6. Let ajELq(IR ") with q>n and q>_4. Let V+E(LZ(IR"))1oc 

and V_ -=- O. Let H be the operator - ~ (b j -  i a`/) 2 + V defined as a quadratic 
j = l  

form. Then there exists a measurable function ). so that 
1) For every q)eC~, e-iZ(') q~(.)6D(H) 
2) {e -~z ~0[q~ C~ ~ is an operator core for H. 

Remark. By more work, it may be possible to extend this result to 
allow aiE(Lq(IR"))loo and V_ 4:0. 

n 

Proof. Let 2=j~=l[(-A)-lgj]a j =  where ( - A ) - I ~ j  is the operator 

defined by the theory of Reisz potentials and transforms [17]. Then 
2eLq(lR ") and 0~).ELq(IRn), again by the theory of Reisz potentials. Let 

n n 

fij=aj-+0j2. Then ~ c3jfij= ~ 3 j a j + A 2 = 0 .  As a result the operator 
. ^  2J=1 j = l  

= - ~ (0`/- z a j) + V is essentially self-adjoint on C~ by Theorem 4. 
.i=1 

If we can show that 
H =eTiZ fI e +i~ (16) 

we will obtain (1) and (2) and so prove the theorem. But it is easy to 
prove that if q~e C~ ~ then e ix q~eD((3j- i fij I C~ ~ (by approximiting 2 with 
smooth functions) and that 

e-  i z (•j_ i fij) e i ~ q~ = (3 i -  i a j) q~. (17) 

(17) immediatly implies the operator equality 

e-i~ [)jei'~-=Dj (18) 

where Dj=~?j-i aj ~ C~; (18) implies the equality of the quadratic forms 

e - i ~ ( E O * b j + V )  e + i ~ = ~ O * O j + V  
\ j = l  / j = l  

which is (16). [] 
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