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1. Background 

If G is a group we will write Aut G for the group of all automorphisms of G and 
Inn G for the normal subgroup of all inner automorphisms of G. Many authors 
have studied the relationship between the structure of G and that of Aut G, in 
particular when the latter is finite. This paper is a further contribution to this 
study. 

The first results on groups whose automorphism groups are finite were 
published by Baer in a paper [2] in which he proved that a torsion group has 
finite automorphism group only if it is finite. Baer also proved that a group with 
only a finite number of endomorphisms is finite. In 1962 Alperin [1] character- 
ized finitely generated groups with finitely many automorphisms as finite 
central extensions of cyclic groups. Nagrebeckil [9] discovered in 1972 the 
important result that in any group with finitely many automorphisms the 
elements of finite order form a finite subgroup. This of course generalizes Baer's 
original result. Robinson El0] has given another proof of Nagrebeckfi's Theo- 
rem as well as obtaining information on the primes dividing the order of the 
maximal torsion subgroup. He also characterized the center of a group whose 
automorphism group is finite and gave a general method for constructing 
examples. 

On the other hand there seems to be little hope of obtaining a useful 
classification of groups whose automorphism groups are finite, even in the 
abelian case. Indeed, it has been shown be several authors that torsion-free 
abelian groups with only one non-trivial automorphism - the involution 
x F--~x- ~ - are relatively common (de Groot  [5], Fuchs [4], Corner [3]). 

However, Hallett and Hirsch have adopted a different approach, asking 
which finite groups can occur as the automorphism groups of torsion-free 
abelian groups. They have established the following definitive result [-7, 8]: 

Proposition 1.1. Suppose that A is a f inite group. Then there is a torsion-free 
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abelian group G such that A u t G ~ A  /f and only if A is a subdirect product of 
finitely many of the following groups: 

(i) cyclic groups of orders 2, 4, or 6, 
(ii) the quaternion group of order 8, 

(iii) the dicyclic group of order 12, 
(iv) the binary tetrahedral group of order 24, 

and A satisfies the condition that if it has elements of order 12, then it has at least 
one element of order 2 that is not a sixth power. 

2. Statement of Results 

It follows from the result of Hallett  and Hirsch that an elementary abelian 2- 
group of any finite rank can occur as the automorphism group of an infinite 
abelian group. Since an infinite abelian group always has an automorphism 
of order 2, no elementary abelian p-group may arise in this fashion as long 
as p is odd. It remains to determine which elementary abelian p-groups can 
occur as the automorphism groups of infinite non-abelian groups. This is a first 
step in determining which finite abelian groups can occur as the automorphism 
groups of infinite groups. We will prove the following result: 

Main Theorem. Suppose that G is an infinite non-abelian group and that Aut G is 
an elementary abelian p-group of rank n. 

(i) I f  p = 2, then n > 3. 
(ii) I f  p = 3, then n > 8. 

(iii) I f  p>3,  then n=8 ,  or n> 10 and n is composite. 

It will be shown in a subsequent paper that any elementary abelian p-group 
not eliminated by this result actually does occur as the automorphism group of 
uncountably many non-isomorphic infinite non-abelian groups. 

We will also derive various miscellaneous results concerning the structure of 
a group whose automorphism group is an elementary abelian p-group, as well as 
showing that such groups always have an outer automorphism. 

This paper is an excerpt from the author's doctoral dissertation. 

3. General Results 

Throughout  the sequel G will denote an infinite non-abelian group with center 
C such that Aut G is finite. By the Theorem of Nagrebeckil T, the torsion 
subgroup of C, is finite and hence is a summand of C. Therefore, in additive 
notation, we may write C = F | T where F is torsion-free. We will denote the 
factor group G/C by Q. Of course Q is isomorphic with Inn G. Since Q and T are 
finite, F is non-trivial. 

Note that for an arbitrary group G with center C and central quotient group 
Q = G/C we have the following embedding 
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Hom(Q,b, C) ,--,Aut G (3.1) 

where Qab =Q/Q' and Hom(Qab , C) is isomorphic with the group of all automor- 
phisms of G inducing the identity on both Q and C. 

Suppose that Q is abelian. Then G', the commutator subgroup of G, lies in C 
and the following identities hold for all x, y, and z in G and for all integers n (see 
Scott [111, p. 57): 

Ix, y z] = [x, y] [x, z], 

Ix, y]" = [x, y"], 

(x y)" = x" y" [y, x] "("- wz, 

(3.2) 

where [x,y] = x -  ~ y -  ~ x y is the commutator  of x and y. Consequently, if Q if an 
elementary abelian p-group, then so is G', for [x, y]P= [x, yV l = 1 (since yP lies in 
C for any y in G). It follows for p > 2 that 

(xy)P=xPy p. (3.3) 

Now suppose that Q is a finite abelian p-group. Then G may be generated 
modulo C by independent generators a l , . . . , a , ,  where af ""~ lies in C for some 
natural number n(i). It would be convenient to denote the operation of C 
additively, but since G is not abelian it would be more appropriate to denote the 
operation of G multiplicatively. These two contradictory aims will be reconciled 
as follows: operations between the elements al,  . . . ,a m will be denoted multipli- 
catively; operations between elements of C will be denoted additively. Since 

P"~ is an element of C we will write ai 

aP~(il ~f i  ~ ei 

where f~ lies in F and e i lies in T. In spite of a certain ambiguity arising from this 
notation it is the most convenient for our purposes and will be used throughout 
the sequel. 

Lemma 3.1. Let G be an infinite group such that Aut G is finite and Inn G is an 
abelian p-group. Then G ~- G I • H where G 1 has no elements of  order prime to p in 
its center, G and G 1 have isomorphic central quotient groups, and for p >2 ,  /f 
Aut G is of  odd order, then Aut G ~-Aut G 1. 

Proof Let H be the subgroup of T consisting of those elements of order prime to 
p. Since G/F is a finite nilpotent group, it is the direct product of its sylow p- 
subgroups. Thus 

G/F = (G1/F) x (HF/F) 

where G1/F is the unique sylow p-subgroup of G/F. Since G 1 c~H =l ,  it follows 
that G=G~ x H .  Clearly the center of G 1 has no elements of order prime to p, 
and G and G 1 have isomorphic central quotient groups. 

Now suppose that p > 2 and Aut G is of odd order. Since the automorphisms 
of the finite abelian group H all extend to G, they must be of odd order. Hence, 
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H is trivial or cyclic of order 2. Noting that G/H~-GI and considering the exact 
sequence 

Hom((G1)ab, H) ~--~ Aut G ~ a u t  (G/H), 

we see that the left-hand term is a 2-group, and hence trivial. Therefore, 
Aut G ~-Aut G 1 and the proof  is complete. 

This lemma will be used extensively to simplify the groups under con- 
sideration. Another useful result is the following: 

Lemma 3.2. An automorphism ~ of (an arbitrary) group G with center C 
commutes with every inner automorphism of G if and only if c~ induces the identity 
on G/C =Q. Moreover, if this holds, ~ leaves every element of G' fixed. 

The proof for the first part  may be found in Zassenhaus [13, p. 521 where 
such automorphisms are called "normal ."  The second part  follows easily. It may 
also be found as a special case of a result proven by P. Hall [6, Lemma 8.40) ]. 

4. Elementary Abelian 2-groups as Automorphism Groups 

We will now concentrate on elementary abelian 2-groups, which are the easiest 
automorphism groups with which we will deal. 

Lemma 4.1. I f  Aut G is an elementary abelian 2-group, then G has an outer 
automorphism. 

Proof We may generate G by C and elements a D . . . , a  m where a{ lies in C for 
each i. Recall that if G has a presentation (XJR) ,  that is, if there is an exact 
sequence 

R F(X) ~--~ F ( X) --~ G 

where F(X) is the free group on X, then a function 7: X ~ F ( X )  induces an 
endomorphism of G if and only if 7 maps elements of R to R F(x). In our case we 
define y to be the function inverting each a i and each element of C. Since 
[x-  l, y-1] = [x, y] in G, it follows that 7 extends to an automorphism of G. 
Since 7 transforms the center of G non-trivially, it must be outer. This completes 
the proof. 

Corollary 4.2. Suppose G is an infinite non-abelian group and Aut G is an 
elementary abelian 2-group. 7hen the rank o f A u t  G is at least 3. 

Proof If  Aut G is an elementary abelian 2-group, then so is Q = G/C ~-Inn G. 
Since (2 is not cyclic, it must have rank at least 2. By Lemma4.1,  G has an outer 
automorphism and thus rank (Aut G)> 3. This complete the proof. 
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5. Elementary Abelian p-groups as Automorphism Groups, p Odd 

In this section we will prove that if Aut G is an elementary abelian p-group for 
some odd p, then G has an outer automorphism. For  p >3,  we will also prove 
that the rank of Aut G must be a composite number. The proofs of these results 
need several preparatory lemmas. 

Lemma 5.1. Suppose that Aut G is finite group of odd order and Q =G/C is an 
elementary abelian p-group for some odd prime p. Then G may be generated by C 
together with elements al , . . .  , a m that are independent modulo C, such that for some 
s, 0 < s < m ,  

af=L, 

p m  
as -f~,  

P ~_es + a s + l  1 

P D 
a m - -  e m ,  

where fx,.. . ,f~ are linearly independent modulo pF, and G+ 1 .. . .  , e m lie in T. 

Proof By (3.3) the mapping x C~-~xP+(pF + T) is a homomorphism of Q onto 
C/(pF + T). We choose a 1 . . . .  , a s to be preimages of a basis of C/(pF + T). Then 
a~ = f / +  e i where the f~'s are linearly independent modulo pF and each el lies in T. 
We enlarge {al, ...,as} to a basis {a l, ...,am} of Q. Then aP=ei lies in T for all 
i>s. Now we enlarge {fx+ex, . . . , fs+G} to a basis B of C/(pF+ T). Replacing F 
by (B, p F )  we may assume that C = F G T  and that: 

i__<s, 

a~=ei, i>s,  

where the f [ s  are linearly independent in F/pF. 
Now suppose that s =0. Then F is a direct factor of G and the automorphism 

inverting F extends to an automorphism of G of even order which is a 
contradiction. 

If s=m, the mapping that inverts each a~ and each element of F, and fixes 
each element of T extends to an automorphism of G of order 2. This con- 
tradiction completes the proof. 

Lemma 5.2. Suppose that Aut G is an elementary abelian p-group. I f  T is a p- 
group, then it is itself an elementary abelian p-group. 

Proof We choose generators for G according to the previous lemma. Suppose 
that t is an dement  of order p2 in T. We define an automorphism 7 on G by 
letting 

a 1 7~- -a l  t, 

ai y ----- a~, i + 1, 
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x y -~ x ,  x ~ T ,  

f l  ?=fl t p, 

f~y=f~, i@l. 

This may be done since the f~'s are linearly independent modulo pF. Since a s 7 p 
= a  1 tP:t:al, this automorphism is not of order p and this contradiction com- 
pletes the proof. 

Now suppose that Aut G is an elementary abelian p-group of rank n for 
some odd prime p. We will eliminate various possibilities for n by constructing 
automorphisms of G that violate Lemma 3.2, thus making Aut G non-abelian. 
By Lemmas 3.1 and 5.2 we may assume in this construction that T is an 
elementary abelian p-group. 

Lemma 5.3. Suppose that Aut G is an elementary abelian p-group of rank n, for 
some prime p > 3. I f  T is an elementary abelian p-group, then the rank of T divides 
n.  

Proof Again we select generators al,  ..., % according to Eemma 5.1, and enlarge 
{fl . . . . .  f~} to a basis {fl . . . .  ,f~,-..,fr} of F modulo pf .  Let 7 be any automor- 
phism of G. Since G is nilpotent, Corollary 5.4 of Robinson [-10] implies that F 
has a finite automorphism group. By the Theorem of Hallett and Hirsch, the 
automorphisms of F of prime order have order 2 or 3. Since (TIc)V=l, the 
automorphism induced by Y on C/T=F must be the identity. Hence, f 7 = f  + f  0 
where 0: F ~  T is a homomorphism. Also, by Lemma 3.2 we know that 7 must 
induce the identity on (2 = G/C. Therefore, for each g in G there are elements f in 
F and t in T such that g v = g f t .  Since g ( y P ) = g - g f P  (modulo T) it follows t h a t f  
= I. Consequently, g y = g  t. Thus we may write a~ y = a~ t~, for some t~ in T. 

Now suppose that every automorphism of G fixes T pointwise. Applying 7 to 
the power relations of G we see that 

(af) 7 =fi  7 =f~ + f  0 = (a i y)v = af tf =fi, for i < s. 

Therefore, f~0=0 for ins.  For i>s, f~O may be chosen arbitrarily in T since 
{fl, ...,f~} is a basis for F modulo p and since there are no more relations 
involving the f~ that could obstruct the construction of such homomorphisms. 
This means that Aut G can be generated by automorphisms of the following 
type: 

some t~ in T, 

for all c in C, (5.1) 

a i ~--~a i t l ,  

C b.-+ C~ 

a i ~ a i ,  

t ~-~ t ,  t i n  T, 
(5.2/ 

i<s, 

i>s .  

Automorphisms of type (5.11 form a group of automorphisms of G isomorphic 
with Horn(Q, T). The automorphisms of type (5.2) form a complement in Aut G. 
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Therefore, the rank of Aut  G is (rank T) (rank Q + r -  s) and the result is proven 
in this case. 

We will now show that  every au tomorph i sm of G leaves T pointwise fixed. 
For  suppose there is an element x which lies in T but not  in T c~ (G'GP). Then 
( x )  is a summand  of  G and therefore G has an au tomorph i sm of order 2. Thus 
we may  assume T c_G'G p. By L e m m a  3.2, elements of  G' are fixed by every 
au tomorph i sm of G. Also, for any g in G and any au tomorph i sm 7, it follows 
that  gP7 = (g 7) p=  (g t) p=  gP t p = gr. Thus, G p is fixed elementwise by 7, and hence 
so is T. This completes the proof. 

This L e m m a  would eliminate many  possibilities for the rank of  Aut  G if we 
could prove that  the rank of T is not  1. We do this in the next result. 

L e m m a  5.4. I f  Aut  G is a finite abelian group of  odd order and both Q and T are 
elementary abeIian p-groups, then T and G' are not cyclic. 

Proof. Suppose to the contrary  that  such a G exists with cyclic T. We select 
generators for G according to L e m m a  5.1, that  is, we select generators a , ,  ..., a m 
for G modulo  C such that  

af =L, 

p _  
as - f s ,  

P 
as+l = e s + l ,  

a~ = e m, 

where f l  . . . . .  fs are linearly independent  elements in F modulo  pF, and e i lies in 
T. No te  that  0 < s < m. 

Suppose first that  a m commutes  with a s + l , . . . ,  am_ 1" Since a m does not  lie in 
the center of  G, we may  assume that a 1 and a m do not  commute.  Thus, c 
= [a~, % ]  + 1. Since T is cyclic, it must  be cyclic of order p and hence G' = T. 
Thus, c generates G' and consequently for each i, [a~, % ]  = c r(i) for some r(i). For  
i =  2, 3, . . . ,  s we replace al by a i a7 r(i). Since f l , . . . , f s  are independent  modulo  pF, 
so are f l ,  f2 - r (2) f l ,  .--, f ,  - r (s) f l .  Also, 

[a i a7 r(1), am ] = [ai, am ] [ a l ,  a ,J -~( i )=  1. 

Hence, we may  assume in addit ion to the power relations that  % commutes  
with all a~ except a~. We define a map on G as follows: 

a I 7 = a l  a m, 

a~ 7=al,  i4=1, 

flT=fl+em, 

f~ 7 =f~, i + l ,  

t7 = t, for all t in T. 

It may  easily be checked that this gives rise to an au tomorph i sm of G. By 
L e m m a  3.2, Aut  G is not  abelian, which is a contradiction.  
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If e i = 0  for all i>s, then the mapping inverting each a i and each element of 
F, and fixing each element of T extends to an automorphism of even order. 
Thus, we may assume that a~--e m + 0 and that a m does not commute with one of 
as+l, . . . ,am-1, let us say with a m_l. Now if e m _ l = s %  we replace %_1 by 
am_lain s and assume without loss of generality that era_a=0. Since c 
= I-am- 1, am] generates G', we have [a m_ 1, a i ]=  r(i) c, for i < m -  1. Replacing a i 
by a~ a~ r(~ we may assume that a m_ 1 commutes with all a~ except %. We define 
an automorphism on G as follows: 

aiT=al, i # m ,  

am T=amam_ l , 

C 7 = C, for all c in C. 

Again, Lemma 3.2 implies that Aut G is not abelian and the proof is complete. 

Corollary 5.5. Suppose that Aut G is an elementary abelian p-group for some prime 
p > 3. Then the rank of  Aut G is not prime. 

Proof Suppose that Aut G is an elementary abelian p-group of rank n. By 
Lemmas 3.1 and 5.2 we may assume that T is an elementary abelian p-group 
also. From the proof of Lemma 5.3 we have 

rank(Aut G) = (rank T)(rank (2 + r - s) 

where r -  s > 0. Since T and Q are not cyclic, Aut G is not of prime rank and the 
proof is complete. 

This Corollary places restrictions on the rank of an automorphism group 
that is an elementary abelian p-group, p > 3. In the next section we will discover 
two further restrictions (n > 7, n + 9). For p = 3 we show in the next section that 
n > 7. It will be shown elsewhere that there are no other restrictions. 

Corollary 5.6. Suppose that Aut G is an elementary abelian p-group for any prime 
p. Then G has an outer automorphism. 

Proof If p=2 ,  then this result is Lemma4.1. If p is odd, then we may assume 
that T is an elementary abelian p-group of rank at least 2. Since the rank of 
Q-~InnG is at least 2, this means IQl=l InnGl<lHom(Q,r ) l .  The embedding 
(3.1) now implies that G has an outer automorphism and the proof is complete. 

6. Inn G and T Elementary Abelian p-groups of Small Rank, p Odd 

If Inn G and T are elementary abelian p-groups of small rank, then it is possible 
to construct automorphisms that do not commute with Inn G. H e r e  "small 
rank" means no larger than 3. If Aut G were an elementary abelian p-group of 
rank n<8 ,  then embedding (3.1) implies that Q and T are of small rank, and 
hence AutG is not abelian. For  n = 9  and p>3 ,  Lemmas 5.3, 5.4, and 6.1 imply 
that both Q -~ Inn G and T have rank 3 and again Aut G is not abelian. The task 
of proving these results is divided into several lemmas. 
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Lemma 6.1. Suppose that Aut G is a finite group of odd order and that Q and T 
are elementary abelian p-groups. Then the rank of Q is not 2. 

Proof Suppose to the contrary that the rank of Q is 2. By Lemma 5.1 we may 
assume that G is generated by C, a 1, and a 2 such that 

=L, 

a~ ~ e2~ 

where f l  is not trivial modulo pF. We define an automorphism of G as follows: 

al 7 = a l ,  

a 2 7 = a 2  -1, 

t T = - - t ,  for t in T, 

fl 

However, 7 is of even order and this contradiction completes the proof. 

Corollary 6.2. Suppose that Aut G is an elementary abelian p-group for some odd 
prime p. Then the rank o f A u t  G is not 1, 2, 3, 4, or 5. 

Proof We may assume that T is an elementary abelian p-group of rank n. By 
Lemma 5.4 we know that n > 2. By the previous Lemma we know that the rank 
m of Q is at least 3. From embedding (3.1), we have that 6<mn<rank(AutG).  
This completes the proof. 

If  Aut G is an elementary abelian p-group, the remaining ranks to be 
excluded for Aut G are 6, 7, and (for p > 3) 9. To do this we consider the case in 
which Q _~ Inn G and T are elementary abelian p-groups, and Q is of rank 3. In 
addition we assume that Aut G is a finite abelian group of odd order. By 
Lemma5.1,  G may be generated by C, al,a2, and a 3 such that one of the 
following holds: 

a~ = f l ,  

aP =f2, (6.1) 

a S = e3, 

where f l  and f2 are linearly independent in F, and e i lies in T, or 

a~ =f i ,  

a~ = e2, (6.2) 

a S = e3, 

where f i  is not trivial modulo pF, and e i lies in T. The following result is very 
useful. 

Lemma 6.3. Suppose that Q and T are elementary abeIian p-groups of rank less 
than or equal to 3. Then for all x, y, z, w in G there is some g such that Ix, y] and 
[z, w] both lie in [g, G]. 
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This follows immediately from the relations (3.2) and fi'om the fact that  G' 
has rank at most  3. It also follows that  every element of  G' is a commuta tor .  

Suppose now that the rank of G' is 3. If we are in the situation of  (6.1), that  
is, if a 3 is of finite order but  a 1 and a z are not, then it follows that a~ = Jr, s] for 
some r, s in G. If  (r,  s, a3, C ) =  G, then we may choose a 1 = r and a 2 =s.  Then the 
mapping  inverting a 1 and a 2 and fixing a 3 (which we will briefly denote as ( - 1 ,  
- 1, 1)) extends to an au tomorph i sm of G. By L e m m a  3.2, Aut  G is not  abelian. 
N o w  suppose that  (r, s, a3, C )  + G. If  r and s are both  of  finite order, then a~ 
=J r ,  s] = 1 since the torsion subgroup of  G is abelian. In this case the same 
mapping  as above extends to an au tomorph i sm of G. Thus, we may  assume that 
at least one of r and s has infinite order  and may be chosen as al.  We then 
choose a z accordingly. Thus, a ~ = [ a 3 , g  ] for some g. The mapping  (1, 1, - 1 )  
extends to an au tomorph i sm of  G. 

N o w  suppose that (6.2) holds, that  is, suppose that  a 2 and a 3 both  are of 
finite order. Then G p c~ T is of rank at most  2 and is contained in some Ix, G]. If 
x is of  infinite order we choose it to be a 1, and then (1, - 1 ,  - 1 )  extends to an 
au tomorph i sm of G. If  x is of finite order  we choose it to be a 2. If  a~ = 1, then 
the mapping  ( -  1, 1, - 1) extends to an au tomorph i sm of G. If  a~ + 1, then a~ 
= [a2, y] for some y in G. Suppose that  y is of finite order. Then we may  choose 
it as a 3. If  a~=[a2, z] and z is of finite order, it follows that z=a~ for some r. 
Replacing a 3 by a 3 a2 r, we may assume without  loss of  generality that  a~ = 1. If  z 
is of  infinite order  we choose it as a 1. In either case the mapping  ( -  1 ,  - 1 ,  1 )  

extends to an au tomorph i sm of G. The only case left to consider is that  in which 
y is of  infinite order. For  this we choose y to be a~. It is then possible to choose 
a 3 so that  a~ = [ a 2 , a 3 ]  r for some r. The mapping  which sends a s to a 1 a 2 and 
fixes a 2 and a 3 now extends to an au tomorph i sm of G. 

Let us now consider the case in which G' has rank 2. In this case it is always 
possible to choose a basis for G modulo  C such that  one of  the commuta to r s  
[ a l , a2 ]  , [a2,a3] , or [ a l , a3 ]  vanishes. Let us first consider the case in which 
[a~, a3] = 1 and both  a 1 and a 2 are of infinite order. Then the mapping  fixing a 1 
and a 3 and sending a 2 to a 2 a 3 extends to an au tomorph i sm of G. If  [a~, a2] = 1 
and aa and a 2 are of  infinite order, then a~ = [a3, a[ a~] t for some 1" and s where t 
is in some complement  of G' in T. In this case (1, 1 , - 1 )  extends to an 
au tomorph i sm of G. 

N o w  suppose that  only al is of  infinite order  and that  [ a ~ , a 2 ] = l .  N o w  T 
= G' | Cp and a~ = [a3, a~ a~] h, a~ = [a3, a] a~]/c where h and Ir lie in Cp. Either 
h = 1 or we may replace a 3 by a 3 a~ for an appropria te ly  chosen w and assume 
that k = l .  Suppose that  p divides r. If  p also divides t, then the mapping  
( - 1 ,  1, 1) extends to an au tomorph i sm of G. If  p does not  divide t, then we 

t , The mapping  ( 1 , -  1, 1) extends to an automorphism.  If  p replace a 1 by a 1 a 2. 
does not  divide r, we take a~ a~ as a 1. Replacing a 3 by a 3 a2 ~ we may assume 
that a~ = [a3,  a l l  h and a p = [a3, a~] k. If  h = 1, the mapping  ( -  1, 1, - 1) extends 
to an au tomorph i sm of G. If  h ~ 1, this mapping  also extends (on T =  G' �9 C~, we 
send [a3 ,a l ]  to [a3,al] h 2, [a3,a2] to [a3, a2], and invert each element of Cp). 
The only case remaining is that  in which [a 2, a3]  = 1. Then ( -  1, 1, 1) extends to 
an au tomorph i sm of G. This covers all possible cases. We have proven the 
following: 
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L e m m a  6.4. I f  Q = G/C and T are elementary abelian p-groups of  rank at most 3 
for some odd prime p, then A u t  G is not abelian. 

7. Summary 

W e  will now prove  our  ma in  result.  

Proposi t ion  7.1. Suppose that G is an infinite non-abelian group and that A u t  G is 
an elementary abelian p-group of rank n. 

(i) I f  p = 2, then n > 3. 
(ii) I f  p=3,  then n>8.  

(iii) I f  p>3,  then n = 8 ,  or n >  10 and n is composite. 

Proof. Suppose  p = 2. Then  this result  is Coro l l a ry  4.2. 
Suppose  tha t  p is odd.  By L e m m a s  3.1 and  5.2, we m a y  assume tha t  T, the 

tors ion  subgroup  of the center  of  G, is an e lementa ry  abe l ian  p-group.  By 
L e m m a s  5.4 and  6.1 we may  assume tha t  r a n k ( T ) > l  and  r a n k ( Q ) > 2 .  By 
Coro l l a ry  6.2 we know tha t  the rank  of  A u t  G is at  least  6. If  A u t  G has r ank  6 
or  7, then the embedd ing  (3.1) impl ies  tha t  r a n k ( T ) = 2  and r ank (Q) - -3 .  This 
con t rad ic t s  L e m m a  6.4. 

N o w  suppose  tha t  p > 3. Then Coro l l a ry  5.5 implies  that  the rank  of A u t  G is 
composi te .  Suppose  tha t  A u t  G is of  r ank  9. Then Q and  T mus t  bo th  be of  r ank  
3. This con t rad ic t s  L c m m a  6.4 and comple tes  the proof.  

Remark. The condi t ions  on p and  n above  are  also sufficient to ensure the 
existence of  an infinite non -abe l i an  g roup  whose a u t o m o r p h i s m  group  is an 
e lementa ry  abel ian  p -g roup  of  r ank  n. 
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